Relationship between the Texture and Composition of Titanomagnetite in Hannuoba Alkaline Basalt: A New Geospeedometer
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Quantitative Mineral Texture Analysis
3.2. Sampling and Mineral Identification
3.3. Rock Major Element Analysis
3.4. Mineral Major Element Analysis
4. Results
4.1. Petrology
4.2. Quantitative Textural Parameters
4.3. Rock Major Element
4.4. Mineral Major Element
5. Discussion
5.1. Magma Cooling Process
5.2. A New Parameter: Estimation for Apparent Cooling Rate
5.3. Cation Redistribution Behavior with the Apparent Cooling Rate in Titanomagnetite in Hannuoba Samples
5.4. Calibration of a New Titanomagnetite Geospeedometer
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Discussion: Estimation of Temperature and Pressure of Hannuoba Alkaline Basalt
References
- Putirka, K. Thermometers and Barometers for Volcanic Systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Faure, F.; Trolliard, G.; Christian, N.; Montel, J.-M. A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib. Mineral. Petrol. 2003, 145, 251–263. [Google Scholar] [CrossRef]
- Sossi, P.A.; O’Neill, H.S.C. Liquidus temperatures of komatiites and the effect of cooling rate on element partitioning between olivine and komatiitic melt. Contrib. Mineral. Petrol. 2016, 171, 49. [Google Scholar] [CrossRef]
- Iezzi, G.; Mollo, S.; Torresi, G.; Guido, V.; Cavallo, A.; Scarlato, P. Experimental solidification of an andesitic melt by cooling. Chem. Geol. 2011, 283, 261–273. [Google Scholar] [CrossRef]
- Mollo, S.; Lanzafame, G.; Masotta, M.; Iezzi, G.; Ferlito, C.; Scarlato, P. Cooling history of a dike as revealed by mineral chemistry: A case study from Mt. Etna volcano. Chem. Geol. 2011, 288, 39–52. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Iezzi, G.; Scarlato, P. The control of cooling rate on titanomagnetite composition: Implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib. Mineral. Petrol. 2013, 165, 457–475. [Google Scholar] [CrossRef]
- Zhou, W.; Der Voo, R.V.; Peacor, D.R.; Zhang, Y. Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth Planet. Sci. Lett. 2000, 179, 9–20. [Google Scholar] [CrossRef]
- Cashman, K.V. Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral. Petrol. 1993, 113, 126–142. [Google Scholar] [CrossRef]
- Iezzi, G.; Mollo, S.; Shahini, E.; Cavallo, A.; Scarlato, P. The cooling kinetics of plagioclase feldspar as revealed by electron-microprobe mapping. Am. Mineral. 2014, 99, 898–907. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Iezzi, G.; Del Gaudio, P.; Scarlato, P. Plagioclase–melt (dis)equilibrium due to cooling dynamics: Implications for thermometry, barometry and hygrometry. Lithos 2011, 125, 221–235. [Google Scholar] [CrossRef]
- Lofgren, G.; Huss, G.; Wasserburg, G. An experimental study of trace-element partitioning between Ti-Al-clinopyroxene and melt: Equilibrium and kinetic effects including sector zoning. Am. Mineral. 2006, 91, 1596–1606. [Google Scholar] [CrossRef]
- Masotta, M.; Pontesilli, A.; Mollo, S.; Armienti, P.; Ubide, T.; Nazzari, M.; Scarlato, P. The role of undercooling during clinopyroxene growth in trachybasaltic magmas: Insights on magma decompression and cooling at Mt. Etna volcano. Geochim. Cosmochim. Acta 2020, 268, 258–276. [Google Scholar] [CrossRef]
- Mollo, S.; Del Gaudio, P.; Ventura, G.; Iezzi, G.; Scarlato, P. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos 2010, 118, 302–312. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Misiti, V.; Soligo, M.; Scarlato, P. A new test for equilibrium based on clinopyroxene–melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem. Geol. 2013, 352, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Ferk, A.; Leonhardt, R.; Hess, K.-U.; Koch, S.; Egli, R.; Krása, D.; Dingwell, D.B. Influence of cooling rate on thermoremanence of magnetite grains: Identifying the role of different magnetic domain states. J. Geophys. Res. Solid Earth 2014, 119, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Koch, S.; Ferk, A.; Hess, K.-U.; Leonhardt, R. Cooling rate dependence of synthetic SD, PSD, MD magnetite. In Proceedings of the American Geophysical Union, Fall Meeting 2010, San Francisco, CA, USA, 1 January 2010. [Google Scholar]
- Canil, D.; Lacourse, T. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite. Chem. Geol. 2020, 541, 119576. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, O. Fe-Ti oxide geothermometry: Thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib. Mineral. Petrol. 1991, 108, 485–510. [Google Scholar] [CrossRef]
- Jolles, J.S.R.; Lange, R.A. High-resolution Fe–Ti oxide thermometry applied to single-clast pumices from the Bishop Tuff: A re-examination of compositional variations in phenocryst phases with temperature. Contrib. Mineral. Petrol. 2019, 174, 70. [Google Scholar] [CrossRef]
- Bosi, F.; Hålenius, U.; Skogby, H. Crystal chemistry of the magnetite-ulvöspinel series. Am. Mineral. 2009, 94, 181–189. [Google Scholar] [CrossRef]
- Dupuis, C.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner. Depos. 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Jang, Y.D.; Naslund, H.R.; McBirney, A.R. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization: Iron enrichment revisited. Earth Planet. Sci. Lett. 2001, 189, 189–196. [Google Scholar] [CrossRef]
- Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J. The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. 2014, 61, 1–32. [Google Scholar] [CrossRef]
- Frost, B.R. Introduction to oxygen fugacity and its petrologic importance. Rev. Mineral. Geochem. 1991, 25, 1–9. [Google Scholar]
- Hou, T.; Botcharnikov, R.; Moulas, E.; Just, T.; Berndt, J.; Koepke, J.; Wang, M.; Yang, Z.; Holtz, F. Kinetics of Fe–Ti Oxide Re-equilibration in Magmatic Systems: Implications for Thermo-oxybarometry. J. Petrol. 2021, 61, egaa116. [Google Scholar] [CrossRef]
- Toplis, M.; Carroll, M. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral–Melt Equilibria in Ferro-Basaltic Systems. J. Petrol. 1995, 36, 1137–1170. [Google Scholar] [CrossRef]
- Whalen, J.; Chappell, B. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan Fold Belt, southeast Australia. Am. Mineral. 1988, 73, 281–296. [Google Scholar]
- Dare, S.; Barnes, S.-J.; Beaudoin, G.; Méric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Miner. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.-J.; Beaudoin, G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochim. Cosmochim. Acta 2012, 88, 27–50. [Google Scholar] [CrossRef]
- Huang, X.-W.; Zhou, M.-F.; Qiu, Y.-Z.; Qi, L. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geol. Rev. 2015, 65, 884–899. [Google Scholar] [CrossRef]
- Nadoll, P.; Mauk, J.L.; Hayes, T.S.; Koenig, A.E.; Box, S.E. Geochemistry of Magnetite from Hydrothermal Ore Deposits and Host Rocks of the Mesoproterozoic Belt Supergroup, United States. Econ. Geol. 2012, 107, 1275–1292. [Google Scholar] [CrossRef]
- Nielsen, R.; Forsythe, L.; Gallahan, W.; Fisk, M. Major and trace-element magnetite-melt equilibria. Chem. Geol. 1994, 117, 167–191. [Google Scholar] [CrossRef]
- Pearce, C.I.; Henderson, C.M.B.; Telling, N.D.; Pattrick, R.A.D.; Charnock, J.M.; Coker, V.S.; Arenholz, E.; Tuna, F.; van der Laan, G. Fe site occupancy in magnetite-ulvöspinel solid solutions: A new approach using X-ray magnetic circular dichroism. Am. Mineral. 2010, 95, 425–439. [Google Scholar] [CrossRef]
- Pontesilli, A.; Masotta, M.; Nazzari, M.; Mollo, S.; Armienti, P.; Scarlato, P.; Brenna, M. Crystallization kinetics of clinopyroxene and titanomagnetite growing from a trachybasaltic melt: New insights from isothermal time-series experiments. Chem. Geol. 2019, 510, 113–129. [Google Scholar] [CrossRef]
- She, H.-D.; Fan, H.-R.; Yang, K.-F.; Li, X.-C.; Wang, Q.-W.; Zhang, L.-F.; Liu, S.; Li, X.-H.; Dai, Z.-H. In situ trace elements of magnetite in the Bayan Obo REE-Nb-Fe deposit: Implications for the genesis of mesoproterozoic iron mineralization. Ore Geol. Rev. 2021, 139, 104574. [Google Scholar] [CrossRef]
- Gee, J. Calibration of magnetic granulometric trends in oceanic basalts. Earth Planet. Sci. Lett. 1999, 170, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Marshall, M.; Cox, A. Magnetism of Pillow Basalts and Their Petrology. Geol. Soc. Am. Bull. 1971, 82, 537–552. [Google Scholar] [CrossRef]
- Isobe, H.; Gondo, T. Dendritic magnetite crystals in rapid quenched fine spherules produced by falling experiments through the high temperature furnace with controlled gas flow. J. Mineral. Petrol. Sci. 2013, 108, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Mollo, S.; Giacomoni, P.P.; Andronico, D.; Scarlato, P. Clinopyroxene and titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): Footprints of the final solidification history of lava fountains and lava flows. Chem. Geol. 2015, 406, 45–54. [Google Scholar] [CrossRef]
- Szramek, L.; Gardner, J.E.; Hort, M. Cooling-induced crystallization of microlite crystals in two basaltic pumice clasts. Am. Mineral. 2010, 95, 503–509. [Google Scholar] [CrossRef]
- Turner, M.; Cronin, S.J.; Stewart, R.B.; Bebbington, M.; Smith, I.E.M. Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 2008, 36, 31–34. [Google Scholar] [CrossRef]
- Hammer, J. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth Planet. Sci. Lett. 2006, 248, 618–637. [Google Scholar] [CrossRef]
- Giuliani, L.; Iezzi, G.; Vetere, F.; Behrens, H.; Mollo, S.; Cauti, F.; Ventura, G.; Scarlato, P. Evolution of textures, crystal size distributions and growth rates of plagioclase, clinopyroxene and spinel crystallized at variable cooling rates from a mid-ocean ridge basaltic melt. Earth-Sci. Rev. 2020, 204, 103165. [Google Scholar] [CrossRef]
- Yang, Z.-F. Combining Quantitative Textural and Geochemical Studies to Understand the Solidification Processes of a Granite Porphyry: Shanggusi, East Qinling, China. J. Petrol. 2012, 53, 1807–1835. [Google Scholar] [CrossRef] [Green Version]
- Marsh, B. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization—I. Theory. Contrib. Mineral. Petrol. 1988, 99, 277–291. [Google Scholar] [CrossRef]
- Marsh, B. Crystallization of Silicate Magmas Deciphered Using Crystal Size Distributions. J. Am. Ceram. Soc. 2007, 90, 746–757. [Google Scholar] [CrossRef]
- Marsh, B.D. On the Interpretation of Crystal Size Distributions in Magmatic Systems. J. Petrol. 1998, 39, 553–599. [Google Scholar] [CrossRef]
- Voorhees, P.W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Voorhees, P.W. Ostwald Ripening of Two-Phase Mixtures. Annu. Rev. Mater. Sci. 1992, 22, 197–215. [Google Scholar] [CrossRef]
- Xu, R.; Liu, Y.; Wang, X.; Zong, K.; Hu, Z.; Chen, H.; Zhou, L. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos 2017, 274–275, 383–396. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y.; Graham, D.; Su, S.; Deng, J. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 2007, 96, 108–126. [Google Scholar]
- Zhao, X.M.; Cao, H.H.; Mi, X.; Evans, N.J.; Qi, Y.H.; Huang, F.; Zhang, H.F. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: Implications for mantle metasomatism. Contrib. Mineral. Petrol. 2017, 172, 40. [Google Scholar] [CrossRef]
- Qian, S.P.; Ren, Z.Y.; Zhang, L.; Hong, L.B.; Liu, J.Q. Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton: Implications for petrogenesis and mantle source. Chem. Geol. 2015, 401, 111–125. [Google Scholar] [CrossRef]
- Zhi, X.; Song, Y.; Frey, F.A.; Feng, J.; Zhai, M. Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chem. Geol. 1990, 88, 1–33. [Google Scholar] [CrossRef]
- Zeng, G.; Huang, X.-W.; Zhou, M.-F.; Chen, L.-H.; Xu, X.-S. Using chalcophile elements to constrain crustal contamination and xenolith-magma interaction in Cenozoic basalts of eastern China. Lithos 2016, 258–259, 163–172. [Google Scholar] [CrossRef]
- Sun, P.; Niu, Y.; Guo, P.; Duan, M.; Wang, X.; Gong, H.; Xiao, Y. The Lithospheric Thickness Control on the Compositional Variation of Continental Intraplate Basalts: A Demonstration Using the Cenozoic Basalts and Clinopyroxene Megacrysts from Eastern China. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019315. [Google Scholar] [CrossRef]
- Zhou, X.; Armstrong, R.L. Cenozoic volcanic rocks of eastern China—Secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet. Sci. Lett. 1982, 58, 301–329. [Google Scholar] [CrossRef]
- Zou, H.; Zindler, A.; Xu, X.; Qi, Q. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem. Geol. 2000, 171, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-F.; Li, J.; Liang, W.; Luo, Z.-H. On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: Implications for source lithology and the origin of basalts. Earth-Sci. Rev. 2016, 157, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-F.; Zhou, J.-H. Can we identify source lithology of basalt? Sci. Rep. 2013, 3, 1856. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.; Debecq, A.; Auwera, J.V.; Nomikou, P. Chemical and textural diversity of Kameni (Greece) dacites: Role of vesiculation in juvenile and mature basal crystal masses. Contrib. Mineral. Petrol. 2021, 176, 13. [Google Scholar] [CrossRef]
- Higgins, M.D. Quantitative Textural Measurements in Igneous and Metamorphic Petrology; Cambridge University Press: New York, NY, USA, 2006; pp. 1–228. [Google Scholar]
- Higgins, M.D. Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets. J. Volcanol. Geotherm. Res. 2006, 154, 8–16. [Google Scholar] [CrossRef]
- Boorman, S.; Boudreau, A.; Kruger, F. The Lower Zone-Critical Zone Transition of the Bushveld Complex: A Quantitative Textural Study. J. Petrol. 2004, 45, 1209–1235. [Google Scholar] [CrossRef]
- Harvey, P.; Laxton, R.R. The estimation of finite strain from the orientation distribution of passively deformed linear markers: Eigenvalue relationships. Tectonophysics 1980, 70, 285–307. [Google Scholar] [CrossRef]
- Higgins, M.D. Measurement of crystal size distributions. Am. Mineral. 2000, 85, 1105–1116. [Google Scholar] [CrossRef]
- Holness, M.; Cheadle, M.; McKenzie, D.A.N. On the Use of Changes in Dihedral Angle to Decode Late-stage Textural Evolution in Cumulates. J. Petrol. 2005, 46, 1565–1583. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.J.; Jerram, D.A. On estimating crystal shape for crystal size distribution analysis. J. Volcanol. Geotherm. Res. 2006, 154, 1–7. [Google Scholar] [CrossRef]
- Arzilli, F.; Piochi, M.; Mormone, A.; Agostini, C.; Carroll, M.R. Constraining pre-eruptive magma conditions and unrest timescales during the Monte Nuovo eruption (1538 ad; Campi Flegrei, Southern Italy): Integrating textural and CSD results from experimental and natural trachy-phonolites. Bull. Volcanol. 2016, 78, 72. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.V. Crystal Size Distribution (CSD) Analysis of Volcanic Samples: Advances and Challenges. Front. Earth Sci. 2020, 8, 291. [Google Scholar] [CrossRef]
- Fornaciai, A.; Perinelli, C.; Armienti, P.; Favalli, M. Crystal size distributions of plagioclase in lavas from the July–August 2001 Mount Etna eruption. Bull. Volcanol. 2015, 77, 70. [Google Scholar] [CrossRef]
- Higgins, M. Origin of megacrysts in granitoids by textural coarsening: A crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. Geol. Soc. Lond. Spec. Publ. 1999, 168, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.; Chandrasekharam, D. Nature of Sub-volcanic Magma Chambers, Deccan Province, India: Evidence from Quantitative Textural Analysis of Plagioclase Megacrysts in the Giant Plagioclase Basalts. J. Petrol. 2007, 48, 885–900. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.; Roberge, J. Crystal Size Distribution of Plagioclase and Amphibole from Soufriere Hills Volcano, Montserrat: Evidence for Dynamic Crystallization-Textural Coarsening Cycles. J. Petrol. 2003, 44, 1401–1411. [Google Scholar] [CrossRef] [Green Version]
- Higgins, M.D. Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. J. Volcanol. Geotherm. Res. 1996, 70, 37–48. [Google Scholar] [CrossRef]
- Higgins, M.D. Origin of Anorthosite by Textural Coarsening: Quantitative Measurements of a Natural Sequence of Textural Development. J. Petrol. 1998, 39, 1307–1323. [Google Scholar] [CrossRef]
- Higgins, M.D. A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: Evidence for textural coarsening. Contrib. Mineral. Petrol. 2002, 144, 314–330. [Google Scholar] [CrossRef]
- Moss, S.; Russell, J.; Smith, B.; Brett, R. Olivine crystal size distributions in kimberlite. Am. Mineral. 2010, 95, 527–536. [Google Scholar] [CrossRef]
- Ngonge, E.; Archanjo, C.; Hollanda, M. Plagioclase crystal size distribution in some tholeiitic mafic dykes in Cabo Frio-Buzios, Rio de Janeiro, Brazil. J. Volcanol. Geotherm. Res. 2013, 255, 26–42. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Donaldson, C.H.; Troll, V.R.; Jerram, D.A.; Emeleus, C.H. An Origin for Harrisitic and Granular Olivine in the Rum Layered Suite, NW Scotland: A Crystal Size Distribution Study. J. Petrol. 2007, 48, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Vinet, N.; Higgins, M. Magma Solidification Processes beneath Kilauea Volcano, Hawaii: A Quantitative Textural and Geochemical Study of the 1969–1974 Mauna Ulu Lavas. J. Petrol. 2010, 51, 1297–1332. [Google Scholar] [CrossRef] [Green Version]
- Vinet, N.; Higgins, M. What can crystal size distributions and olivine compositions tell us about magma solidification processes inside Kilauea Iki lava lake, Hawaii? J. Volcanol. Geotherm. Res. 2011, 208, 136–162. [Google Scholar] [CrossRef]
- Mock, A.; Jerram, D.A. Crystal Size Distributions (CSD) in Three Dimensions: Insights from the 3D Reconstruction of a Highly Porphyritic Rhyolite. J. Petrol. 2005, 46, 1525–1541. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Miyashiro, A. Nature of alkalic volcanic rock series. Contrib. Mineral. Petrol. 1978, 66, 91–104. [Google Scholar] [CrossRef]
- Tanguy, J.-C.; Condomines, M.; Kieffer, G. Evolution of the Mount Etna magma: Constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geotherm. Res. 1997, 75, 221–250. [Google Scholar] [CrossRef]
- Cashman, K.V.; Ferry, J.M. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization—III. Metamorphic crystallization. Contrib. Mineral. Petrol. 1988, 99, 401–415. [Google Scholar] [CrossRef]
- Hunter, R.H. Texture development in cumulate rocks. In Developments in Petrology; Cawthorn, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 15, pp. 77–101. [Google Scholar]
- Royet, J.P. Stereology: A method for analyzing images. Prog. Neurobiol. 1991, 37, 433–474. [Google Scholar] [CrossRef]
- Sahagian, D.L.; Proussevitch, A.A. 3D particle size distributions from 2D observations: Stereology for natural applications. J. Volcanol. Geotherm. Res. 1998, 84, 173–196. [Google Scholar] [CrossRef]
- Adams, G.E.; Bishop, F.C. The olivine—clinopyroxene geobarometer: Experimental results in the CaO-FeO-MgO-SiO2 system. Contrib. Mineral. Petrol. 1986, 94, 230–237. [Google Scholar] [CrossRef]
- Beyer, C.; Frost, D.J.; Miyajima, N. Experimental calibration of a garnet–clinopyroxene geobarometer for mantle eclogites. Contrib. Mineral. Petrol. 2015, 169, 18. [Google Scholar] [CrossRef]
- Di, Y.; Tian, W.; Chen, M.; Li, Z.; Chu, Z.-Y.; Liang, J. A method to estimate the pre-eruptive water content of basalts: Application to the Wudalianchi–Erkeshan–Keluo volcanic field, Northeastern China. Am. Mineral. 2020, 105, 149–161. [Google Scholar] [CrossRef]
- Masotta, M.; Mollo, S.; Freda, C.; Gaeta, M.; Moore, G. Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib. Mineral. Petrol. 2013, 166, 1545–1561. [Google Scholar] [CrossRef]
- Pu, X.; Lange, R.; Moore, G. A comparison of olivine-melt thermometers based on D Mg and D Ni: The effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts. Am. Mineral. 2017, 102, 750–765. [Google Scholar] [CrossRef]
- Wells, P.R.A. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol. 1977, 62, 129–139. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Evans, B.W. Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer. Am. J. Sci. 2008, 308, 957–1039. [Google Scholar] [CrossRef]
- Lepage, L.D. ILMAT: An Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput. Geosci. 2003, 29, 673–678. [Google Scholar] [CrossRef]
- Palma, G.; Reich, M.; Barra, F.; Ovalle, J.T.; del Real, I.; Simon, A.C. Thermal evolution of Andean iron oxide–apatite (IOA) deposits as revealed by magnetite thermometry. Sci. Rep. 2021, 11, 18424. [Google Scholar] [CrossRef]
- Neave, D.; Putirka, K. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Mineral. 2017, 102, 777–794. [Google Scholar] [CrossRef] [Green Version]
- Neave, D.A.; Bali, E.; Guðfinnsson, G.H.; Halldorsson, S.A.; Kahl, M.; Schmidt, A.; Holtz, F. Clinopyroxene–Liquid Equilibria and Geothermobarometry in Natural and Experimental Tholeiites: The 2014–2015 Holuhraun Eruption, Iceland. J. Petrol. 2019, 60, 1653–1680. [Google Scholar] [CrossRef]
- Putirka, K.; Johnson, M.; Kinzler, R.; Longhi, J.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Putirka, K.; Mikaelian, H.; Ryerson, F.; Shaw, H. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineral. 2003, 88, 1542–1554. [Google Scholar] [CrossRef]
- Mollo, S.; Hammer, J.E.; Heinrich, W.; Abart, R. Dynamic crystallization in magmas. In Mineral Reaction Kinetics: Microstructures, Textures, Chemical and Isotopic Signatures; Heinrich, W., Abart, R., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 2017; Volume 16, pp. 373–418. [Google Scholar]
- Mollo, S.; Masotta, M. Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem. Geol. 2014, 368, 97–103. [Google Scholar] [CrossRef]
- Keiding, J.K.; Sigmarsson, O. Geothermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing systems. J. Geophys. Res. Solid Earth 2012, 117, B00C09. [Google Scholar] [CrossRef]
- Mollo, S.; Blundy, J.; Scarlato, P.; Serena Pia, D.C.; Tecchiato, V.; Stefano, F.; Vetere, F.; Holtz, F.; Bachmann, O. An integrated P-T-H2O-lattice strain model to quantify the role of clinopyroxene fractionation on REE+Y/HFSE patterns of mafic alkaline magmas: Application to eruptions at Mt. Etna. Earth-Sci. Rev. 2018, 185, 32–56. [Google Scholar] [CrossRef]
Sample | ZHT07 | ZHT08 | ZHT09 | ZHT12 | ZHT13 | 17JSB01 | 17XCNG01 | SQB06 | 17XHK01 | TL11Y1 |
---|---|---|---|---|---|---|---|---|---|---|
Cpx | 27.1 (0.9) | 27.3 (0.9) | 21.2 (1.9) | 23.3 (1.3) | 18.8 (0.4) | 28.7 (0.7) | 24.0 (0.4) | 22.2 (0.5) | 22.4 (0.7) | 20.8 (0.7) |
Pl | 28.0 (1.9) | 33.2 (0.4) | 48.8 (1.4) | 46.3 (1.5) | 49.4 (1.9) | 35.8 (0.7) | 35.5 (1.0) | 48.4 (0.9) | 47.0 (1.0) | 38.9 (0.9) |
Ol | - | - | 0.5 (0.2) | 1.0 (0.1) | 8.6 (0.2) | 6.0 (0.4) | - | 10.3 (0.3) | 7.5 (0.7) | 13.7 (0.7) |
Ap | 2.1 (0.2) | 1.9 (0.2) | 1.6 (0.1) | 1.1 (0.1) | - | 1.5(0.2) | 2.1 (0.4) | 1.0 (0.1) | 1.0 (0.1) | 1.0 (0.1) |
Timt | 5.4 (0.1) | 4.5 (0.2) | 4.2 (0.2) | 4.5 (0.1) | 4.8 (0.2) | 3.9 (0.1) | 4.8 (0.2) | 4.2 (0.1) | 3.2 (0.1) | 5.3 (0.1) |
Glass | 37.0 (0.9) | 35.1 (0.5) | 24.5 (0.5) | 23.5 (1.4) | 19.5 (1.6) | 25.7 (0.5) | 34.1 (1.1) | 13.2 (0.6) | 20.1 (0.7) | 21.2 (1.2) |
Sample | ZHT07 | ZHT08 | ZHT09 | ZHT12 | ZHT13 | 17JSB01 | 17XCNG01 | SQB06 | 17XHK01 | TL11Y1 |
---|---|---|---|---|---|---|---|---|---|---|
Total particles | 1618 | 1412 | 2689 | 2085 | 1239 | 1888 | 2104 | 399 | 1185 | 1026 |
Area/mm2 | 4.5205 | 4.4574 | 4.3363 | 2.1913 | 3.924 | 4.2866 | 2.0144 | 4.3718 | 26.4207 | 4.5352 |
Roundness | 0.5761 | 0.6054 | 0.6336 | 0.7225 | 0.6628 | 0.6986 | 0.7144 | 0.6299 | 0.6043 | 0.6422 |
Simulated 3D morphology | 1:1.25:1.8 | 1:1.25:1.8 | 1:1.25:1.8 | 1:1.15:1.5 | 1:1.3:2.0 | 1:1.15:1.6 | 1:1.15:1.6 | 1:1.2:1.8 | 1:1.4:2.3 | 1:1.25:1.9 |
Area abundance/% | 4.1655 | 4.2029 | 3.5122 | 3.2812 | 3.8075 | 3.4013 | 3.1572 | 3.4562 | 2.6990 | 4.0373 |
CSD volume/% | 6.73 | 6.73 | 5.46 | 5.18 | 6.17 | 5.15 | 4.93 | 5.36 | 4.19 | 6.79 |
1 σ/% | 0.78 | 0.62 | 0.44 | 0.43 | 1.67 | 0.50 | 0.43 | 0.97 | 0.52 | 1.01 |
Intercept/mm−4 | 15.29 | 15.14 | 17.12 | 17.83 | 15.03 | 16.21 | 18.11 | 12.56 | 11.63 | 14.57 |
1 σ/mm−4 | 0.06 | 0.07 | 0.06 | 0.06 | 0.04 | 0.18 | 0.06 | 0.15 | 0.05 | 0.06 |
Slope/mm−1 | −102.0 | −96.8 | −165.0 | −211.0 | −74.6 | −138.0 | −225.0 | −53.8 | −42.2 | −83.1 |
1 σ/mm−1 | 2.0 | 2.5 | 3.0 | 5.0 | 1.5 | 6.0 | 5.0 | 2.8 | 0.8 | 1.7 |
Maximum particle size/mm | 0.0623 | 0.0532 | 0.0384 | 0.0310 | 0.1358 | 0.0542 | 0.0291 | 0.0929 | 0.1322 | 0.0765 |
1 σ/mm | 0.0043 | 0.0037 | 0.0064 | 0.0027 | 0.0065 | 0.0129 | 0.0014 | 0.0187 | 0.0039 | 0.0064 |
R | 0.842 | 0.816 | 0.858 | 0.821 | 0.790 | 0.950 | 0.919 | 0.865 | 0.830 | 0.905 |
A.F. | 0.03 | 0.02 | 0.01 | 0.11 | 0.16 | 0.12 | 0.13 | 0.08 | 0.10 | 0.05 |
Sample | ZHT07 | ZHT08 | ZHT09 | ZHT12 | ZHT13 | 17JSB01 | 17XCNG01 | SQB06 | 17XHK01 | TL11Y1 |
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 46.16 | 45.56 | 49.49 | 49.88 | 50.50 | 46.82 | 48.62 | 46.63 | 48.77 | 46.52 |
TiO2 | 2.79 | 2.64 | 2.35 | 2.41 | 2.47 | 2.66 | 2.21 | 2.65 | 2.20 | 2.78 |
Al2O3 | 13.94 | 15.88 | 16.38 | 15.82 | 15.44 | 14.07 | 13.97 | 13.67 | 13.88 | 13.40 |
FeO | 13.20 | 12.37 | 11.32 | 11.44 | 11.27 | 12.70 | 11.92 | 12.31 | 11.40 | 12.73 |
MnO | 0.18 | 0.16 | 0.15 | 0.14 | 0.14 | 0.18 | 0.19 | 0.18 | 0.17 | 0.19 |
MgO | 6.90 | 7.17 | 5.61 | 5.62 | 5.33 | 9.04 | 6.60 | 9.38 | 8.31 | 8.63 |
CaO | 9.42 | 9.24 | 7.52 | 7.20 | 7.66 | 9.69 | 8.43 | 9.37 | 8.78 | 9.78 |
Na2O | 4.69 | 4.43 | 4.03 | 4.38 | 4.05 | 2.92 | 4.24 | 3.71 | 4.13 | 3.40 |
K2O | 1.39 | 1.30 | 2.35 | 2.28 | 2.31 | 1.20 | 2.60 | 1.36 | 1.83 | 1.71 |
P2O5 | 1.34 | 1.26 | 0.82 | 0.83 | 0.83 | 0.72 | 1.23 | 0.74 | 0.55 | 0.87 |
LOI | 3.49 | 3.82 | 3.11 | 3.24 | 3.13 | 0.43 | 1.87 | 1.40 | 1.97 | 1.79 |
Sample | 17JSB01a | 17JSB01b | 17XCNG01a | 17XCNG01b | SQB06a | SQB06b | 17XHK01a | 17XHK01b | TL11Y1a | TL11Y1b |
MgO | 3.61 (0.50) | 3.17 (0.29) | 1.03 (0.53) | 0.71 (0.34) | 3.54 (0.39) | 3.17 (0.29) | 2.81 (0.43) | 3.00 (0.22) | 2.38 (0.65) | 2.30 (0.33) |
Al2O3 | 2.77 (0.85) | 2.02 (0.32) | 0.55 (0.45) | 0.28 (0.16) | 3.67 (0.20) | 2.02 (0.11) | 1.64 (0.28) | 1.74 (0.31) | 1.97 (1.00) | 1.80 (0.54) |
FeOT | 62.39 (1.57) | 63.79 (0.41) | 68.17 (1.14) | 68.28 (1.15) | 61.50 (0.94) | 63.79 (0.26) | 64.63 (1.01) | 66.44 (0.87) | 64.82 (1.60) | 66.87 (1.02) |
CaO | 0.06 (0.14) | 0.11 (0.08) | 0.12 (0.15) | 0.30 (0.28) | 0.02 (0.04) | 0.11 (0.08) | 0.00 (0.00) | 0.07 (0.05) | 0.03 (0.05) | 0.11 (0.06) |
SiO2 | 0.00 (0.00) | 0.00 (0.00) | 0.01 (0.02) | 0.04 (0.12) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.00 (0.00) | 0.04 (0.15) |
NiO | 0.06 (0.08) | 0.08 (0.04) | 0.04 (0.06) | 0.07 (0.04) | 0.08 (0.10) | 0.08 (0.05) | 0.07 (0.09) | 0.13 (0.06) | 0.03 (0.06) | 0.09 (0.05) |
MnO | 0.65 (0.07) | 0.06 (0.03) | 0.73 (0.07) | 0.76 (0.03) | 0.64 (0.06) | 0.60 (0.02) | 0.69 (0.07) | 0.65 (0.03) | 0.67 (0.05) | 0.67 (0.03) |
TiO2 | 25.75 (1.03) | 25.13 (0.47) | 22.28 (1.06) | 22.50 (0.77) | 26.60 (0.62) | 25.13 (0.29) | 27.26 (0.53) | 26.27 (0.65) | 25.84 (1.09) | 25.96 (0.46) |
Cr2O3 | 0.56 (0.87) | 0.20 (0.04) | 0.39 (0.37) | 0.13 (0.13) | 0.18 (0.12) | 0.20 (0.04) | 0.10 (0.06) | 0.07 (0.03) | 0.29 (0.36) | 0.07 (0.03) |
V2O3 | 0.48 (0.09) | 0.51 (0.03) | 0.43 (0.09) | 0.39 (0.05) | 0.51 (0.08) | 0.51 (0.04) | 0.47 (0.07) | 0.54 (0.04) | 0.46 (0.09) | 0.46 (0.03) |
Fe2O3 | 15.46 (1.70) | 20.99 (0.70) | 22.28 (1.70) | 25.37 (1.51) | 13.18 (1.07) | 20.99 (0.25) | 14.77 (1.08) | 21.59 (1.21) | 16.00 (1.52) | 21.29 (1.02) |
FeO | 48.48 (1.15) | 44.91 (0.71) | 48.12 (1.51) | 45.45 (0.84) | 49.63 (0.88) | 44.91 (0.27) | 51.33 (0.73) | 47.01 (0.60) | 50.42 (1.55) | 47.71 (0.38) |
Tot | 96.33 (0.92) | 95.62 (0.64) | 93.75 (1.49) | 93.46 (0.64) | 96.73 (0.61) | 95.62 (0.47) | 97.66 (0.55) | 98.91 (0.34) | 96.48 (0.10) | 98.37 (0.37) |
Tot* | 97.88 (0.10) | 97.72 (0.63) | 95.98 (1.49) | 96.00 (0.66) | 98.05 (0.59) | 97.72 (0.46) | 99.14 (0.57) | 101.07 (0.31) | 98.08 (0.96) | 100.51 (0.40) |
Mg2+ | 0.2027 | 0.1804 | 0.0604 | 0.0421 | 0.1978 | 0.1760 | 0.1579 | 0.1659 | 0.1340 | 0.1284 |
(0.0262) | (0.0153) | (0.0306) | (0.0199) | (0.0214) | (0.0155) | (0.0233) | (0.0118) | (0.0355) | (0.0179) | |
Al3+ | 0.1227 | 0.0910 | 0.0257 | 0.0131 | 0.1623 | 0.1530 | 0.0730 | 0.0759 | 0.0857 | 0.0795 |
(0.0355) | (0.0138) | (0.0208) | (0.0073) | (0.0085) | (0.0039) | (0.0122) | (0.0131) | (0.0439) | (0.0234) | |
Ca2+ | 0.0025 | 0.0046 | 0.0051 | 0.0128 | 0.0007 | 0.0041 | 0.0000 | 0.0029 | 0.0013 | 0.0045 |
(0.0059) | (0.0033) | (0.0066) | (0.0123) | (0.0017) | (0.0032) | (0.0000) | (0.0021) | (0.0022) | (0.0025) | |
Si4+ | 0.0000 | 0.0000 | 0.0003 | 0.0018 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0015 |
(0.0000) | (0.0000) | (0.0007) | (0.0047) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0057) | |
Ni2+ | 0.0018 | 0.0024 | 0.0013 | 0.0022 | 0.0023 | 0.0017 | 0.0020 | 0.0037 | 0.0012 | 0.0026 |
(0.0024) | (0.0013) | (0.0019) | (0.0014) | (0.0029) | (0.0014) | (0.0026) | (0.0018) | (0.0018) | (0.0014) | |
Mn2+ | 0.0207 | 0.0195 | 0.0247 | 0.0258 | 0.0202 | 0.0200 | 0.0220 | 0.0205 | 0.0217 | 0.0212 |
(0.0024) | (0.0008) | (0.0025) | (0.0012) | (0.0019) | (0.0006) | (0.0022) | (0.0011) | (0.0017) | (0.0009) | |
Ti4+ | 0.6497 | 0.6419 | 0.5918 | 0.6016 | 0.6669 | 0.6448 | 0.6879 | 0.6517 | 0.6606 | 0.6505 |
(0.0308) | (0.0128) | (0.0284) | (0.0209) | (0.0140) | (0.0047) | (0.0132) | (0.0156) | (0.0306) | (0.0128) | |
Cr3+ | 0.0165 | 0.0060 | 0.0121 | 0.0040 | 0.0054 | 0.0025 | 0.0029 | 0.0021 | 0.0082 | 0.0022 |
(0.0250) | (0.0011) | (0.0113) | (0.0040) | (0.0035) | (0.0013) | (0.0016) | (0.0009) | (0.0107) | (0.0010) | |
V3+ | 0.0146 | 0.0157 | 0.0137 | 0.0126 | 0.0154 | 0.0145 | 0.0144 | 0.0160 | 0.0142 | 0.0140 |
(0.0025) | (0.0009) | (0.0027) | (0.0016) | (0.0023) | (0.0012) | (0.0021) | (0.0012) | (0.0027) | (0.0008) | |
Fe3+ | 0.5467 | 0.6034 | 0.7643 | 0.7635 | 0.4830 | 0.5404 | 0.5339 | 0.6027 | 0.5707 | 0.6006 |
(0.0456) | (0.0202) | (0.0466) | (0.0447) | (0.0289) | (0.0088) | (0.0287) | (0.0347) | (0.0422) | (0.0302) | |
Fe2+ | 1.4220 | 1.4350 | 1.5006 | 1.5204 | 1.4460 | 1.4429 | 1.5059 | 1.4586 | 1.5024 | 1.4953 |
(0.0440) | (0.0264) | (0.0513) | (0.0299) | (0.0256) | (0.0136) | (0.0263) | (0.0200) | (0.0574) | (0.0193) | |
TOTAL | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 |
Sample | ZHT07a | ZHT07b | ZHT08a | ZHT08b | ZHT09a | ZHT09b | ZHT12a | ZHT12b | ZHT13a | ZHT13b |
MgO | 1.78 (0.42) | 1.77 (0.20) | 1.87 (0.25) | 1.76 (0.39) | 1.89 (0.26) | 1.93 (0.21) | 1.29 (0.74) | 0.92 (0.31) | 2.79 (0.46) | 2.7 (0.35) |
Al2O3 | 1.18 (1.05) | 1.51 (0.94) | 2.12 (1.22) | 1.60 (0.99) | 0.66 (0.24) | 0.62 (0.04) | 0.91 (0.77) | 0.31 (0.36) | 2.61 (0.36) | 2.62 (0.35) |
FeOT | 71.05 (1.73) | 70.4 (0.72) | 64.48 (1.38) | 69.23 (1.07) | 69.03 (2.48) | 69.74 (0.90) | 64.83 (1.55) | 65.74 (1.5) | 64.48 (1.38) | 66.84 (1.27) |
CaO | 0.20 (0.21) | 0.16 (0.07) | 0.06 (0.11) | 0.16 (0.08) | 0.11 (0.14) | 0.16 (0.07) | 0.11 (0.12) | 0.21 (0.09) | 0.01 (0.02) | 0.05 (0.02) |
SiO2 | 0.00 (0.00) | 0.00 (0.00) | 0.06 (0.13) | 0.03 (0.12) | 0.01 (0.04) | 0.03 (0.12) | 0.08 (0.12) | 0.17 (0.23) | 0.00 (0.01) | 0.02 (0.09) |
NiO | 0.03 (0.05) | 0.07 (0.04) | 0.04 (0.07) | 0.06 (0.05) | 0.02 (0.05) | 0.08 (0.03) | 0.05 (0.06) | 0.07 (0.04) | 0.08 (0.10) | 0.12 (0.06) |
MnO | 0.71 (0.08) | 0.66 (0.02) | 0.68 (0.06) | 0.65 (0.03) | 0.63 (0.07) | 0.61 (0.03) | 0.76 (0.27) | 0.72 (0.21) | 0.59 (0.04) | 0.57 (0.03) |
TiO2 | 22.31 (1.11) | 22.00 (0.90) | 21.81 (0.96) | 21.03 (1.11) | 23.35 (1.03) | 23.25 (0.81) | 24.84 (1.18) | 24.86 (0.78) | 25.17 (1.37) | 24.94 (1.22) |
Cr2O3 | 0.20 (0.20) | 0.14 (0.09) | 0.35 (0.32) | 0.13 (0.12) | 0.19 (0.15) | 0.21 (0.15) | 0.33 (0.31) | 0.07 (0.07) | 0.05 (0.04) | 0.04 (0.05) |
V2O3 | 0.38 (0.08) | 0.38 (0.09) | 0.39 (0.10) | 0.36 (0.05) | 0.38 (0.10) | 0.40 (0.05) | 0.48 (0.09) | 0.4 (0.05) | 0.65 (0.10) | 0.71 (0.09) |
Fe2O3 | 25.19 (2.33) | 28.16 (1.11) | 24.12 (1.11) | 28.32 (1.75) | 22.57 (3.08) | 26.75 (1.59) | 16.44 (2.10) | 20.64 (1.85) | 16.82 (2.55) | 22.42 (1.98) |
FeO | 48.39 (0.98) | 45.06 (0.71) | 47.93 (1.02) | 43.74 (1.17) | 48.73 (0.93) | 45.67 (0.64) | 50.04 (1.59) | 47.17 (0.68) | 49.35 (1.13) | 46.66 (0.78) |
Tot | 97.85 (0.59) | 97.08 (0.45) | 96.44 (0.71) | 95.01 (0.61) | 96.28 (2.04) | 97.03 (0.73) | 93.69 (2.04) | 93.47 (0.93) | 96.44 (0.71) | 98.61 (0.45) |
Tot* | 100.37 (0.65) | 99.9 (0.44) | 99.44 (0.96) | 97.84 (0.61) | 98.54 (2.28) | 99.71 (0.77) | 95.33 (2.13) | 95.54 (1.04) | 98.12 (0.69) | 100.86 (0.37) |
Mg2+ | 0.0998 | 0.0999 | 0.1050 | 0.1013 | 0.1082 | 0.1096 | 0.0756 | 0.0553 | 0.1575 | 0.1492 |
(0.0233) | (0.0105) | (0.0128) | (0.0211) | (0.0140) | (0.0114) | (0.0426) | (0.0185) | (0.0247) | (0.0189) | |
Al3+ | 0.0521 | 0.0670 | 0.0937 | 0.0724 | 0.0301 | 0.0277 | 0.0420 | 0.0147 | 0.1165 | 0.1142 |
(0.0461) | (0.0414) | (0.0534) | (0.0441) | (0.0107) | (0.0020) | (0.0349) | (0.0170) | (0.0152) | (0.0151) | |
Ca2+ | 0.0080 | 0.0065 | 0.0026 | 0.0068 | 0.0045 | 0.0064 | 0.0047 | 0.0089 | 0.0003 | 0.0018 |
(0.0084) | (0.0028) | (0.0046) | (0.0033) | (0.0058) | (0.0031) | (0.0054) | (0.0039) | (0.0009) | (0.0009) | |
Si4+ | 0.0000 | 0.0000 | 0.0024 | 0.0012 | 0.0005 | 0.0012 | 0.0033 | 0.0067 | 0.0000 | 0.0008 |
(0.0000) | (0.0000) | (0.0053) | (0.0046) | (0.0016) | (0.0046) | (0.0049) | (0.0093) | (0.0002) | (0.0033) | |
Ni2+ | 0.0010 | 0.0021 | 0.0013 | 0.0018 | 0.0007 | 0.0025 | 0.0017 | 0.0023 | 0.0025 | 0.0036 |
(0.0014) | (0.0013) | (0.0020) | (0.0017) | (0.0017) | (0.0010) | (0.0018) | (0.0013) | (0.0029) | (0.0018) | |
Mn2+ | 0.0225 | 0.0211 | 0.0217 | 0.0211 | 0.0206 | 0.0197 | 0.0259 | 0.0244 | 0.0191 | 0.0179 |
(0.0025) | (0.0008) | (0.0020) | (0.0011) | (0.0022) | (0.0010) | (0.0095) | (0.0070) | (0.0014) | (0.0011) | |
Ti4+ | 0.5617 | 0.5573 | 0.5512 | 0.5434 | 0.6004 | 0.5923 | 0.6620 | 0.6669 | 0.6380 | 0.6181 |
(0.0295) | (0.0261) | (0.0284) | (0.0317) | (0.0355) | (0.0211) | (0.0401) | (0.0234) | (0.0341) | (0.0295) | |
Cr3+ | 0.0060 | 0.0043 | 0.0104 | 0.0039 | 0.0056 | 0.0064 | 0.0102 | 0.0023 | 0.0016 | 0.0011 |
(0.0059) | (0.0027) | (0.0094) | (0.0035) | (0.0044) | (0.0046) | (0.0096) | (0.0021) | (0.0013) | (0.0015) | |
V3+ | 0.0115 | 0.0114 | 0.0113 | 0.0111 | 0.0116 | 0.0121 | 0.0153 | 0.0128 | 0.0199 | 0.0212 |
(0.0023) | (0.0027) | (0.0041) | (0.0016) | (0.0029) | (0.0014) | (0.0029) | (0.0017) | (0.0030) | (0.0025) | |
Fe3+ | 0.8069 | 0.8027 | 0.7775 | 0.8233 | 0.7511 | 0.7669 | 0.6021 | 0.6228 | 0.5860 | 0.6256 |
(0.0633) | (0.0315) | (0.0315) | (0.0500) | (0.0721) | (0.0441) | (0.0509) | (0.0522) | (0.0681) | (0.0565) | |
Fe2+ | 1.4304 | 1.4276 | 1.4229 | 1.4136 | 1.4668 | 1.4552 | 1.5574 | 1.5828 | 1.4587 | 1.4465 |
(0.0332) | (0.0314) | (0.0381) | (0.0484) | (0.0404) | (0.0239) | (0.0664) | (0.0235) | (0.0374) | (0.0257) | |
TOTAL | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.-H.; Yang, Z.-F.; An, X.-H.; Xu, R.; Qi, J.-N. Relationship between the Texture and Composition of Titanomagnetite in Hannuoba Alkaline Basalt: A New Geospeedometer. Minerals 2022, 12, 1412. https://doi.org/10.3390/min12111412
Xu Z-H, Yang Z-F, An X-H, Xu R, Qi J-N. Relationship between the Texture and Composition of Titanomagnetite in Hannuoba Alkaline Basalt: A New Geospeedometer. Minerals. 2022; 12(11):1412. https://doi.org/10.3390/min12111412
Chicago/Turabian StyleXu, Zhi-Hao, Zong-Feng Yang, Xiu-Hui An, Rui Xu, and Jun-Nan Qi. 2022. "Relationship between the Texture and Composition of Titanomagnetite in Hannuoba Alkaline Basalt: A New Geospeedometer" Minerals 12, no. 11: 1412. https://doi.org/10.3390/min12111412
APA StyleXu, Z.-H., Yang, Z.-F., An, X.-H., Xu, R., & Qi, J.-N. (2022). Relationship between the Texture and Composition of Titanomagnetite in Hannuoba Alkaline Basalt: A New Geospeedometer. Minerals, 12(11), 1412. https://doi.org/10.3390/min12111412