Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = early Permian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8591 KB  
Article
Simulation of Compaction Process of Tight Sandstone in Xiashihezi Formation, North Ordos Basin: Insights from SEM, EDS and MIP
by Hongxiang Jin, Feiyang Wang, Chong Han, Chunpu Wang, Yi Wu and Yang Hu
Processes 2025, 13(10), 3191; https://doi.org/10.3390/pr13103191 - 8 Oct 2025
Viewed by 397
Abstract
The Permian Xiashihezi Formation in the Ordos Basin is a typical tight sandstone gas reservoir, which is characterized by low porosity and strong heterogeneity. Diagenesis plays a crucial role in controlling reservoir quality. However, the multiple phases and types of diagenetic processes throughout [...] Read more.
The Permian Xiashihezi Formation in the Ordos Basin is a typical tight sandstone gas reservoir, which is characterized by low porosity and strong heterogeneity. Diagenesis plays a crucial role in controlling reservoir quality. However, the multiple phases and types of diagenetic processes throughout geological history make the compaction mechanisms highly complex. This study employed a high-temperature and high-pressure diagenesis simulation system to conduct geological simulation experiments. Typical reservoir samples from the 2nd Member of the Permian Xiashihezi Formation were selected for these simulations. The experiments replicated the diagenetic evolution of the reservoirs under various temperature, pressure, and fluid conditions, successfully reproducing the diagenetic sequences. The diagenetic sequence included early-stage porosity reduction through compaction, early carbonate cementation, quartz overgrowth, chlorite rim formation, feldspar dissolution, and late-stage illite and quartz cementation. Mechanical compaction is the primary factor reducing reservoir porosity, exhibiting a distinct four-stage porosity reduction pattern: (1) continuous burial stage (>4000 m); (2) stagnation stage of burial (3900 m–4100 m); (3) the secondary continuous burial stage (>5000 m); (4) tectonic uplift stage (3600 m). The experiments confirmed that the formation of various authigenic minerals is strictly controlled by temperature, pressure, and fluid chemistry. Chlorite rims formed in an alkaline environment enriched with Fe2+ and Mg2+ (simulated temperatures of 280–295 °C), effectively inhibiting quartz overgrowth. Illite appeared at higher temperatures (>300 °C) in platy or fibrous forms. Feldspar dissolution was noticeable upon injection of acidic fluids (simulated organic acids), providing material for authigenic quartz and kaolinite. The key mineral composition significantly impacts reservoir diagenesis. The dissolution released Mg2+ and Fe2+ ions, crucial for forming early chlorite rims in the overlying sandstones, confirming the importance of inter-strata interactions in “source-facies coupling.” Through physical simulation methods, this study deepened the understanding of the diagenetic evolution and compaction mechanisms of tight sandstones. This provides significant experimental evidence and theoretical support for predicting “sweet spot” reservoirs in the area. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

36 pages, 12719 KB  
Article
Petrogenesis and Provenance of the Triassic Metasedimentary Succession in the Sakar Unit, Bulgaria: Constraints from Petrology, Geochemistry, and U-Pb Detrital Geochronology
by Tzvetomila Filipova Vladinova and Milena Georgieva Georgieva
Geosciences 2025, 15(9), 343; https://doi.org/10.3390/geosciences15090343 - 2 Sep 2025
Viewed by 1139
Abstract
This study investigates the metasedimentary sequences of terrigenous–carbonate Sakar-type Triassic (TCSTT) and Sakar-type Triassic (STT) in the Sakar Unit, southeastern Bulgaria. Both share lithological similarities (alternation of carbonate–silicate schists, mica schists, marbles, and impure marbles) and are affected by post-Triassic metamorphism, but with [...] Read more.
This study investigates the metasedimentary sequences of terrigenous–carbonate Sakar-type Triassic (TCSTT) and Sakar-type Triassic (STT) in the Sakar Unit, southeastern Bulgaria. Both share lithological similarities (alternation of carbonate–silicate schists, mica schists, marbles, and impure marbles) and are affected by post-Triassic metamorphism, but with differences in metamorphic grade and partly in the variation of potential sources of the sedimentary material. STT shows a higher metamorphic grade (lower amphibolite facies) when compared to TCSTT (lower greenschist facies). Petrographic observations and geochemical analyses indicate protoliths composed of arkosic sandstones, shales, and limestones derived from a quartz-dominated source with minor contributions from intermediate magmatic sources. The U-Pb geochronology of the detrital zircons reveals a dominant Carboniferous age complemented by an Early Ordovician age, which is consistent with the presence of Carboniferous–Permian igneous rocks in the basement. The presence of Early Paleozoic and Cambrian–Neoproterozoic zircons in the detrital zircon populations suggests that older rocks of the basement of the Sakar Unit and the Srednogorie Zone are also sources of the sedimentary material. Based on the immobile trace element content and discrimination diagrams, the siliciclastic component originates from rocks formed in a continental-arc setting. REE patterns indicate a negative Eu anomaly inherited from granitic-source rocks. Full article
Show Figures

Figure 1

24 pages, 9686 KB  
Article
The Petrogenesis of Early Permian Granodiorites in the Northern Segment of the Changning-Menglian Suture Zone, Western Yunnan, and Their Tectonic Implications
by Jiajia Liu, Zhen Jia, Jiyuan Wang, Feng Zhao, Junbao Luo, Feiyang Xu and Fuchuan Chen
Minerals 2025, 15(9), 894; https://doi.org/10.3390/min15090894 - 23 Aug 2025
Viewed by 805
Abstract
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 [...] Read more.
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 Ma) Wayao granodiorite in the northern segment remain unclear, hindering our understanding of the timing of subduction initiation and processes of the Paleo-Tethyan Ocean in the Changning-Menglian suture zone. This study presents systematic petrographic, zircon U-Pb geochronological, whole-rock major and trace element geochemical, and Sr-Nd-Hf isotopic analyses on the newly discovered Early Permian granodiorite in the Wayao area, northern segment of the Changning-Menglian suture zone, western Yunnan. Zircon U-Pb dating yields a crystallization age of ca. 280 Ma, confirming its emplacement during the Early Permian. The petrogeochemical characteristics indicate that it belongs to the metaluminous, calc-alkaline series of I-type granite. It is enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th, U, La, Pb) and depleted in high-field-strength elements (HFSEs; e.g., Ba, Nb, Sr, Ti), exhibiting a pronounced negative Eu anomaly. Whole-rock Sr-Nd isotopes (εNd(t) = −5.6–−6.1) and zircon Hf isotopes (εHf(t) = −1.34–−10.01) suggest that the magma was predominantly derived from the partial melting of ancient crustal material (primarily metamorphosed basic rocks, such as amphibolite), with a minor addition of mantle-derived components (magma mixing). Combined with petrogeochemical discriminant diagrams (e.g., Sr/Y vs. Y, Rb vs. Yb + Ta) and the regional geological context, this granodiorite is interpreted to have formed in an active continental margin tectonic setting associated with the eastward subduction of the Paleo-Tethys Ocean (represented by the Changning-Menglian Ocean). This discovery fills the gap in the record of Early Permian subduction-related magmatic rocks in the northern segment of the Changning-Menglian suture zone. It provides crucial petrological evidence constraining that the eastward subduction and consumption of the northern Paleo-Tethys Ocean had already commenced by the Early Permian. Full article
Show Figures

Figure 1

17 pages, 3187 KB  
Article
Tectonic Uplift and Hydrocarbon Generation Constraints from Low-Temperature Thermochronology in the Yindongzi Area, Ordos Basin
by Guangyuan Xing, Zhanli Ren, Kai Qi, Liyong Fan, Junping Cui, Jinbu Li, Zhuo Han and Sasa Guo
Minerals 2025, 15(9), 893; https://doi.org/10.3390/min15090893 - 22 Aug 2025
Viewed by 779
Abstract
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area [...] Read more.
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area exhibits a complex structural framework shaped by multiple deformation events, leading to the formation of extensively developed fault systems. Such faulting can adversely affect hydrocarbon preservation. To better constrain the timing of fault reactivation in this area, we carried out an integrated study involving low-temperature thermochronology and burial history modeling. The results reveal a complex, multi-phase thermal-tectonic evolution since the Late Paleozoic. The ZHe ages (291–410 Ma) indicate deep burial and heating related to Late Devonian–Early Permian tectonism and basin sedimentation, reflecting early orogenic activity along the western North China Craton. During the Late Jurassic to Early Cretaceous (165–120 Ma), the study area experienced widespread and differential uplift and cooling, controlled by the Yanshanian Orogeny. Samples on the western side of the fault show earlier and more rapid cooling than those on the eastern side, suggesting a fault-controlled, basinward-propagating exhumation pattern. The cooling period indicated by AHe data and thermal models reflects the Cenozoic uplift, likely induced by far-field compression from the rising northeastern Tibetan Plateau. These findings emphasize the critical role of inherited faults not only as thermal-tectonic boundaries during the Mesozoic but also as a pathway for hydrocarbon migration. Meanwhile, thermal history models based on borehole data further reveal that the study area underwent prolonged burial and heating during the Mesozoic, reaching peak temperatures for hydrocarbon generation in the Late Jurassic. The timing of major cooling events corresponds to the main stages of hydrocarbon expulsion and migration. In particular, the differential uplift since the Mesozoic created structural traps and migration pathways that likely facilitated hydrocarbon accumulation along the western fault zones. The spatial and temporal differences among the samples underscore the structural segmentation and dynamic response of the continental interior to both regional and far-field tectonic forces, while also providing crucial constraints on the petroleum system evolution in this tectonically complex region. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 6561 KB  
Article
Overprinted Metamorphic Assemblages in High-Alumina Metapelitic Rocks in Contact with Varnous Pluton (NNW Greece)
by Foteini Aravani, Lambrini Papadopoulou, Antonios Koroneos, Alexandros Chatzipetros, Stefanos Karampelas and Kyriaki Pipera
Minerals 2025, 15(8), 823; https://doi.org/10.3390/min15080823 - 1 Aug 2025
Viewed by 527
Abstract
The Varnous Mt. area in the northern Pelagonian Nappe is characterized by the intrusion of an Early Permian pluton, with its tectonic setting and igneous petrology well constrained in earlier studies. The metamorphic basement rocks warrant further detailed investigation due to their complex [...] Read more.
The Varnous Mt. area in the northern Pelagonian Nappe is characterized by the intrusion of an Early Permian pluton, with its tectonic setting and igneous petrology well constrained in earlier studies. The metamorphic basement rocks warrant further detailed investigation due to their complex history. These rocks are polymetamorphosed, preserving a sequence of overprinting metamorphic and deformational events. The metapelitic rocks have undergone an initial, pre-Carboniferous regional metamorphism of unknown grade before or during Hercynian Orogeny, followed by a thermal metamorphic event associated with the intrusion of the Varnous pluton at 297 Ma. The assemblage attributed to this event is And + Crd + Bt + Ms (west), while the first assemblage identified at the eastern part is Sil + Bt + Gt. Additionally, three regional tectonometamorphic events occurred during the Alpine Orogeny. For the Alpine events, the assemblages are as follows: first, the development of St + Gt + Chl + Kfs + Pl + Qtz at 150–130 Ma; second, retrograde metamorphism of these assemblages with Cld + Gt + Ser + Mrg + Chl ± Sil (Fi) at 110–90 Ma; and finally, mylonitization of all previous assemblages at 90–70 Ma with simultaneous annealing and formation of Cld + Chl + Ms. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 30259 KB  
Article
Controlling Effects of Complex Fault Systems on the Oil and Gas System of Buried Hills: A Case Study of Beibuwan Basin, China
by Anran Li, Fanghao Xu, Guosheng Xu, Caiwei Fan, Ming Li, Fan Jiang, Xiaojun Xiong, Xichun Zhang and Bing Xie
J. Mar. Sci. Eng. 2025, 13(8), 1472; https://doi.org/10.3390/jmse13081472 - 31 Jul 2025
Viewed by 544
Abstract
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors [...] Read more.
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors influencing hydrocarbon accumulation in buried hill reservoirs are highly diverse, especially in areas with complex, active fault systems. Fault systems play a dual role, both in the formation of reservoirs and in the migration of hydrocarbons. Therefore, understanding the impact of complex fault systems helps enhance the exploration success rate of buried hill traps and guide drilling deployment. In the Beibuwan Basin in the South China Sea, buried hill traps are key targets for deep-buried hydrocarbon exploration in this faulted basin. The low level of exploration and research in buried hills globally limits the understanding of hydrocarbon accumulation conditions, thereby hindering large-scale hydrocarbon exploration. By using drilling data, logging data, and seismic data, stress fields and tectonic faults were restored. There are two types of buried hills developed in the Beibuwan Basin, which were formed during the Late Ordovician-Silurian period and Permian-Triassic period, respectively. The tectonic genesis of the Late Ordovician-Silurian period buried hills belongs to magma diapirism activity, while the tectonic genesis of the Permian-Triassic period buried hills belongs to reverse thrust activity. The fault systems formed by two periods of tectonic activity were respectively altered into basement buried hills and limestone buried hills. The negative structural inversion controls the distribution and interior stratigraphic framework of the deformed Carboniferous strata in the limestone buried hill. The faults and derived fractures of the Late Ordovician-Silurian period and Permian-Triassic period promoted the diagenesis and erosion of these buried hills. The faults formed after the Permian-Triassic period are not conducive to calcite cementation, thus facilitating the preservation of the reservoir space formed earlier. The control of hydrocarbon accumulation by the fault system is reflected in two aspects: on the one hand, the early to mid-Eocene extensional faulting activity directly controlled the depositional process of lacustrine source rocks; on the other hand, the Late Eocene-Oligocene, which is closest to the hydrocarbon expulsion period, is the most effective fault activity period for connecting Eocene source rocks and buried hill reservoirs. This study contributes to understanding of the role of complex fault activity in the formation of buried hill traps within hydrocarbon-bearing basins. Full article
Show Figures

Figure 1

21 pages, 18596 KB  
Article
Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
by Wenbo Yang, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang and Zhongquan Li
Energies 2025, 18(15), 3901; https://doi.org/10.3390/en18153901 - 22 Jul 2025
Viewed by 590
Abstract
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The [...] Read more.
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The following are our key findings: (1) Heat transfer is conduction-dominated, with thermal anomalies in Late Permian–Early Cambrian strata. Four mudstone/shale caprocks and three carbonate reservoirs occur, with the Longtan Formation as the key seal. Reservoir geothermal gradients (25.05–32.55 °C/km) exceed basin averages. (2) Transtensional strike-slip faults form E-W/NE/NW networks; most terminate at the Permian Longtan Formation, with few extending into the Lower Triassic while penetrating the Archean–Lower Proterozoic basement. (3) Structural highs positively correlate with higher geothermal gradients. (4) The deep geothermal reservoirs and thermal accumulation mechanisms in the Moxi area are jointly controlled by crustal thinning, basement uplift, and structural architecture. Mantle-derived heat converges at basement uplift cores, generating localized thermal anomalies. Fault networks connect these deep heat sources, facilitating upward fluid migration. Thick Longtan Formation shale seals these rising thermal fluids, causing anomalous heating in underlying strata and concentrated thermal accumulation in reservoirs—enhanced by thermal focusing effects from uplift structures. This study establishes a theoretical framework for target selection and industrial-scale geothermal exploitation in sedimentary basins, highlighting the potential for repurposing oil/gas infrastructure. Full article
Show Figures

Figure 1

19 pages, 13286 KB  
Article
Differential Evolutionary Mechanisms of Tight Sandstone Reservoirs and Their Influence on Reservoir Quality: A Case Study of Carboniferous–Permian Sandstones in the Shenfu Area, Ordos Basin, China
by Xiangdong Gao, You Guo, Hui Guo, Hao Sun, Xiang Wu, Mingda Zhang, Xirui Liu and Jiawen Deng
Minerals 2025, 15(7), 744; https://doi.org/10.3390/min15070744 - 16 Jul 2025
Viewed by 431
Abstract
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling [...] Read more.
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling factors remain unclear, hindering the effective selection and development of favorable tight gas intervals in the study area. Through comprehensive analysis of casting thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), particle size and sorting, porosity and permeability data from Upper Paleozoic tight sandstone samples, combined with insights into depositional environments, burial history, and chemical reaction processes, this study clarifies the characteristics of tight sandstone reservoirs, reveals the key controlling factors of reservoir quality, confirms the differential evolutionary mechanisms of tight sandstone of different formations, reconstructs the diagenetic sequence, and constructs an evolution model of reservoir minerals and porosity. The research results indicate depositional processes laid the foundation for the original reservoir properties. Sandstones deposited in tidal flat and deltaic environments exhibit superior initial reservoir qualities. Compaction is a critical factor leading to the decline in reservoir quality across all formations. However, rigid particles such as quartz can partially mitigate the pore reduction caused by compaction. Early diagenetic carbonate cementation reduces reservoir quality by occupying primary pores and hindering the generation of secondary porosity induced by acidic fluids, while later-formed carbonate further densifies the sandstone by filling secondary intragranular pores. Clay mineral cements diminish reservoir porosity and permeability by filling intergranular and intragranular pores. The Shanxi and Taiyuan Formations display relatively poorer reservoir quality due to intense illitization. Overall, the reservoir quality of Benxi Formation is the best, followed by Xiashihezi Formation, with the Taiyuan and Shanxi Formations exhibiting comparatively lower qualities. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

29 pages, 14630 KB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 825
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

22 pages, 20312 KB  
Review
On the Incompleteness of the Coelacanth Fossil Record
by Zhiwei Yuan, Lionel Cavin and Haijun Song
Foss. Stud. 2025, 3(3), 10; https://doi.org/10.3390/fossils3030010 - 8 Jul 2025
Cited by 2 | Viewed by 3616
Abstract
This study conducted a spatiotemporal review of the coelacanth fossil record and explored its distribution and diversity patterns. Coelacanth research can be divided into two distinct periods: the first period, which is based solely on the fossil record, and the second period following [...] Read more.
This study conducted a spatiotemporal review of the coelacanth fossil record and explored its distribution and diversity patterns. Coelacanth research can be divided into two distinct periods: the first period, which is based solely on the fossil record, and the second period following the discovery of extant taxa, significantly stimulating research interest. The distribution and research intensity of coelacanth fossils exhibit marked spatial heterogeneity, with Europe and North America being the most extensively studied regions. In contrast, Asia, South America, and Oceania offer substantial potential for future research. Temporally, the coelacanth fossil record also demonstrates significant variation across geological periods, revealing three diversity peaks in the Middle Devonian, Early Triassic, and Late Jurassic, with the Early Triassic peak exhibiting the highest diversity. With the exception of the Late Devonian, Carboniferous, and Late Cretaceous, most periods remain understudied, particularly the Permian, Early Jurassic, and Middle Jurassic, where the record is notably scarce. Integrating the fossil record with phylogenetic analyses enables more robust estimations of coelacanth diversity patterns through deep time. The diversity peak observed in the Middle Devonian is consistent with early burst models of diversification, whereas the Early and Middle Triassic peaks are considered robust, and the Late Jurassic peak may be influenced by taphonomic biases. The low population abundance and limited diversity of coelacanths reduce the number of specimens available for fossilization. The absence of a Cenozoic coelacanth fossil record may be linked to their moderately deep-sea habitat. Future research should prioritize addressing gaps in the fossil record, particularly in Africa, Asia, and Latin America; employing multiple metrics to mitigate sampling biases; and integrating a broader range of taxa into phylogenetic analyses. In contrast to the widespread distribution of the fossil record, extant coelacanths exhibit a restricted distribution, underscoring the urgent need to increase conservation efforts. Full article
(This article belongs to the Special Issue Continuities and Discontinuities of the Fossil Record)
Show Figures

Figure 1

29 pages, 4559 KB  
Article
Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate
by Vladimir V. Silantiev, Yaroslav M. Gutak, Marion Tichomirowa, Alexandra Käßner, Anna V. Kulikova, Sergey I. Arbuzov, Nouria G. Nourgalieva, Eugeny V. Karasev, Anastasia S. Felker, Maria A. Naumcheva, Aleksandr S. Bakaev, Lyubov G. Porokhovnichenko, Nikolai A. Eliseev, Veronika V. Zharinova, Dinara N. Miftakhutdinova and Milyausha N. Urazaeva
Minerals 2025, 15(6), 643; https://doi.org/10.3390/min15060643 - 13 Jun 2025
Viewed by 1146
Abstract
The radioisotopic dating of five stratigraphic levels within the Permian succession of the Kuznetsk Coal Basin refined the ages of the corresponding stratigraphic units and, for the first time, enabled their direct correlation with the International Chronostratigraphic Chart, 2024. The analysis revealed significant [...] Read more.
The radioisotopic dating of five stratigraphic levels within the Permian succession of the Kuznetsk Coal Basin refined the ages of the corresponding stratigraphic units and, for the first time, enabled their direct correlation with the International Chronostratigraphic Chart, 2024. The analysis revealed significant discrepancies between the updated ages and the previously accepted regional scheme (1982–1996). A comparison of regional stratigraphic units’ durations with estimated coal and siliciclastic sediment accumulation rates indicated that the early Permian contains the most prolonged stratigraphic hiatuses. The updated stratigraphic framework enabled re-evaluating the temporal sequence of regional sedimentological, volcano–tectonic and biotic events, allowing for more accurate comparison with the global record. Palaeoclimate reconstructions indicated that during the early Permian, the Kuznetsk Basin was characterised by a relatively warm, humid, and aseasonal climate, consistent with its mid-latitude position during the Late Palaeozoic Ice Age. In contrast, the middle-to-late Permian shows a transition to a temperate, moderately humid climate with pronounced seasonality, differing from the warmhouse conditions of low-latitude palaeoequatorial regions. The latest Lopingian reveals a distinct trend toward increasing dryness, consistent with global palaeoclimate signals associated with the end-Permian crisis. Full article
(This article belongs to the Special Issue Sedimentary Basins and Minerals)
Show Figures

Graphical abstract

23 pages, 7669 KB  
Article
Classification Evaluation and Genetic Analysis of Source Rocks of Lower Permian Fengcheng Formation in Hashan Area, Junggar Basin, China
by Zhongliang Sun, Zhiming Li, Kuihua Zhang, Zhenxiang Song, Hongzhou Yu, Bin Wang, Meiyuan Song and Tingting Cao
Minerals 2025, 15(6), 606; https://doi.org/10.3390/min15060606 - 4 Jun 2025
Viewed by 571
Abstract
The exploration of shale oil in the Fengcheng Formation of the Permian system in the Hashan area shows considerable promise, with breakthroughs in a number of shale oil exploration wells. This study evaluates the source rocks in the Fengcheng Formation in the Hashan [...] Read more.
The exploration of shale oil in the Fengcheng Formation of the Permian system in the Hashan area shows considerable promise, with breakthroughs in a number of shale oil exploration wells. This study evaluates the source rocks in the Fengcheng Formation in the Hashan area to determine their types, clarify the quality and hydrocarbon potentials of the different types, and analyze the main factors affecting their quality and generation potential based on lithofacies classification. The results indicate that the Fengcheng Formation in the Hashan area contains four types of lithofacies: terrigenous clastic lithofacies, dolomitic mixed lithofacies, tephra-bearing mixed lithofacies, and alkaline mineral-bearing mixed lithofacies. The tephra-bearing mixed lithofacies source rocks have the best source rock quality, followed by terrigenous clastic lithofacies and dolomitic mixed lithofacies. The quality of the source rocks is mainly controlled by their sedimentary environment (including paleoenvironment, alkaline minerals, and volcanic activity), the hydrocarbon-generating properties of the source material, and maturity. Organic matter in the dolomitic mixed lithofacies and the alkaline mineral-bearing mixed lithofacies is more concentrated in deepwater-reducing environments with medium to high salinity and arid conditions. The main biological source material is green algae (Dunaliella), which is characterized by early hydrocarbon generation and the high transformation ratio of oil, allowing for rapid hydrocarbon generation at low maturity. However, as the maturity increases, the hydrocarbon-generating potential of the source rocks decreases rapidly. Organic matter in terrigenous clastic lithofacies is more concentrated in relatively shallow water in oxygen-depleted, low-salinity, arid to semi-arid environments, with cyanobacteria being the main biological source. Cyanobacteria have the characteristics of long hydrocarbon generation periods and high hydrocarbon potential, with the peak of hydrocarbon generation occurring later than green algae (Dunaliella). Therefore, even at a relatively high maturity level, the source rocks still maintain a relatively high hydrocarbon-generating potential. Moderate volcanic activity provides favorable conditions for organic matter accumulation. Full article
(This article belongs to the Special Issue Distribution and Development of Faults and Fractures in Shales)
Show Figures

Figure 1

28 pages, 59439 KB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Cited by 2 | Viewed by 885
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

29 pages, 9622 KB  
Article
Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications
by Yuliang Duan, Wenqi Pan, Xi Zhang, Zhengtao Zhang, Yi Ding, Ziwen Jiang, Zhichao Li, Lamao Meiduo, Weiran Zhao and Wenhou Li
Minerals 2025, 15(5), 549; https://doi.org/10.3390/min15050549 - 21 May 2025
Cited by 1 | Viewed by 530
Abstract
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical [...] Read more.
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical features, detrital zircon U-Pb geochronology, and Lu-Hf isotope tracing the provenance characteristics of the Shihezi Fm in this region. Zircon yielded three distinct U-Pb age groups as follows: 320–300 Ma, 1950–1850 Ma, and 2550–2450 Ma. The εHf(t) values of zircons ranged from −41 to 50, and the two–stage Hf model’s ages (TDM2) values are concentrated between 3940 Ma and 409 Ma, suggesting that magmatic sources likely derive from Early Archaean–Devonian crustal materials. The heavy mineral assemblages are primarily composed of zircon, leucoxene, and magnetite. Further geochemical analyses of the rocks indicate a diverse provenance area and a complex tectonic evolution. Taken together, these results suggest that the provenance of the Shihezi Fm is from the North China Block, with secondary contributions from the Qinling Orogenic Belt and the North Qilian Orogenic Belt. The provenance of Luonan shares similarities with the southern Ordos Basin. Investigating the provenance of the Luonan area along the southern margin of the North China Craton provides critical supplementary constraints for shedding light on the Late Paleozoic tectonothermal events in the Qinling Orogenic Belt. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 18204 KB  
Article
Late Paleozoic–Mesozoic Tectonic Evolution of the Mudanjiang Ocean: Constraints from the Zircon U-Pb and Ar-Ar Chronology of the Heilongjiang Complex, NE China
by Jianxin Xu, Peiyuan Hu, Wendong Wang, Hongyu Guo and Xin Zhang
Minerals 2025, 15(5), 517; https://doi.org/10.3390/min15050517 - 14 May 2025
Viewed by 673
Abstract
The Heilongjiang Complex provides a crucial geological record of the evolutionary history of the Mudanjiang Ocean, making it significant for understanding the accretion process between the Jiamusi Block and the Songliao Block. In this study, we analyzed samples from the Heilongjiang Complex in [...] Read more.
The Heilongjiang Complex provides a crucial geological record of the evolutionary history of the Mudanjiang Ocean, making it significant for understanding the accretion process between the Jiamusi Block and the Songliao Block. In this study, we analyzed samples from the Heilongjiang Complex in the Huanan region using zircon U-Pb and 40Ar/39Ar isotopic dating. The LA-ICP-MS U-Pb dating results show that the deposition time of the mica quartz schist is Late Triassic (237–207 Ma), while the protolith age of the amphibolite is Middle Triassic (245.5 ± 1.2 Ma). Detrital zircon ages from the mica quartz schist reveal four groups: 155–229 Ma, 237–296 Ma, 485–556 Ma, and 585–2238 Ma. The provenances are related to the magmatic and metamorphic activities at the junction of the Jiamusi Block and Songliao Block. 40Ar/39Ar isotopic dating yielded a plateau age of 183.40 ± 1.83 Ma for phengite in the mica quartz schist, with the metamorphic ages obtained from zircon U-Pb dating. We identify three major metamorphic events in the Heilongjiang Complex: (1) ~229 Ma, marking the earliest tectonic thermal disturbance in the complex; (2) 207–202 Ma, corresponding to the metamorphic event related to the collision between the Jiamusi Block and Songliao Block; and (3) ~183 Ma, indicating the closure of the Mudanjiang Ocean. Integrating these new findings with the results of previous research on magmatism and metamorphism, we reconstruct the tectonic evolution of the Mudanjiang Ocean from the Late Paleozoic to the Mesozoic. During the Early Permian, the Mudanjiang Ocean had already opened. Between the Middle Permian and Middle Triassic, bidirectional subduction occurred. In the Late Triassic, the Mudanjiang Ocean entered a subduction dormancy period. By the Early to Middle Jurassic, the Mudanjiang Ocean closed due to continental collision, leading to the final positioning of the Heilongjiang Complex. Full article
Show Figures

Figure 1

Back to TopTop