Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea
Abstract
1. Introduction
2. Case Context
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Descriptive Statistics
4.2. Spatial Regression Results
5. Discussion
5.1. Land Use Impacts on Summer Air Temperatures
5.2. Urban Form Impacts on Summer Air Temperatures
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Land Use Type | Basic Floor Area Ratio Limit |
---|---|
Low-density residential | 1.5 |
Medium-density residential | 2.0 |
High-density residential | 4.0 |
Low-density commercial | 6.0 |
Medium- and high-density commercial | 10.0 |
Industrial | 4.0 |
Greenery | N.A. |
Road | N.A. |
References
- IPCC Summary for Policymakers. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Liu, Z.; Zhan, W.; Bechtel, B.; Voogt, J.; Lai, J.; Chakraborty, T.; Wang, Z.-H.; Li, M.; Huang, F.; Lee, X. Surface Warming in Global Cities Is Substantially More Rapid than in Rural Background Areas. Commun. Earth Environ. 2022, 3, 219. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.-N. The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea. Sustainability 2017, 9, 1443. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, J.; He, C. A Hierarchical Analysis of the Relationship between Urban Impervious Surfaces and Land Surface Temperatures: Spatial Scale Dependence, Temporal Variations, and Bioclimatic Modulation. Landsc. Ecol. 2016, 31, 1139–1153. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Messeri, A.; Orlandini, S.; Raschi, A.; Maracchi, G.; Munafò, M. The Impact of Built-up Surfaces on Land Surface Temperatures in Italian Urban Areas. Sci. Total Environ. 2016, 551–552, 317–326. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Hu, T.; Yuan, B.; Yin, P.; Jiang, D. Modeling the Intensity of Surface Urban Heat Island Based on the Impervious Surface Area. Urban Clim. 2023, 49, 101529. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal Variations in the Cooling Effect of Urban Green Areas on Surrounding Urban Areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for Cooler Cities: A Framework to Prioritise Green Infrastructure to Mitigate High Temperatures in Urban Landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Wong, N.H.; Yu, C. Study of Green Areas and Urban Heat Island in a Tropical City. Habitat. Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the Links between LULC Changes and SUHI in Cities: Insights from Two-Decadal Studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- Husain, M.A.; Kumar, P.; Gonencgil, B. Assessment of Spatio-Temporal Land Use/Cover Change and Its Effect on Land Surface Temperature in Lahaul and Spiti, India. Land 2023, 12, 1294. [Google Scholar] [CrossRef]
- Nega, W.; Balew, A. The Relationship between Land Use Land Cover and Land Surface Temperature Using Remote Sensing: Systematic Reviews of Studies Globally over the Past 5 Years. Environ. Sci. Pollut. Res. 2022, 29, 42493–42508. [Google Scholar] [CrossRef]
- Siqi, J.; Yuhong, W. Effects of Land Use and Land Cover Pattern on Urban Temperature Variations: A Case Study in Hong Kong. Urban Clim. 2020, 34, 100693. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D.; Seto, D. The Long-Term Effect of Increasing the Albedo of Urban Areas. Environ. Res. Lett. 2012, 7, 024004. [Google Scholar] [CrossRef]
- Hart, M.A.; Sailor, D.J. Quantifying the Influence of Land-Use and Surface Characteristics on Spatial Variability in the Urban Heat Island. Theor. Appl. Clim. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Jusuf, S.K.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The Influence of Land Use on the Urban Heat Island in Singapore. Habitat. Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s Urban Heat Island—Exploring the Relationship between Land Use and Surface Temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E.; An, X.; Ren, C.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of Urban Form and Design on Mid-Afternoon Microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Middel, A.; Turner, B.L. Evaluating the Effect of 3D Urban Form on Neighborhood Land Surface Temperature Using Google Street View and Geographically Weighted Regression. Landsc. Ecol. 2019, 34, 681–697. [Google Scholar] [CrossRef]
- Su, H.; Han, G.; Li, L.; Qin, H. The Impact of Macro-Scale Urban Form on Land Surface Temperature: An Empirical Study Based on Climate Zone, Urban Size and Industrial Structure in China. Sustain. Cities Soc. 2021, 74, 103217. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Development of a Micro-Scale Heat Island (MHI) Model to Assess the Thermal Environment in Urban Street Canyons. Renew. Sustain. Energy Rev. 2023, 184, 113598. [Google Scholar] [CrossRef]
- Elkhayat, K.; Hassan Abdelhafez, M.H.; Altaf, F.; Sharples, S.; Alshenaifi, M.A.; Alfraidi, S.; Aldersoni, A.; Albaqawy, G.; Ragab, A. Urban Geometry as a Climate Adaptation Strategy for Enhancing Outdoor Thermal Comfort in a Hot Desert Climate. Front. Archit. Res. 2025, 14, 525–544. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of Vegetation, Urban Density, Building Height, and Atmospheric Conditions on Local Temperatures and Thermal Comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The Effect of Tree Shade and Grass on Surface and Globe Temperatures in an Urban Area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent Challenges in Modeling of Urban Heat Island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Ngie, A.; Abutaleb, K.; Ahmed, F.; Darwish, A.; Ahmed, M. Assessment of Urban Heat Island Using Satellite Remotely Sensed Imagery: A Review. S. Afr. Geogr. J.=Suid-Afr. Geogr. Tydskr. 2014, 96, 198–214. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote Sensing Land Surface Temperature for Meteorology and Climatology: A Review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef]
- Fridley, J.D. Downscaling Climate over Complex Terrain: High Finescale (<1000 m) Spatial Variation of Near-Ground Temperatures in a Montane Forested Landscape (Great Smoky Mountains). J. Appl. Meteorol. Climatol. 2009, 48, 1033–1049. [Google Scholar] [CrossRef]
- Brugge, R. Setting Up a Weather Station and Understanding the Weather: A Guide for the Amateur Meteorologist. The Crowood Press: Marlborough, UK, 2016; ISBN 978-1-78500-162-8. [Google Scholar]
- Song, B.; Park, K. Temperature Trend Analysis Associated with Land-Cover Changes Using Time-Series Data (1980–2019) from 38 Weather Stations in South Korea. Sustain. Cities Soc. 2021, 65, 102615. [Google Scholar] [CrossRef]
- Shao, Z.; Wu, W.; Li, D. Spatio-Temporal-Spectral Observation Model for Urban Remote Sensing. Geo-Spat. Inf. Sci. 2021, 24, 372–386. [Google Scholar] [CrossRef]
- Frick, A.; Tervooren, S. A Framework for the Long-Term Monitoring of Urban Green Volume Based on Multi-Temporal and Multi-Sensoral Remote Sensing Data. J. Geovis Spat. Anal. 2019, 3, 6. [Google Scholar] [CrossRef]
- Xiong, L.; Li, S.; Zou, B.; Peng, F.; Fang, X.; Xue, Y. Long Time-Series Urban Heat Island Monitoring and Driving Factors Analysis Using Remote Sensing and Geodetector. Front. Environ. Sci. 2022, 9, 828230. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Lin, C.; Doyog, N.D. Challenges of Retrieving LULC Information in Rural-Forest Mosaic Landscapes Using Random Forest Technique. Forests 2023, 14, 816. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat Satellite Data for Assessing the Land Use and Land Cover Change in Kashmir Valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef]
- Jamal, S.; Ahmad, W.S. Assessing Land Use Land Cover Dynamics of Wetland Ecosystems Using Landsat Satellite Data. SN Appl. Sci. 2020, 2, 1891. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X. Crowdsourced Air Temperatures Contrast Satellite Measures of the Urban Heat Island and Its Mechanisms. Sci. Adv. 2021, 7, eabb9569. [Google Scholar] [CrossRef]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal Mapping of Urban Air Temperature Using Remote Sensing and Crowdsourced Weather Data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, Y.; Li, T.; Cheng, Q.; Zeng, C.; Zhang, L. Deep Learning-Based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data. Remote Sens. Environ. 2020, 240, 111692. [Google Scholar] [CrossRef]
- Widjaja, R.F.; Wu, W.; Zhou, Z.; Sun, R.; Fontenot, H.C.; Dong, B. A General Spatial-Temporal Framework for Short-Term Building Temperature Forecasting at Arbitrary Locations with Crowdsourcing Weather Data. Build. Simul. 2023, 16, 963–982. [Google Scholar] [CrossRef]
- Tariq, A.; Mumtaz, F.; Zeng, X.; Baloch, M.Y.J.; Moazzam, M.F.U. Spatio-Temporal Variation of Seasonal Heat Islands Mapping of Pakistan during 2000–2019, Using Day-Time and Night-Time Land Surface Temperatures MODIS and Meteorological Stations Data. Remote Sens. Appl. Soc. Environ. 2022, 27, 100779. [Google Scholar] [CrossRef]
- Hong, T.; Heo, Y. Exploring the Impact of Urban Factors on Land Surface Temperature and Outdoor Air Temperature: A Case Study in Seoul, Korea. Build. Environ. 2023, 243, 110645. [Google Scholar] [CrossRef]
- Kim, H.; Jung, Y.; Oh, J.I. Transformation of Urban Heat Island in the Three-Center City of Seoul, South Korea: The Role of Master Plans. Land Use Policy 2019, 86, 328–338. [Google Scholar] [CrossRef]
- Kim, J.-I.; Jun, M.-J.; Yeo, C.-H.; Kwon, K.-H.; Hyun, J.Y. The Effects of Land Use Zoning and Densification on Changes in Land Surface Temperature in Seoul. Sustainability 2019, 11, 7056. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. Monthly Global Climate Report for Annual 2022; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2023. [Google Scholar]
- Korea Meteorological Administration Regional Climate Change Projection Reports; Korea Meteorological Administration: Daejeon, Republic of Korea, 2023.
- Madhulatha, A.; Choi, S.-J.; Han, J.-Y.; Hong, S.-Y. Impact of Different Nesting Methods on the Simulation of a Severe Convective Event Over South Korea Using the Weather Research and Forecasting Model. J. Geophys. Res. Atmos. 2021, 126, e2020JD033084. [Google Scholar] [CrossRef]
- Hong, J.-W.; Hong, J.; Kwon, E.E.; Yoon, D.K. Temporal Dynamics of Urban Heat Island Correlated with the Socio-Economic Development over the Past Half-Century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef]
- Shin, Y.; Park, S.; Yun, H.; Yu, M. Urban Wind Field Mapping Technique for Municipal Environmental Planning: A Case Study of Cheongju-Si, Korea. Atmosphere 2022, 13, 1805. [Google Scholar] [CrossRef]
- Seoul Metropolitan Government The Smart Seoul Data of Things (S-DoT) 2023. Available online: https://english.seoul.go.kr/policy/smart-city/iot-communications-security/ (accessed on 5 January 2025).
- Jang, S.; Bae, J.; Kim, Y. Street-Level Urban Heat Island Mitigation: Assessing the Cooling Effect of Green Infrastructure Using Urban IoT Sensor Big Data. Sustain. Cities Soc. 2024, 100, 105007. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, S.; Kim, K.B. Impact of Urban Microclimate on Walking Volume by Street Type and Heat-Vulnerable Age Groups: Seoul’s IoT Sensor Big Data. Urban Clim. 2023, 51, 101658. [Google Scholar] [CrossRef]
- Su, J.G.; Jerrett, M.; Beckerman, B.; Wilhelm, M.; Ghosh, J.K.; Ritz, B. Predicting Traffic-Related Air Pollution in Los Angeles Using a Distance Decay Regression Selection Strategy. Environ. Res. 2009, 109, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Su, J.G.; Jerrett, M.; Beckerman, B. A Distance-Decay Variable Selection Strategy for Land Use Regression Modeling of Ambient Air Pollution Exposures. Sci. Total Environ. 2009, 407, 3890–3898. [Google Scholar] [CrossRef] [PubMed]
- Dugord, P.-A.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land Use Patterns, Temperature Distribution, and Potential Heat Stress Risk—The Case Study Berlin, Germany. Comput. Environ. Urban Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the Relationship between Land Use Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Ha, J.; Lee, S.; Park, C. Temporal Effects of Environmental Characteristics on Urban Air Temperature: The Influence of the Sky View Factor. Sustainability 2016, 8, 895. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Nan, X.; Han, Q.; Shao, F.; Bao, Z. Influence of View Factors on Intra-Urban Air Temperature and Thermal Comfort Variability in a Temperate City. Sci. Total Environ. 2022, 841, 156720. [Google Scholar] [CrossRef]
- Adelia, A.S.; Yuan, C.; Liu, L.; Shan, R.Q. Effects of Urban Morphology on Anthropogenic Heat Dispersion in Tropical High-Density Residential Areas. Energy Build. 2019, 186, 368–383. [Google Scholar] [CrossRef]
- Yuan, C.; Ng, E. Building Porosity for Better Urban Ventilation in High-Density Cities—A Computational Parametric Study. Build. Environ. 2012, 50, 176–189. [Google Scholar] [CrossRef]
- Gál, T.; Unger, J. Detection of Ventilation Paths Using High-Resolution Roughness Parameter Mapping in a Large Urban Area. Build. Environ. 2009, 44, 198–206. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Numerical Study on the Effects of Aspect Ratio and Orientation of an Urban Street Canyon on Outdoor Thermal Comfort in Hot and Dry Climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Street Canyon Design and Improvement Potential for Urban Open Spaces; the Influence of Canyon Aspect Ratio and Orientation on Microclimate and Outdoor Comfort. Sustain. Cities Soc. 2017, 33, 85–101. [Google Scholar] [CrossRef]
- Tang, R.; Blangiardo, M.; Gulliver, J. Using Building Heights and Street Configuration to Enhance Intraurban PM10, NOX, and NO2 Land Use Regression Models. Environ. Sci. Technol. 2013, 47, 11643–11650. [Google Scholar] [CrossRef] [PubMed]
- Nikparvar, B.; Thill, J.-C. Machine Learning of Spatial Data. ISPRS Int. J. Geo-Inf. 2021, 10, 600. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, J.; Cai, F.; Zhang, S.; Wang, Y.-G. A Hybrid Deep Learning Framework for Air Quality Prediction with Spatial Autocorrelation during the COVID-19 Pandemic. Sci. Rep. 2023, 13, 1015. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; ISBN 978-90-247-3735-2. [Google Scholar]
- Anselin, L.; Rey, S. Properties of Tests for Spatial Dependence in Linear Regression Models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Ngarambe, J.; Oh, J.W.; Su, M.A.; Santamouris, M.; Yun, G.Y. Influences of Wind Speed, Sky Conditions, Land Use and Land Cover Characteristics on the Magnitude of the Urban Heat Island in Seoul: An Exploratory Analysis. Sustain. Cities Soc. 2021, 71, 102953. [Google Scholar] [CrossRef]
- Giridharan, R.; Ganesan, S.; Lau, S.S.Y. Daytime Urban Heat Island Effect in High-Rise and High-Density Residential Developments in Hong Kong. Energy Build. 2004, 36, 525–534. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the Influence of Density and Morphology on the Urban Heat Island Intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Wu, W.; Li, L.; Li, C. Seasonal Variation in the Effects of Urban Environmental Factors on Land Surface Temperature in a Winter City. J. Clean. Prod. 2021, 299, 126897. [Google Scholar] [CrossRef]
- Coutts, A.M.; Beringer, J.; Tapper, N.J. Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia. J. Appl. Meteorol. Clim. 2007, 46, 477–493. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S.S.Y. Urban Form and Density as Indicators for Summertime Outdoor Ventilation Potential: A Case Study on High-Rise Housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Xin, Y.; Xu, A.; Xie, S.; Yan, Y.; Wang, L. How Are Land-Use/Land-Cover Indices and Daytime and Nighttime Land Surface Temperatures Related in Eleven Urban Centres in Different Global Climatic Zones? Land 2022, 11, 1312. [Google Scholar] [CrossRef]
- Assaf, G.; Assaad, R.H. Modeling the Impact of Land Use/Land Cover (LULC) Factors on Diurnal and Nocturnal Urban Heat Island (UHI) Intensities Using Spatial Regression Models. Urban Clim. 2024, 55, 101971. [Google Scholar] [CrossRef]
- Rao, Y.; Xu, Y.; Zhang, J.; Guo, Y.; Fu, M. Does Subclassified Industrial Land Have a Characteristic Impact on Land Surface Temperatures? Evidence for and Implications of Coal and Steel Processing Industries in a Chinese Mining City. Ecol. Indic. 2018, 89, 22–34. [Google Scholar] [CrossRef]
- Portela, C.I.; Massi, K.G.; Rodrigues, T.; Alcântara, E. Impact of Urban and Industrial Features on Land Surface Temperature: Evidences from Satellite Thermal Indices. Sustain. Cities Soc. 2020, 56, 102100. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Effect of Land Use Change on Summertime Surface Temperature, Albedo, and Evapotranspiration in Las Vegas Valley. Urban Clim. 2021, 39, 100966. [Google Scholar] [CrossRef]
- Miao, Y.; Sheng, J.; Ye, J. An Assessment of the Impact of Temperature Rise Due to Climate Change on Asphalt Pavement in China. Sustainability 2022, 14, 9044. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Hereher, M.; Robaa, S.M.; McCabe, M.F.; Lopez-Moreno, J.I.; Domínguez-Castro, F.; Gaber, I.M.; Al-Awadhi, T.; Al-Buloshi, A.; Al Nasiri, N.; et al. Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal Trends and Links to Land-Atmosphere Influences. Remote Sens. 2020, 12, 3889. [Google Scholar] [CrossRef]
- Dong, R.; Wurm, M.; Taubenböck, H. Seasonal and Diurnal Variation of Land Surface Temperature Distribution and Its Relation to Land Use/Land Cover Patterns. Int. J. Environ. Res. Public Health 2022, 19, 12738. [Google Scholar] [CrossRef]
- Hwang, B.; Sou, H.-D.; Oh, J.-H.; Park, C.-R. Cooling Effect of Urban Forests on the Urban Heat Island in Seoul, South Korea. PLoS ONE 2023, 18, e0288774. [Google Scholar] [CrossRef]
- Li, Y.; Svenning, J.-C.; Zhou, W.; Zhu, K.; Abrams, J.F.; Lenton, T.M.; Ripple, W.J.; Yu, Z.; Teng, S.N.; Dunn, R.R.; et al. Green Spaces Provide Substantial but Unequal Urban Cooling Globally. Nat. Commun. 2024, 15, 7108. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities? Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef]
- Zhang, N.; Ye, H.; Wang, M.; Li, Z.; Li, S.; Li, Y. Response Relationship between the Regional Thermal Environment and Urban Forms during Rapid Urbanization (2000–2010–2020): A Case Study of Three Urban Agglomerations in China. Remote Sens. 2022, 14, 3749. [Google Scholar] [CrossRef]
- Na, N.; Xu, D.; Fang, W.; Pu, Y.; Liu, Y.; Wang, H. Automatic Detection and Dynamic Analysis of Urban Heat Islands Based on Landsat Images. Remote Sens. 2023, 15, 4006. [Google Scholar] [CrossRef]
- Jamei, E.; Jamei, Y.; Rajagopalan, P.; Ossen, D.R.; Roushenas, S. Effect of Built-up Ratio on the Variation of Air Temperature in a Heritage City. Sustain. Cities Soc. 2015, 14, 280–292. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The Impact of Building Density and Building Height Heterogeneity on Average Urban Albedo and Street Surface Temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, W.; Yan, J.; Qian, Y.; Wang, J.; Li, W. The Higher, the Cooler? Effects of Building Height on Land Surface Temperatures in Residential Areas of Beijing. Phys. Chem. Earth Parts A/B/C 2019, 110, 149–156. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. Effects of Building Aspect Ratio and Wind Speed on Air Temperatures in Urban-like Street Canyons. Build. Environ. 2010, 45, 176–188. [Google Scholar] [CrossRef]
- Hang, J.; Chen, G. Experimental Study of Urban Microclimate on Scaled Street Canyons with Various Aspect Ratios. Urban Clim. 2022, 46, 101299. [Google Scholar] [CrossRef]
- Gao, S.; Zhan, Q.; Yang, C.; Liu, H. The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones. Int. J. Environ. Res. Public Health 2020, 17, 9578. [Google Scholar] [CrossRef]
Variable | Unit or Range | Source | |
---|---|---|---|
Dependent variables | Mean daily temperature | °C | Seoul Open Data Plaza |
Mean daytime temperature | °C | ||
Mean nighttime temperature | °C | ||
Land use variables | Low-density residential | 0–1 | National Spatial Information Portal |
Medium-density residential | 0–1 | ||
High-density residential | 0–1 | ||
Low-density commercial | 0–1 | ||
Medium- and high-density commercial | 0–1 | ||
Industrial | 0–1 | ||
Greenery | 0–1 | ||
Road | 0–1 | ||
Urban form variables | Sky view factor | 0–1 | National Spatial Information Portal |
Porosity | 0–1 | ||
Mean aspect ratio | 0 or higher | ||
Built-up area ratio | 0–1 | ||
Floor area ratio | 0 or higher | ||
Mean building height | meter | ||
Roughness | 0 or higher |
Variable | Optimal Buffer Size | Mean | Std. Dev. | Min. | Max. | VIF |
---|---|---|---|---|---|---|
Dependent variable | ||||||
Mean daily temperature (°C) | - | 28.524 | 0.811 | 24.537 | 30.617 | - |
Land use variables | ||||||
Low-density residential | 500 m | 0.128 | 0.154 | 0.000 | 0.843 | 2.007 |
Medium-density residential | 50 m | 0.425 | 0.395 | 0.000 | 1.000 | 2.516 |
High-density residential | 200 m | 0.278 | 0.251 | 0.000 | 1.000 | 2.436 |
Low-density commercial | 200 m | 0.072 | 0.192 | 0.000 | 1.000 | 2.038 |
Medium- and high-density commercial | 50 m | 0.004 | 0.057 | 0.000 | 1.000 | 1.035 |
Industrial | 50 m | 0.049 | 0.210 | 0.000 | 1.000 | 1.890 |
Greenery | 500 m | 0.126 | 0.200 | 0.000 | 1.000 | 2.939 |
Road | 500 m | 0.198 | 0.065 | 0.000 | 0.400 | 2.274 |
Urban form variables | ||||||
Sky view factor | - | 0.667 | 0.167 | 0.176 | 1.000 | 2.110 |
Porosity | - | 0.850 | 0.074 | 0.182 | 1.000 | 2.142 |
Mean aspect ratio | 100 m | 1.378 | 0.723 | 0.000 | 12.436 | 1.347 |
Built-up area ratio | 200 m | 0.285 | 0.121 | 0.000 | 1.000 | 2.441 |
Floor area ratio | 50 m | 3.879 | 2.848 | 0.000 | 37.915 | 2.003 |
Mean building height | 100 m | 9.242 | 3.024 | 0.000 | 33.857 | 2.593 |
Roughness | 100 m | 7.249 | 4.426 | 0.000 | 32.249 | 2.631 |
Variable | Optimal Buffer Size | Mean | Std. Dev. | Min. | Max. | VIF |
---|---|---|---|---|---|---|
Dependent variable | ||||||
Mean daytime temperature (°C) | - | 30.430 | 0.980 | 20.202 | 32.874 | - |
Land use variables | ||||||
Low-density residential | 50 m | 0.115 | 0.248 | 0.000 | 1.000 | 2.013 |
Medium-density residential | 50 m | 0.425 | 0.395 | 0.000 | 1.000 | 3.385 |
High-density residential | 200 m | 0.278 | 0.251 | 0.000 | 1.000 | 2.905 |
Low-density commercial | 100 m | 0.071 | 0.212 | 0.000 | 1.000 | 2.230 |
Medium- and high-density commercial | 100 m | 0.005 | 0.056 | 0.000 | 1.000 | 1.045 |
Industrial | 50 m | 0.049 | 0.205 | 0.000 | 1.000 | 2.039 |
Greenery | 500 m | 0.126 | 0.200 | 0.000 | 1.000 | 2.571 |
Road | 500 m | 0.198 | 0.065 | 0.000 | 0.400 | 1.958 |
Urban form variables | ||||||
Sky view factor | - | 0.667 | 0.167 | 0.176 | 1.000 | 2.049 |
Porosity | - | 0.850 | 0.074 | 0.182 | 1.000 | 2.582 |
Mean aspect ratio | 100 m | 1.378 | 0.723 | 0.000 | 4.904 | 1.251 |
Built-up area ratio | 50 m | 0.301 | 0.154 | 0.000 | 0.658 | 3.073 |
Floor area ratio | 500 m | 3.790 | 1.670 | 0.001 | 11.854 | 2.745 |
Mean building height | 400 m | 10.146 | 3.898 | 3.000 | 36.454 | 1.770 |
Roughness | 50 m | 7.079 | 6.691 | 0.000 | 66.000 | 1.463 |
Variable | Optimal Buffer Size | Mean | Std. Dev. | Min. | Max. | VIF |
---|---|---|---|---|---|---|
Dependent variable | ||||||
Mean nighttime temperature (°C) | - | 27.314 | 1.033 | 18.150 | 29.334 | - |
Land use variables | ||||||
Low-density residential | 500 m | 0.128 | 0.154 | 0.000 | 0.843 | 1.967 |
Medium-density residential | 50 m | 0.425 | 0.395 | 0.000 | 1.000 | 3.204 |
High-density residential | 100 m | 0.276 | 0.306 | 0.000 | 1.000 | 2.754 |
Low-density commercial | 200 m | 0.072 | 0.192 | 0.000 | 1.000 | 2.167 |
Medium- and high-density commercial | 50 m | 0.004 | 0.057 | 0.000 | 1.000 | 1.065 |
Industrial | 50 m | 0.049 | 0.210 | 0.000 | 1.000 | 1.998 |
Greenery | 500 m | 0.126 | 0.200 | 0.000 | 1.000 | 2.673 |
Road | 500 m | 0.198 | 0.065 | 0.000 | 0.400 | 2.235 |
Urban form variables | ||||||
Sky view factor | - | 0.667 | 0.167 | 0.176 | 1.000 | 2.113 |
Porosity | - | 0.850 | 0.074 | 0.182 | 1.000 | 2.218 |
Mean aspect ratio | 500 m | 1.579 | 0.467 | 0.161 | 3.538 | 1.317 |
Built-up area ratio | 100 m | 0.307 | 0.146 | 0.000 | 0.598 | 2.081 |
Floor area ratio | 50 m | 2.894 | 1.709 | 0.000 | 13.292 | 2.008 |
Mean building height | 100 m | 9.242 | 3.024 | 0.000 | 33.857 | 2.566 |
Roughness | 100 m | 7.249 | 4.426 | 0.000 | 32.249 | 2.620 |
Variable | OLS | SLM | SEM | RSLM |
---|---|---|---|---|
Land use variables | ||||
Low-density residential (500 m) | −0.512 *** | −0.319 ** | −0.491 ** | −0.300 * |
Medium-density residential (50 m) | 0.410 *** | 0.430 *** | 0.398 *** | 0.460 *** |
High-density residential (200 m) | 0.504 *** | 0.543 *** | 0.533 *** | 0.560 *** |
Low-density commercial (200 m) | 0.035 | 0.113 | 0.051 | 0.154 |
Medium- and high-density commercial (50 m) | 0.513 | 0.546 | 0.479 | 0.429 |
Industrial (50 m) | 0.495 *** | 0.466 *** | 0.390 *** | 0.491 *** |
Greenery (500 m) | −0.767 *** | −0.427 *** | −0.673 *** | −0.361 * |
Road (500 m) | 1.613 *** | 1.073 * | 1.005 * | 1.104 ** |
Urban form variables | ||||
Sky view factor | −0.308 * | −0.307 * | −0.276 * | −0.020 |
Porosity | −0.828 ** | −0.940 *** | −1.140 *** | −0.634 ** |
Mean aspect ratio (100 m) | −0.179 *** | −0.144 ** | −0.127 ** | −0.007 |
Built-up area ratio (200 m) | 1.593 *** | 1.386 *** | 1.518 *** | 1.273 *** |
Floor area ratio (50 m) | −0.031 *** | −0.033 *** | −0.032 *** | −0.029 * |
Mean building height (100 m) | −0.041 *** | 0.014 * | 0.012 * | −0.026 *** |
Roughness (100 m) | 0.015 ** | −0.029 ** | −0.023 ** | 0.013 ** |
Spatial coefficients | ||||
Spatial lag (ρ) | 0.365 *** | 0.438 *** | ||
Spatial error (λ) | 0.420 *** | |||
Model metrics | ||||
Lagrange Multiplier (lag) | 128.673 *** | |||
Robust Lagrange Multiplier (lag) | 26.836 *** | |||
Lagrange Multiplier (error) | 102.389 *** | |||
Robust Lagrange Multiplier (error) | 0.552 | |||
R2 | 0.378 | 0.455 | 0.455 | 0.385 |
Log likelihood | −1026.23 | −977.084 | −981.905 | |
Akaike information criterion | 2084.46 | 1998.17 | 1995.81 | |
Schwarz criterion | 2163.97 | 2072.64 | 2075.31 | |
Breusch–Pagan | 157.672 *** | 163.874 ** | 170.319 *** |
Variable | OLS | SLM | SEM | RSLM |
---|---|---|---|---|
Land use variables | ||||
Low-density residential (50 m) | 0.208 | 0.242 | 0.229 | 0.239 |
Medium-density residential (50 m) | 0.496 *** | 0.518 *** | 0.506 *** | 0.517 *** |
High-density residential (200 m) | 0.469 *** | 0.526 *** | 0.570 *** | 0.522 *** |
Low-density commercial (200 m) | −0.417 ** | −0.31 * | −0.357 * | −0.318 * |
Medium- and high-density commercial (50 m) | 0.444 | 0.466 | 0.453 | 0.464 |
Industrial (50 m) | 0.383 *** | 0.401 ** | 0.376 * | 0.399 ** |
Greenery (500 m) | 0.196 | 0.271 | 0.075 | 0.266 |
Road (500 m) | 2.381 *** | 1.927 *** | 2.038 *** | 1.961 *** |
Urban form variables | ||||
Sky view factor | 0.516 * | 0.524 * | 0.552 ** | 0.524 * |
Porosity | 0.794 | 0.702 | 0.606 | 0.709 |
Mean aspect ratio (100 m) | 0.063 | 0.056 | 0.068 | 0.056 |
Built-up area ratio (50 m) | 2.066 *** | 1.961 *** | 1.977 *** | 1.969 *** |
Floor area ratio (500 m) | 0.052 * | 0.047 * | 0.040 | 0.048 * |
Mean building height (400 m) | −0.022 ** | −0.016 * | −0.019 ** | −0.016 * |
Roughness (50 m) | −0.007 | −0.009 * | −0.009 ** | −0.009 * |
Spatial coefficients | ||||
Spatial lag (ρ) | 0.263 *** | 0.244 *** | ||
Spatial error (λ) | 0.292 *** | |||
Model metrics | ||||
Lagrange Multiplier (lag) | 40.436 *** | |||
Robust Lagrange Multiplier (lag) | 1.891 | |||
Lagrange Multiplier (error) | 39.739 *** | |||
Robust Lagrange Multiplier (error) | 1.194 | |||
R2 | 0.223 | 0.258 | 0.261 | 0.223 |
Log likelihood | −1353.18 | −1335.35 | −1334.87 | |
Akaike information criterion | 2738.37 | 2704.69 | 2701.74 | |
Schwarz criterion | 2817.87 | 2789.16 | 2781.25 | |
Breusch–Pagan | 534.275 *** | 451.501 *** | 477.104 *** |
Variable | OLS | SLM | SEM | RSLM |
---|---|---|---|---|
Land use variables | ||||
Low-density residential (500 m) | −0.446 * | −0.257 | −0.607 ** | −0.233 |
Medium-density residential (50 m) | 0.627 *** | 0.617 *** | 0.550 *** | 0.616 *** |
High-density residential (100 m) | 0.705 *** | 0.686 *** | 0.623 *** | 0.684 *** |
Low-density commercial (200 m) | 0.057 | 0.133 | 0.018 | 0.142 |
Medium- and high-density commercial (50 m) | 0.681 | 0.746 | 0.602 | 0.754 * |
Industrial (50 m) | 0.759 *** | 0.630 *** | 0.483 *** | 0.613 *** |
Greenery (500 m) | −0.862 *** | −0.419 ** | −0.833 *** | −0.364 * |
Road (500 m) | 2.824 *** | 1.719 *** | 1.651 ** | 1.579 *** |
Urban form variables | ||||
Sky view factor | −0.450 ** | −0.440 ** | −0.393 * | −0.439 ** |
Porosity | −0.031 | −0.156 | −0.395 | −0.171 |
Mean aspect ratio (500 m) | −0.178 *** | −0.142 ** | −0.120 | −0.138 ** |
Built-up area ratio (100 m) | 1.590 *** | 1.452 *** | 1.519 *** | 1.434 *** |
Floor area ratio (50 m) | −0.015 | −0.020 * | −0.020 * | −0.021 * |
Mean building height (100 m) | −0.055 *** | −0.037 *** | −0.032 ** | −0.035 *** |
Roughness (100 m) | 0.019 ** | 0.016 * | 0.013 | 0.015 * |
Spatial coefficients | ||||
Spatial lag (ρ) | 0.445 *** | 0.502 *** | ||
Spatial error (λ) | 0.492 *** | |||
Model metrics | ||||
Lagrange Multiplier (lag) | 200.598 *** | |||
Robust Lagrange Multiplier (lag) | 42.038 *** | |||
Lagrange Multiplier (error) | 159.201 *** | |||
Robust Lagrange Multiplier (error) | 0.641 | |||
R2 | 0.377 | 0.481 | 0.476 | 0.403 |
Log likelihood | −1291.76 | −1215.05 | −1225.38 | |
Akaike information criterion | 2615.51 | 2464.10 | 2482.75 | |
Schwarz criterion | 2695.01 | 2548.57 | 2562.25 | |
Breusch–Pagan | 397.750 *** | 357.696 *** | 373.119 *** |
Independent Variable | Dependent Variable | ||
---|---|---|---|
Mean Daily Temperature | Mean Daytime Temperature | Mean Nighttime Temperature | |
Land use variables | |||
Low-density residential | −0.300 *** | ||
Medium-density residential | +0.460 *** | +0.517 *** | +0.616 *** |
High-density residential | +0.560 *** | +0.522 *** | +0.684 *** |
Low-density commercial | −0.318 * | ||
Medium- and high-density commercial | +0.754 * | ||
Industrial | +0.491 *** | +0.399 ** | +0.613 *** |
Greenery | −0.361 * | −0.364 * | |
Road | +1.104 ** | +1.961 *** | +1.579 *** |
Urban form variables | |||
Sky view factor | +0.524 * | −0.439 ** | |
Porosity | −0.634 ** | ||
Mean aspect ratio | −0.138 ** | ||
Built-up area ratio | +1.273 *** | +1.969 *** | +1.434 *** |
Floor area ratio | −0.029 * | +0.048 * | −0.021 * |
Mean building height | −0.026 *** | −0.016 * | −0.035 *** |
Roughness | +0.013 ** | −0.009 * | +0.015 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Won, J.; Kim, H. Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea. Land 2025, 14, 1628. https://doi.org/10.3390/land14081628
Kim M, Won J, Kim H. Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea. Land. 2025; 14(8):1628. https://doi.org/10.3390/land14081628
Chicago/Turabian StyleKim, Minsun, Jongho Won, and Hyungkyoo Kim. 2025. "Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea" Land 14, no. 8: 1628. https://doi.org/10.3390/land14081628
APA StyleKim, M., Won, J., & Kim, H. (2025). Assessing Land Use and Urban Form Effects on Summer Air Temperatures Using a City-Wide Environmental Sensor Network in Seoul, South Korea. Land, 14(8), 1628. https://doi.org/10.3390/land14081628