# A Noncommutative Model of Cosmology with Two Metrics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

**80**, 763 (1933)), even if the idea was already suggested by Heisenberg in 1930 (Heisenberg W, Z. Phys.

**65**4 (1930)). An explicitly Lorentz invariant model with noncommutative coordinates was built in 1947 by Snyder (H.S. Snyder Phys. Rev.

**71**, 38 (1947))) has been a route intensively explored in the last twenty years including noncommutative quantum field theories, noncommutative quantum mechanics, and also noncommutativity in the the space of fields, rather than the usual noncommutative spacetime [9,10,11,12,13,14,15,16].

## 2. Modified FRW Equations

## 3. Noncommutative Phase Space Classical Cosmology

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Arzano, M.; Kowalski-Glikman, J. Non-commutative fields and the short-scale structure of spacetime. Phys. Lett. B
**2017**, 771, 222. [Google Scholar] [CrossRef] - Modesto, L. Fractal Structure of Loop Quantum Gravity. Class. Quant. Grav.
**2009**, 26, 242002. [Google Scholar] [CrossRef] - Letizia, M.; Liberati, S. Deformed relativity symmetries and the local structure of spacetime. Phys. Rev. D
**2017**, 95, 046007. [Google Scholar] [CrossRef][Green Version] - Carlip, S. The Small Scale Structure of Spacetime. arXiv
**2009**, arXiv:1009.1136. [Google Scholar] - Hossenfelder, S. Minimal Length Scale Scenarios for Quantum Gravity. Living Rev. Rel.
**2013**, 16, 2. [Google Scholar] [CrossRef] [PubMed][Green Version] - Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B
**1995**, 442, 593, Erratum in**1995**, 456, 753. [Google Scholar] [CrossRef][Green Version] - Bonder, Y.; Sudarsky, D. Unambiguous Quantum Gravity Phenomenology Respecting Lorentz Symmetry. Rept. Math. Phys.
**2009**, 64, 169. [Google Scholar] [CrossRef][Green Version] - Aguilar, P.; Sudarsky, D.; Bonder, Y. Experimental search for a Lorentz invariant spacetime granularity: Possibilities and bounds. Phys. Rev. D
**2013**, 87, 064007. [Google Scholar] [CrossRef][Green Version] - Seiberg, N.; Witten, E. String theory and noncommutative geometry. JHEP
**1999**, 9, 3. [Google Scholar] [CrossRef][Green Version] - Douglas, M.; Nekrasov, N. Noncommutative field theory. Rev. Mod. Phys.
**2001**, 73, 977. [Google Scholar] [CrossRef][Green Version] - Seiberg, N.; Susskind, L.; Toumbas, N. Space-time noncommutativity and causality. JHEP
**2000**, 6, 44. [Google Scholar] [CrossRef][Green Version] - Moffat, J.W. Noncommutative quantum gravity. Phys. Lett. B
**2000**, 491, 345. [Google Scholar] [CrossRef][Green Version] - Szabo, R.J. Quantum field theory on noncommutative spaces. Phys. Rep.
**2003**, 378, 207. [Google Scholar] [CrossRef][Green Version] - Dunne, G.V.; Jackiw, R.; Trugenberger, C. “Topological” (Chern-Simons) quantum mechanics. Phys. Rev. D
**1990**, 41, 661. [Google Scholar] [CrossRef] [PubMed] - Mezincescu, L. Star operation in quantum mechanics. arXiv
**2000**, arXiv:hep-th/0007046. [Google Scholar] - Gamboa, J.; Loewe, M.; Rojas, J.C. Noncommutative quantum mechanics. Phys. Rev. D
**2001**, 64, 067901. [Google Scholar] [CrossRef][Green Version] - Bayern, F.; Flato, M.; Frönsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys.
**1978**, 111, 61. [Google Scholar] - Cattaneo, A.S.; Indelicato, D. Formality and Star Products in Poisson Geometry. In Deformations Quantization and Group Representation; Gutt, S., Rawnsley, J.H., Sternheimer, D., Eds.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- De Wilde, M.; Lecomte, P.B.A. Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys.
**1994**, 7, 487. [Google Scholar] [CrossRef] - Fedosov, B.V. A simple geometrical construction of deformation quantization. J. Diff. Geom.
**1994**, 40, 213. [Google Scholar] [CrossRef] - Flato, M.; Lichnerowicz, A.; Sternheimer, D. Crochet de Moyal–Vey et quantification. Sci. Paris Ser. A-B
**1976**, 283, 19. [Google Scholar] - Kontsevitch, M. Deformation Quantization of Poisson Manifolds. Lett. Math. Phys.
**2003**, 66, 157. [Google Scholar] [CrossRef][Green Version] - Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the Cosmological Standard Model. Phys. Rept.
**2015**, 568, 1. [Google Scholar] [CrossRef][Green Version] - Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe
**2016**, 2, 23. [Google Scholar] [CrossRef] - Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys.
**2008**, 46, 385. [Google Scholar] [CrossRef][Green Version] - Mota, D.F.; Shaw, D.J. Evading Equivalence Principle Violations, Cosmological and other Experimental Constraints in Scalar Field Theories with a Strong Coupling to Matter. Phys. Rev. D
**2007**, 75, 063501. [Google Scholar] [CrossRef][Green Version] - Hansen, F.K.; Banday, A.J.; Gorski, K.M. Testing the cosmological principle of isotropy: Local power spectrum estimates of the WMAP data. Mon. Not. R. Astron. Soc.
**2004**, 354, 641. [Google Scholar] [CrossRef][Green Version] - Bousso, R.; Harnik, R.; Kribs, G.D.; Perez, G. Predicting the Cosmological Constant from the Causal Entropic Principle. Phys. Rev. D
**2007**, 76, 043513. [Google Scholar] [CrossRef][Green Version] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 results-XX. Constraints on inflation. Astron. Astrophys.
**2016**, 594, A20. [Google Scholar] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al.; [BICEP2/Keck and Planck Collaborations] Joint Analysis of BICEP2/Keck Array and Planck Data. Phys. Rev. Lett.
**2015**, 114, 101301. [Google Scholar] [CrossRef][Green Version] - Kleban, M. Cosmic Bubble Collisions. Class. Quant. Grav.
**2011**, 28, 204008. [Google Scholar] [CrossRef] - Gobbetti, R.; Kleban, M. Analyzing cosmic bubble collisions. JCAP
**2012**, 2012, 25. [Google Scholar] [CrossRef][Green Version] - Lehners, J.L. Cosmic bounces and cyclic universes. Class. Quant. Grav.
**2011**, 28, 204004. [Google Scholar] [CrossRef] - Aguirre, A.; Johnson, M.C.; Shomer, A. Towards observable signatures of other bubble universes. Phys. Rev. D
**2007**, 76, 063509. [Google Scholar] [CrossRef][Green Version] - Chang, S.; Kleban, M.; Levi, T.S. When worlds collide. JCAP
**2008**, 804, 34. [Google Scholar] [CrossRef] - Akrami, Y.; Hassan, S.F.; Könnig, F.; Schmidt-May, A.; Solomon, A.R. Bimetric gravity is cosmologically viable. Phys. Lett. B
**2015**, 748, 37. [Google Scholar] [CrossRef][Green Version] - Akrami, Y.; Koivisto, T.S.; Mota, D.F.; Sandstad, M. Bimetric gravity doubly coupled to matter: Theory and cosmological implications. JCAP
**2013**, 1310, 46. [Google Scholar] [CrossRef] - Cusin, G.; Durrer, R.; Guarato, P.; Motta, M. Gravitational waves in bigravity cosmology. JCAP
**2015**, 1505, 30. [Google Scholar] [CrossRef] - Deser, S.; Izumi, K.; Ong, Y.C.; Waldron, A. Problems of massive gravities. Mod. Phys. Lett. A
**2015**, 30, 1540006. [Google Scholar] [CrossRef] - De Rham, C.; Heisenberg, L.; Ribeiro, R.H. On couplings to matter in massive (bi-)gravity. Class. Quant. Grav.
**2015**, 32, 035022. [Google Scholar] [CrossRef][Green Version] - Falomir, H.; Pisani, P.A.G.; Vega, F.; Cárcamo, D.; Méndez, F.; Loewe, M. On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space. J. Phys. A Math. Theor.
**2016**, 49, 055202. [Google Scholar] [CrossRef][Green Version] - Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Nojiri, S.I.; Odintsov, S.D. Bounce cosmology from F(R) gravity and F(R) bigravity. JCAP
**2014**, 1401, 8. [Google Scholar] [CrossRef] - Falomir, H.; Gamboa, J.; Mendez, F.; Gondolo, P. Magnetic seed and cosmology as quantum hall effect. Phys. Lett. B
**2018**, 785, 399. [Google Scholar] [CrossRef] - Tanabashi, M.; et al.; [Particle Data Group] The Review of Particle Physics. Phys. Rev. D
**2018**, 98, 030001. [Google Scholar] [CrossRef][Green Version] - ’t Hooft, G. Singularities, Horizons, Firewalls, and Local Conformal Symmetry. In 2nd Karl Schwarzschild Meeting on Gravitational Physics; Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M., Eds.; Springer Proceedings in Physics; Springer: Cham, Swizerland, 2018; Volume 208. [Google Scholar]
- ’t Hooft, G. A class of elementary particle models without any adjustable real parameters. Found. Phys.
**2011**, 41, 1829. [Google Scholar] [CrossRef][Green Version] - Gorini, V.; Kamenshchik, A.; Moschella, U. Can the Chaplygin gas be a plausible model for dark energy? Phys. Rev. D
**2003**, 67, 063509. [Google Scholar] [CrossRef][Green Version] - Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. The Chaplygin gas as a model for dark energy. AIP Conf. Proc.
**2005**, 751, 108. [Google Scholar] - Gorini, V.; Kamenshchik, A.Y.; Moschella, U.; Piattella, O.F.; Starobinsky, A.A. Gauge-invariant analysis of perturbations in Chaplygin gas unified models of dark matter and dark energy. JCAP
**2008**, 802, 16. [Google Scholar] [CrossRef] - Melchiorri, A.; Mersini, L.; Ödman, C.J.; Trodden, M. The State of the dark energy equation of state. Phys. Rev. D
**2003**, 68, 043509. [Google Scholar] [CrossRef][Green Version] - Nair, V.P.; Polychronakos, A.P. Quantum mechanics on the noncommutative plane and sphere. Phys. Lett. B
**2001**, 505, 267. [Google Scholar] [CrossRef][Green Version] - Bellucci, S.; Nersessian, A.; Sochichiu, C. Two phases of the noncommutative quantum mechanics. Phys. Lett. B
**2001**, 522, 345. [Google Scholar] [CrossRef][Green Version] - Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Méndez, F. Quantum theory of noncommutative fields. JHEP
**2003**, 303, 58. [Google Scholar] [CrossRef][Green Version] - Kandus, A.; Kunze, K.E.; Tsagas, C.G. Primordial magnetogenesis. Phys. Rept.
**2011**, 505, 1. [Google Scholar] [CrossRef][Green Version] - Ratra, B. Cosmological ’seed’ magnetic field from inflation. Astrophys. J.
**1992**, 391, L1. [Google Scholar] [CrossRef][Green Version]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Falomir, H.; Gamboa, J.; Mendez, F.
A Noncommutative Model of Cosmology with Two Metrics. *Symmetry* **2020**, *12*, 435.
https://doi.org/10.3390/sym12030435

**AMA Style**

Falomir H, Gamboa J, Mendez F.
A Noncommutative Model of Cosmology with Two Metrics. *Symmetry*. 2020; 12(3):435.
https://doi.org/10.3390/sym12030435

**Chicago/Turabian Style**

Falomir, Horacio, Jorge Gamboa, and Fernando Mendez.
2020. "A Noncommutative Model of Cosmology with Two Metrics" *Symmetry* 12, no. 3: 435.
https://doi.org/10.3390/sym12030435