Polyimide Asymmetric Membrane vs. Dense Film for Purification of MTBE Oxygenate by Pervaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Asymmetric and Dense Membranes
2.3. Membrane Characterizations
2.4. Sorption Research
2.5. Pervaporation
3. Results
3.1. Membrane Morphology
3.2. Membrane Characterization
3.3. Transport Properties
Sorption
3.4. Pervaporation of the Methanol/MTBE Mixture
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alnsworth, S.J. Booming MTBE demand draws increasing number of producers. Chem. Eng. News 1991, 69, 13–16. [Google Scholar] [CrossRef]
- Sridhar, S.; Smitha, B.; Shaik, A. Pervaporation-Based Separation of Methanol/MTBE Mixtures—A Review. Sep. Purif. Rev. 2005, 34, 1–33. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications, 3rd ed.; Wiley: Chichester, UK, 2012; ISBN 9780470743720. [Google Scholar]
- Khatinzadeh, G.; Mahdyarfar, M.; Mehdizadeh, A. Pervaporation (PV) Separation of Methanol/Methyl Tert-butyl Ether Mixtures in Low Permeate Pressure Conditions. J. Pet. Sci. Technol. 2017, 7, 43–48. [Google Scholar]
- Zhou, K.; Zhang, Q.G.; Han, G.L.; Zhu, A.M.; Liu, Q.L. Pervaporation of water-ethanol and methanol-MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes. J. Memb. Sci. 2013, 448, 93–101. [Google Scholar] [CrossRef]
- Wu, H.; Fang, X.; Zhang, X.; Jiang, Z.; Li, B.; Ma, X. Cellulose acetate–poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures. Sep. Purif. Technol. 2008, 64, 183–191. [Google Scholar] [CrossRef]
- Han, G.L.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Pervaporation separation of methanol/methyl tert-butyl ether mixtures using polyarylethersulfone with cardo membranes. Sep. Purif. Technol. 2013, 107, 211–218. [Google Scholar] [CrossRef]
- Zereshki, S.; Figoli, A.; Madaeni, S.S.; Simone, S.; Esmailinezhad, M.; Drioli, E. Pervaporation separation of MeOH/MTBE mixtures with modified PEEK membrane: Effect of operating conditions. J. Memb. Sci. 2011, 371, 1–9. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Wang, Y.; Chung, T.S.; Qiao, X.Y.; Lai, J.Y. Polyimides membranes for pervaporation and biofuels separation. Prog. Polym. Sci. 2009. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; Fíla, V.; Drioli, E.; Figoli, A. Matrimid®5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. Sep. Purif. Technol. 2018, 199, 27–36. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; de la Iglesia, Ó.; Fíla, V.; Téllez, C.; Coronas, J.; Figoli, A. Graphene oxide—Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures. Sep. Purif. Technol. 2019, 224, 265–272. [Google Scholar] [CrossRef]
- Pulyalina, A.; Polotskaya, G.; Goikhman, M.; Podeshvo, I.; Gulii, N.; Shugurov, S.; Tataurov, M.; Toikka, A. Preparation and characterization of methanol selective membranes based on polyheteroarylene—Cu(I) complexes for purification of methyl tertiary butyl ether. Polym. Int. 2017. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer: Dordrecht, The Netherlands, 1996; ISBN 978-0-7923-4248-9. [Google Scholar]
- Polotskaya, G.A.; Meleshko, T.K.; Gofman, I.V.; Polotsky, A.E.; Cherkasov, A.N. Polyimide ultrafiltration membranes with high thermal stability and chemical durability. Sep. Sci. Technol. 2009, 44, 3814–3831. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Feng, X.; Huang, R.Y.M. Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res. 1997, 36, 1048–1066. [Google Scholar] [CrossRef]
- Binning, R.; Lee, R.; Jennings, J.; Martin, E. Separation of Liquid Mixtures by Permeation. Ind. Eng. Chem. 1961, 53, 45–50. [Google Scholar] [CrossRef]
- Polotskaya, G.A.; Kostereva, T.A.; Stepanov, N.G.; Shibaev, L.A.; Kuznetsov, Y.P. The effect of imidization on gas-separation properties of membranes based on poly(4,4′-oxydiphenylene)pyromellitimide. Vysokomol. Soedin. Ser.A Ser.B Ser.C Kratk. Soobshcheniya 1996, 38, 123–1238. [Google Scholar]
- Polotsky, A.; Cherkasova, V.; Potokin, I.; Polotskaya, G.; Meleshko, T. Chemically and thermally resistant polyimide ultrafiltration membranes prepared from polyamic acid. Desalination 2006, 200, 341–342. [Google Scholar] [CrossRef]
- Pulyalina, A.; Polotskaya, G.; Rostovtseva, V.; Pientka, Z.; Toikka, A. Improved Hydrogen Separation Using Hybrid Membrane Composed of Nanodiamonds and P84 Copolyimide. Polymers 2018, 10, 828. [Google Scholar] [CrossRef] [Green Version]
- Penkova, A.V.; Polotskaya, G.A.; Gavrilova, V.A.; Toikka, A.M.; Liu, J.-C.; Trchová, M.; Šlouf, M.; Pientka, Z. Polyamide Membranes Modified by Carbon Nanotubes: Application for Pervaporation. Sep. Sci. Technol. 2009, 45, 35–41. [Google Scholar] [CrossRef]
- Ma, X.-H.; Yang, S.-Y. Polyimide Gas Separation Membranes. In Advanced Polyimide Materials; Yang, S.-Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 257–322. ISBN 978-0-12-812640-0. [Google Scholar]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 3973. [Google Scholar] [CrossRef]
- Brunauer, S. The adsorption of gases and vapors, vol.1; Princeton University Press: London, UK, 1943. [Google Scholar]
- Doghieri, F.; Nardella, A.; Sarti, G.C.; Valentini, C. Pervaporation of methanol-MTBE mixtures through modified poly(phenylene oxide) membranes. J. Memb. Sci. 1994, 91, 283–291. [Google Scholar] [CrossRef]
- Zereshki, S.; Figoli, A.; Madaeni, S.S.; Simone, S.; Drioli, E. Pervaporation separation of methanol/methyl tert-butyl ether with poly(lactic acid) membranes. J. Appl. Polym. Sci. 2010, 118, 1364–1371. [Google Scholar] [CrossRef]
Liquid | Contact Angle, ° | σp, mN/m | σd, mN/m | σs, mN/m |
---|---|---|---|---|
Water | 73.4 | 17.23 | 13.35 | 30.58 |
Ethanol | 16.8 |
Penetrant | MW | Density, g/cm3 | Molar Volume, cm3/mol | Tb, °C | Dipole Moment, D | Solubility Parameter, (J/cm3)1/2 |
---|---|---|---|---|---|---|
Methanol | 32.0 | 0.792 | 40.4 | 64.7 | 1.65 | 29.7 |
MTBE | 88.2 | 0.740 | 119.1 | 55.0 | 1.25 | 16.0 |
Liquid | Sorption Degree, % | Diffusion Coefficient, m2/s |
---|---|---|
Methanol | 18.2 | 7.9·10−13 |
MTBE | - | - |
Membrane | T, °C | Methanol in Feed, wt% | Methanol in Permeate, wt% | Total Flux, g/m2h | Sepa-Ration Factor | Membrane Thickness, μm | Ref. |
---|---|---|---|---|---|---|---|
Asymmetric PI-PM | 50 | 14.3 | 89.9 | 123 | 80 | 130 | Present work |
Modified poly(ether ether ketone) | 50 | 14.3 | 62.5 | 110 | 10 | 35–40 | [8] |
Matrimid | 45 | 14.3 | 77.8 | 73 | 21 | 64 | [10] |
Poly(amic acid) Cu(I) | 50 | 10.0 | 97.9 | 15 | 440 | 20 | [12] |
Polyphenylene-iso-phtalamide/CNT (5%) | 50 | 14.3 | 90.9 | 480 | 60 | 45 | [21] |
Poly (phenylene oxide) | 20 | 20.0 | 66.7 | 450 | 8 | 40 | [25] |
Poly(lactic acid) | 30 | 20.0 | 42.8 | 650 | 3 | 23–28 | [26] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulyalina, A.; Tataurov, M.; Faykov, I.; Rostovtseva, V.; Polotskaya, G. Polyimide Asymmetric Membrane vs. Dense Film for Purification of MTBE Oxygenate by Pervaporation. Symmetry 2020, 12, 436. https://doi.org/10.3390/sym12030436
Pulyalina A, Tataurov M, Faykov I, Rostovtseva V, Polotskaya G. Polyimide Asymmetric Membrane vs. Dense Film for Purification of MTBE Oxygenate by Pervaporation. Symmetry. 2020; 12(3):436. https://doi.org/10.3390/sym12030436
Chicago/Turabian StylePulyalina, Alexandra, Maksim Tataurov, Ilya Faykov, Valeriia Rostovtseva, and Galina Polotskaya. 2020. "Polyimide Asymmetric Membrane vs. Dense Film for Purification of MTBE Oxygenate by Pervaporation" Symmetry 12, no. 3: 436. https://doi.org/10.3390/sym12030436
APA StylePulyalina, A., Tataurov, M., Faykov, I., Rostovtseva, V., & Polotskaya, G. (2020). Polyimide Asymmetric Membrane vs. Dense Film for Purification of MTBE Oxygenate by Pervaporation. Symmetry, 12(3), 436. https://doi.org/10.3390/sym12030436