# Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Kinematics Model of an Omnidirectional Mobile Robot with n Mecanum Wheels

#### 2.1. Mecanum Wheel Configurations of the Single Omnidirectional Mobile Robot

#### 2.2. Kinematics Constraint Model of a Single Mecanum Wheel and Kinematics Model of an n-Mecanum-Wheel Robot

## 3. Bottom-Roller Axle Intersections Approach for Judging Robot’s Omnidirectional Mobility

#### 3.1. Conditions for Omnidirectional Motion of a Mecanum-Wheeled Mobile Robot System

#### 3.2. Relation Between the Roller Axle Intersection Points Number on Three Mecanum Wheels and the Column Rank of the Jacobian Matrix

#### 3.2.1. No Intersection of the Three Bottom-Rollers Axles

#### 3.2.2. The Axles of the Three Bottom-Rollers Intersect at One Point

#### 3.2.3. The Axles of the Three Bottom-Rollers Intersect at Two Points

#### 3.2.4. The Axles of the Three Bottom-Rollers Intersect at Three Points

#### 3.3. Three-Mecanum-Wheel Configurations of the Mobile Robot

## 4. Symmetrical Wheel Configurations of the Four-Mecanum-Wheel Mobile Robot

#### 4.1. Judging the Four-Mecanum-Wheel Configurations by a Bottom-Roller Axle Intersections Approach

#### 4.2. Theoretical Verification for the Symmetrical Rectangular Configurations with Four Mecanum Wheels

## 5. Design Method of Mecanum Wheel Configurations for the Omnidirectional Mobile Robot

#### 5.1. Sub-Configuration Judgment Method for Judging the Omnidirectional Motion Capacity of the Wheel Combination Configurations

#### 5.2. Analysis of Mecanum Wheel Configurations and Combination Configurations for Common Omnidirectional Mobile Robots

#### 5.3. Topological Design Methods of Multi-Mecanum Wheel Configuration for Omnidirectional Mobile Robot

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Gfrerrer, A. Geometry and kinematics of the Mecanum wheel. Comput. Aided Geom. Des.
**2008**, 25, 784–791. [Google Scholar] [CrossRef] - Doroftei, I.; Grosu, V.; Spinu, V. Omnidirectional mobile robot-design and implementation. In Bioinspiration and Robotics: Walking and Climbing Robots; Habib, M.K., Ed.; I-Tech Education and Publishing: Rijeka, Croatia, 2007; pp. 511–528. [Google Scholar]
- Alvito, P.; Marques, C.; Carriço, P.; Freire, J. A Robotic Platform for the Social Robot Project. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication (ROMAN 2014) Workshop on Interactive Robots for Aging and/or Impaired People, Edinburgh, UK, 25–29 August 2014. [Google Scholar]
- Sanbot Max. Available online: http://en.sanbot.com/product/sanbot-max/specification (accessed on 20 May 2019).
- Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The design and development of an omni-directional mobile robot oriented to an intelligent manufacturing system. Sensors
**2017**, 17, 2073. [Google Scholar] [CrossRef] [PubMed] - Sun, S.; Hu, J.; Li, J.; Liu, R.; Shu, M.; Yang, Y. An INS-UWB based collision avoidance system for AGV. Algorithms
**2019**, 12, 40. [Google Scholar] [CrossRef] - Adăscăliţei, F.; Doroftei, I. Practical applications for mobile robots based on mecanum wheels-a systematic survey. In Proceedings of the 3rd International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development(MECAHITECH’11), Bucharest, Romania, 22–23 September 2011; pp. 112–123. [Google Scholar]
- Heß, D.; Künemund, F.; Röhrig, C. Linux based control framework for Mecanum based omnidirectional automated guided vehicles. In Proceedings of the World Congress on Engineering and Computer Science 2013, San Francisco, CA, USA, 23–25 October 2013. [Google Scholar]
- MC Drive Parade. Available online: https://www.youtube.com/watch?v=yf8x2egJRZ4 (accessed on 20 August 2010).
- KUKA omniMove. Available online: https://www.kuka.com/en-us/products/mobility/mobile-platforms/kuka-omnimove (accessed on 20 May 2019).
- Hryniewicz, P.; Gwiazda, A.; Banaś, W.; Sękala, A.; Foit, K. Modelling of a mecanum wheel taking into account the geometry of road rollers. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sibiu, Romania, 14–17 June 2017; p. 012060. [Google Scholar]
- Airbus Rolls Out Its Second A350 XWB Composite Fuselage Demonstrator. Available online: https://www.airbus.com/newsroom/news/en/2009/08/airbus-rolls-out-its-second-a350-xwb-composite-fuselage-demonstrator.html (accessed on 7 August 2009).
- Automation, K.-R. KUKA omniMove at Siemens Plant Krefeld. Available online: https://www.youtube.com/watch?v=EvOrFgSmQoc (accessed on 2 October 2014).
- He, C.; Wu, D.; Chen, K.; Liu, F.; Fan, N. Analysis of the Mecanum wheel arrangement of an omnidirectional vehicle. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2019**, 233, 5329–5340. [Google Scholar] [CrossRef] - Muir, P.F.; Neuman, C.P. Kinematic modeling of wheeled mobile robots. J. Robot. Syst.
**1987**, 4, 281–340. [Google Scholar] [CrossRef] - Muir, P.F. Modeling and Control of Wheeled Mobile Robots; Carnegie Mellon University: Pittsburgh, PA, USA, 1988. [Google Scholar]
- Angeles, J. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 4th ed.; Springer: Cham, Switzerland, 2002. [Google Scholar] [CrossRef]
- Campion, G.; Bastin, G.; D’Andrea-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. In Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 462–469. [Google Scholar]
- Gracia, L.; Tornero, J. A new geometric approach to characterize the singularity of wheeled mobile robots. Robotica
**2007**, 25, 627–638. [Google Scholar] [CrossRef] - Gracia, L.; Tornero, J. Kinematic modeling of wheeled mobile robots with slip. Adv. Robot.
**2007**, 21, 1253–1279. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, S.; Zhang, J.; Su, Q.; Gao, J. Research on motion characteristic of omnidirectional robot based on mecanum wheel. In Proceedings of the 2010 International Conference on Digital Manufacturing & Automation, Washington, DC, USA, 18–20 December 2010; pp. 237–241. [Google Scholar]
- Wang, S.; Zhang, Y.; Nie, B.; Xia, Y. Research on steering motion of omnidirectional platform based on Mecanum wheel. In Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 15–17 July 2011; pp. 5177–5180. [Google Scholar]
- Wang, Y.; Chang, D. Motion Performance Analysis and Layout Selection for Motion System with Four Mecanum Wheels. J. Mech. Eng.
**2009**, 45, 307–310, 316. [Google Scholar] [CrossRef] - Wang, Y.; Chang, D. Motion restricted condition and singular configuration for mecanum wheeled omni-directional motion system. J. Shanghai Univ. (Natl. Sci.)
**2009**, 15, 181–185. [Google Scholar] - Mishra, S.; Sharma, M.; Mohan, S. Behavioural Fault tolerant control of an Omni directional Mobile Robot with Four mecanum Wheels. Def. Sci. J.
**2019**, 69, 353–360. [Google Scholar] [CrossRef] [Green Version] - Gao, P.; Peng, J.; Yu, W.; Li, S.; Qin, X. Design and Motion Analysis of a Mecanum Three-Round Omni-Directional Mobile Platform. J. Northwest. Polytech. Univ.
**2017**, 35, 857–862. [Google Scholar] - Zhang, Y.N.; Wang, S.S.; Zhang, J.; Song, J. Research on motion characteristic of omnidirectional device based on Mecanum wheel. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 6094–6097. [Google Scholar]
- Indiveri, G. Swedish wheeled omnidirectional mobile robots: Kinematics analysis and control. IEEE Trans. Robot.
**2009**, 25, 164–171. [Google Scholar] [CrossRef] - Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy. Appl. Sci.
**2018**, 8, 231. [Google Scholar] [CrossRef] - Li, J.; Zhang, L. The Teleoperation System of Service Robot Based on Cloud Services. J. Comput.
**2017**, 28, 231–245. [Google Scholar] - Li, Y.W.; Dai, S.M.; Shi, Y.; Zhao, L.L.; Ding, M.H. Navigation simulation of a Mecanum wheel mobile robot based on an improved A* algorithm in Unity3D. Sensors
**2019**, 19, 2976. [Google Scholar] [CrossRef] [PubMed] - 44 MC DRIVE TP200 700 TDE. Available online: https://www.youtube.com/watch?v=iir0CINszQo (accessed on 24 October 2010).

**Figure 1.**Wheel configurations of the single-Mecanum-wheeled robot: (

**a**) centripetal configuration; (

**b**) symmetrical rectangular configuration.

**Figure 2.**Kinematic constraints of a Mecanum wheel and the coordinate systems of a mobile system: (

**a**) structural principle of a Mecanum wheel; (

**b**) Kinematic constraints diagram of a Mecanum wheel on the robot using a vector method; (

**c**) Kinematic constraint diagram of a Mecanum wheel using a matrix transformation method; (

**d**) Location of the mobile robot in the global coordinate system and the relationship regarding position between two local coordinate systems.

**Figure 3.**Wheel configuration of the mobile robot with three Mecanum wheels whose bottom-roller axles are parallel to each other.

**Figure 4.**Wheel Configuration of the mobile robot with three Mecanum wheels whose bottom-roller axles intersect at one point.

**Figure 5.**Wheel configuration of the mobile robot with three Mecanum wheels whose roller axles intersect at two points.

**Figure 6.**Configuration of mobile robot with three Mecanum wheels whose roller axles intersect at three points.

**Figure 7.**Three-Mecanum-wheel configurations: (

**a**) centripetal circular array configuration; (

**b**) Non-centripetal circular array configuration; (

**c**) star-type circular array configuration; (

**d**) centripetal circular array configuration of orthogonal Mecanum wheels; (

**e**) T-configuration of the orthogonal Mecanum wheels; (

**f**) an orthogonal Mecanum wheel.

**Figure 8.**Four-Mecanum-wheel configurations: (

**a**)

**–**(

**j**) rectangular configurations of four wheels that are arranged at the corner and whose axles are parallel to the centerline of the robot; (

**k**)

**–**(

**n**) centripetal configurations of four Mecanum wheels; (

**o**) centripetal circular array configurations of four orthogonal Mecanum wheels.

**Figure 10.**A tandem configuration composed of two symmetrical four-Mecanum-wheel sub-configurations.

**Figure 11.**Common symmetrical rectangular wheel configurations and application examples: (

**a**) the typical four-Mecanum-wheel configuration W4; (

**b**) a 12-Mecanum-wheel configuration W12; (

**c**) a combination configuration W36 with three W12; (

**d**) a 24-Mecanum-wheel configuration W24; (

**e**) an eight-Mecanum-wheel configuration W8, the example: MC-Drive TP 200 of CLAAS; (

**f**) the combination configuration W16 with two W8, the example: the combination of two MC-Drive TP 200 [12]; (

**g**) an eight-Mecanum-wheel configuration W8, which can combine into a 16-Mecanum-wheel configuration [32]; (

**h**) a rectangular combination configuration consisting of four W6 [13]. The examples in (

**a**–

**d**,

**h**) are KUKA omniMove AGVs.

**Figure 12.**Topological design methods for wheel configurations based on a symmetrical four-Mecanum-wheel configuration: (

**a**) end-to-end connection configuration; (

**b**) side-by-side connection configuration; (

**c**) a front-back symmetric configuration; (

**d**) a front-back asymmetric configuration; (

**e**) a symmetric configuration with four coaxial wheels series; (

**f**) end-to-end combination configuration; (

**g**) rectangular combination configuration; (

**h**) side-by-side combination configuration; (

**i**) distributed combination configuration.

**Figure 13.**The examples of deducing new wheel configurations based on three basic Mecanum wheel configurations by using the topological method: (

**a**) new configurations deduced from a centripetal circular array configuration of three Mecanum wheels in Figure 7a; (

**b**) new configurations deduced from centripetal circular array configuration of four Mecanum wheels in Figure 8n; (

**c**) new configurations deduced from centripetal circular array configurations of four orthogonal Mecanum wheels in Figure 8o.

**Table 1.**Relationship between the parameters of the three Mecanum wheels in Figure 3.

Serial Number | $\left|{\mathit{\alpha}}_{\mathit{i}}\right|\in [0\xb0,360\xb0)$ | $\left|{\mathit{\beta}}_{\mathit{i}}\right|\in [0\xb0,180\xb0]$ | $\left|{\mathit{\gamma}}_{\mathit{i}}\right|\in (0\xb0,90\xb0)$ |
---|---|---|---|

1 | ${\alpha}_{1}$ | ${\beta}_{1}$ | ${\gamma}_{1}$ |

2 | ${\alpha}_{2}$ | ${\beta}_{2}$ | ${\gamma}_{2}$ |

3 | ${\alpha}_{3}$ | ${\beta}_{3}$ | ${\gamma}_{3}$ |

**Table 2.**Relationship between the parameters of the three Mecanum wheels in Figure 4.

Serial Number | $\left|{\mathit{\alpha}}_{\mathit{i}}\right|\in [0\xb0,360\xb0)$ | $\left|{\mathit{\beta}}_{\mathit{i}}\right|\in [0\xb0,180\xb0]$ | $\left|{\mathit{\gamma}}_{\mathit{i}}\right|\in (0\xb0,90\xb0)$ |
---|---|---|---|

1 | ${\alpha}_{1}$ | −${\gamma}_{1}$ | ${\gamma}_{1}$ |

2 | ${\alpha}_{2}$ | −180°−${\gamma}_{2}$ | ${\gamma}_{2}$ |

3 | ${\alpha}_{3}$ | −${\gamma}_{3}$ | ${\gamma}_{3}$ |

**Table 3.**Relationship between the parameters of the three Mecanum wheels in Figure 5.

Serial Number | $\left|{\mathit{\alpha}}_{\mathit{i}}\right|\in [0\xb0,360\xb0)$ | $\left|{\mathit{\beta}}_{\mathit{i}}\right|\in [0\xb0,180\xb0]$ | $\left|{\mathit{\gamma}}_{\mathit{i}}\right|\in (0\xb0,90\xb0)$ |
---|---|---|---|

1 | ${\alpha}_{1}$ | −${\gamma}_{1}$ | ${\gamma}_{1}$ |

2 | ${\alpha}_{2}$ | −180°−${\gamma}_{2}$ | ${\gamma}_{2}$ |

3 | ${\alpha}_{3}$ | ${\beta}_{3}$ | ${\gamma}_{3}$ |

**Table 4.**Relationship between the parameters of the three Mecanum wheels in Figure 6.

Serial Number | $\left|{\mathit{\alpha}}_{\mathit{i}}\right|\in [0\xb0,\text{}360\xb0)$ | $\left|{\mathit{\beta}}_{\mathit{i}}\right|\in [0\xb0,\text{}180\xb0]$ | $\left|{\mathit{\gamma}}_{\mathit{i}}\right|\in (0\xb0,\text{}90\xb0)$ |
---|---|---|---|

1 | ${\alpha}_{1}$ | −${\gamma}_{1}$ | ${\gamma}_{1}$ |

`2 | ${\alpha}_{2}$ | −180°−${\gamma}_{2}$ | ${\gamma}_{2}$ |

3 | ${\alpha}_{3}$ | ${\beta}_{3}$ | ${\gamma}_{3}$ |

Number of Intersection Points | Typical Configurations | Column Full Rank |
---|---|---|

0 | No | |

1 | No | |

2 | Yes | |

3 | Yes |

**Table 6.**Characteristics of the Mecanum wheel configurations in Figure 8.

Configurations in Figure 8 | a | b | c | d | e | f | g | h | i | J | k | l | m | n |

Intersections | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 |

Column rank | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 |

Column full Rank | N | Y | Y | Y | Y | N | Y | Y | Y | Y/N | N | Y | Y | Y |

Omnidirectional motion capacity | n | B | B | B | G | n | B | B | B | G/n | n | B | B | G |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Y.; Dai, S.; Zhao, L.; Yan, X.; Shi, Y.
Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot. *Symmetry* **2019**, *11*, 1268.
https://doi.org/10.3390/sym11101268

**AMA Style**

Li Y, Dai S, Zhao L, Yan X, Shi Y.
Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot. *Symmetry*. 2019; 11(10):1268.
https://doi.org/10.3390/sym11101268

**Chicago/Turabian Style**

Li, Yunwang, Sumei Dai, Lala Zhao, Xucong Yan, and Yong Shi.
2019. "Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot" *Symmetry* 11, no. 10: 1268.
https://doi.org/10.3390/sym11101268