Drought Vulnerability in South America
Abstract
1. Introduction
- In the summer and fall of 2001, Brazil experienced widespread droughts, which limited the country’s hydropower production to the degree that the national government-imposed energy conservation measures [7].
- In the southern hemisphere summer of 2008/2009 (December–February), an extreme drought caused hydropower production to drop to 20% in Uruguay, a country that relies on hydropower for 80% of its national energy supply. The same drought reduced grain production by 39% in Argentina and killed 1.5 million of the country’s livestock [6].
- The Chilean megadrought started in 2010 and is the worst drought on the continent in 1000 years [8,9]. Precipitation deficit estimates range from 20–40% to 25–70% [10] and in combination with heightened temperatures, water reservoirs have dried out [9,11], leaving over half a million people relying on water truck deliveries in central Chile in 2020 [10,12]. The drought has also led to extensive agricultural losses, including the loss of tens of thousands of farm animals, and in August 2019 an agricultural emergency was declared for 50 municipalities by the Chilean Ministry of Agriculture [9]. While the drought was triggered by a decrease in precipitation, studies have indicated that the drought severity and societal impacts were further exacerbated by poor water management [10,13].
- In 2005, a drought in the Amazon caused the first ever recorded negative annual carbon balance for the rainforest as wildfires triggered by the drought released massive amounts of carbon into the atmosphere [14]. In 2010, a stronger, more destructive drought hit the Amazon, causing the second-ever negative annual carbon balance [14].
- In northeastern Brazil, extreme droughts were recorded in 2012 and 2016, which both surpassed the severity of the 2005 and 2010 droughts and caused shortages of drinking and irrigation water and hydroelectric energy for the region [14].
- The Amazon River Basin faced severe drought conditions in 2023–2024, facing the most severe conditions since monitoring started in 1954 [15]. In January 2025, the region, which entered rainy season in December, is experiencing below average rainfall; however, with La Niña conditions persisting from February to April and typically bringing above-average rainfall, recovery from drought conditions is a possibility [15].
2. Methods
2.1. Indicators
2.2. Exposure Indicators
2.3. Sensitivity Indicators
2.4. Adaptive Capacity Indicators
3. Results
3.1. Exposure
3.2. Sensitivity
3.3. Adaptive Capacity
3.4. Total Vulnerability
4. Discussion
4.1. Findings
4.2. Limitations
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Hayes, M.J.; Widhalm, M. Measuring economic impacts of drought: A review and discussion. Disaster Prev. Manag. Int. J. 2011, 20, 434–446. [Google Scholar] [CrossRef]
- Edwards, B.; Gray, M.; Hunter, B. The social and economic impacts of drought. Aust. J. Soc. Issues 2019, 54, 22–31. [Google Scholar] [CrossRef]
- Freire-González, J.; Decker, C.; Hall, J.W. The Economic Impacts of Droughts: A Framework for Analysis. Ecol. Econ. 2017, 132, 196–204. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2012); WMO: Geneva, Switzerland, 2014. [Google Scholar]
- Wittmann, F.; Householder, E.; Wittmann, A.d.O.; Lopes, A.; Junk, W.J.; Piedade, M.T. Implementation of the Ramsar Convention on South American Wetlands: An Update. Res. Rep. Biodivers. Stud. 2015, 4, 47–58. Available online: https://www.tandfonline.com/doi/abs/10.2147/RRBS.S64502 (accessed on 4 July 2025). [CrossRef]
- van Garderen, L.; Mindlin, J. A storyline attribution of the 2011/2012 drought in Southeastern South America. Weather 2022, 77, 212–218. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A.; Kousky, V.E. Drought in Brazil During Summer and Fall 2001 and Associated Atmospheric Circulation Features. Rev. Climanálise 2001, 2, 1–10. [Google Scholar]
- United Nations Framework Convention on Climate Change. New Report Details Dire Climate Impacts in Latin America and the Caribbean|UNFCCC. Available online: https://unfccc.int/news/new-report-details-dire-climate-impacts-in-latin-america-and-the-caribbean (accessed on 4 July 2025).
- NASA. A Strained Water System in Chile. Available online: https://earthobservatory.nasa.gov/images/146577/a-strained-water-system-in-chile (accessed on 4 July 2025).
- Garreaud, R.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.; Veloso, D. The Central Chile Mega Drought (2010–2018): A Climate dynamics perspective. Int. J. Climatol. 2019, 40, 421–439. [Google Scholar] [CrossRef]
- Álamos, N.; Alvarez-Garreton, C.; Muñoz, A.; González-Reyes, Á. The influence of human activities on streamflow reductions during the megadrought in central Chile. Hydrol. Earth Syst. Sci. 2024, 28, 2483–2503. [Google Scholar] [CrossRef]
- Barría, P.; Chadwick, C.; Ocampo-Melgar, A.; Galleguillos, M.; Garreaud, R.; Díaz-Vasconcellos, R.; Poblete, D.; Rubio-Álvarez, E.; Poblete-Caballero, D. Water management or megadrought: What caused the Chilean Aculeo Lake drying? Reg. Environ. Chang. 2021, 21, 19. [Google Scholar] [CrossRef]
- Muñoz, A.A.; Klock-Barría, K.; Alvarez-Garreton, C.; Aguilera-Betti, I.; González-Reyes, Á.; Lastra, J.A.; Chávez, R.O.; Barría, P.; Christie, D.; Rojas-Badilla, M.; et al. Water Crisis in Petorca Basin, Chile: The Combined Effects of a Mega-Drought and Water Management. Water 2020, 12, 648. [Google Scholar] [CrossRef]
- Erfanian, A.; Wang, G.; Fomenko, L. Unprecedented drought over tropical South America in 2016: Significantly under-predicted by tropical SST. Sci. Rep. 2017, 7, 5811. [Google Scholar] [CrossRef]
- ACAPS Thematic Report—Brazil: Impact of Drought in the Brazilian Amazon and 2025 Outlook (28 January 2025)—Brazil|ReliefWeb. Available online: https://reliefweb.int/report/brazil/acaps-thematic-report-brazil-impact-drought-brazilian-amazon-and-2025-outlook-28-january-2025 (accessed on 3 July 2025).
- Valdes, C. Brazil’s Momentum as a Global Agricultural Supplier Faces Headwinds. Amber Waves Econ. Food Farming Nat. Resour. Rural. Am. 2022. [Google Scholar] [CrossRef]
- World Bank Open Data. Available online: https://data.worldbank.org (accessed on 4 July 2025).
- International Federation of Red Cross and Red Crescent, Disaster Relief Emergency Fund (DREF) Paraguay: Drought. Inter-national Federation of Red Cross and Red Crescent. 2012. Available online: https://reliefweb.int/node/536308 (accessed on 1 July 2025).
- Uvo, C.B.; Repelli, C.A.; Zebiak, S.E.; Kushnir, Y. The Relationships Between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation. 1998. Available online: https://journals.ametsoc.org/view/journals/clim/11/4/1520-0442_1998_011_0551_trbtpa_2.0.co_2.xml (accessed on 4 July 2025).
- Penalba, O.C.; Rivera, J.A. Precipitation response to El Niño/La Niña events in Southern South America—Emphasis in regional drought occurrences. Adv. Geosci. 2016, 42, 1–14. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Grimm, A.M.; Cavalcanti, I.F.A. Influence of Central and East ENSO on precipitation and its extreme events in South America during austral autumn and winter. Int. J. Climatol. 2016, 36, 4797–4814. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Steiger, N.J.; Smerdon, J.E.; Seager, R.; Williams, A.P.; Varuolo-Clarke, A.M. ENSO-driven coupled megadroughts in North and South America over the last millennium. Nat. Geosci. 2021, 14, 739–744. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A. Large scale and synoptic features associated with extreme precipitation over South America: A review and case studies for the first decade of the 21st century. Atmos. Res. 2012, 118, 27–40. [Google Scholar] [CrossRef]
- Kayano, M.T.; Capistrano, V.B. How the Atlantic Multidecadal Oscillation (AMO) Modifies the ENSO Influence on the South American Rainfall.|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.1002%2Fjoc.3674?sid=ebsco:plink:crawler&id=ebsco:doi:10.1002%2Fjoc.3674 (accessed on 3 July 2025).
- Mamani, L.; Andreoli, R.V.; de Souza, I.P.; Cevalho, W.; Sales, D.; Kayano, M.T.; de Souza, R.A.F.; Molina-Carpio, J.; Ceron, W.L.; Macedo, T. Extreme droughts in the Amazon Basin during cyclic ENSO events coupled with Indian Ocean Dipole modes and Tropical North Atlantic warming. Sci. Total Environ. 2025, 963, 178536. [Google Scholar] [CrossRef]
- Engström, J.; Abbaszadeh, P.; Keellings, D.; Deb, P.; Moradkhani, H. Wildfires in the Arctic and tropical biomes: What is the relative role of climate? Nat. Hazards 2022, 114, 1901–1914. [Google Scholar] [CrossRef]
- Rivera, J.A.; Arias, P.A.; Sörensson, A.A.; Zachariah, M.; Barnes, C.; Philip, S.; Kew, S.; Vautard, R.; Koren, G.; Pinto, I.; et al. 2022 early-summer heatwave in Southern South America: 60 times more likely due to climate change. Clim. Chang. 2023, 176, 102. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point. Sci. Adv. 2018, 4, eaat2340. [Google Scholar] [CrossRef]
- Walker, R.T. Collision Course: Development Pushes Amazonia Toward Its Tipping Point. Environ. Sci. Policy Sustain. Dev. 2020, 63, 15–25. [Google Scholar] [CrossRef]
- Serkendiz, H.; Tatli, H.; Özcan, H.; Çetin, M.; Sungur, A. Multidimensional assessment of agricultural drought vulnerability based on socioeconomic and biophysical indicators. Int. J. Disaster Risk Reduct. 2023, 98, 104121. [Google Scholar] [CrossRef]
- Savari, M.; Eskandari Damaneh, H.; Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 2022, 67, 102654. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Wilhite, D.A. Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Swain, S.; Mishra, S.K.; Pandey, A.; Kalura, P. Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada River Basin, India: A geospatial approach. Appl. Water Sci. 2022, 12, 14. [Google Scholar] [CrossRef]
- Blauhut, V.; Stahl, K.; Stagge, J.H.; Tallaksen, L.M.; De Stefano, L.; Vogt, J. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 2016, 20, 2779–2800. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 2015, 10, 014008. [Google Scholar] [CrossRef]
- Ercin, E.; Veldkamp, T.I.E.; Hunink, J. Cross-border climate vulnerabilities of the European Union to drought. Nat. Commun. 2021, 12, 3322. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H. Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci. Total Environ. 2018, 644, 520–535. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Castelletti, A.; Magliocca, N. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Sci. Total Environ. 2019, 662, 672–686. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef]
- Cutter, S.L. The Vulnerability of Science and the Science of Vulnerability. Ann. Assoc. Am. Geogr. 2003, 93, 1–12. [Google Scholar] [CrossRef]
- Cutter, S.L. Vulnerability to environmental hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Cardona, O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T.; Décamps, H.; et al. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar] [CrossRef]
- González Tánago, I.; Urquijo, J.; Blauhut, V.; Villarroya, F.; De Stefano, L. Learning from experience: A systematic review of assessments of vulnerability to drought. Nat. Hazards 2016, 80, 951–973. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ishtiaque, A.; Parajuli, J.; Athukorala, D.; Rabby, Y.W.; Ooba, M. Has the IPCC’s revised vulnerability concept been well adopted? Ambio 2023, 52, 376–389. [Google Scholar] [CrossRef]
- Singh, N.P.; Bantilan, C.; Byjesh, K. Vulnerability and policy relevance to drought in the semi-arid tropics of Asia—A retrospective analysis. Weather. Clim. Extrem. 2014, 3, 54–61. [Google Scholar] [CrossRef]
- Weis, S.W.M.; Agostini, V.N.; Roth, L.M.; Gilmer, B.; Schill, S.R.; Knowles, J.E.; Blyther, R. Assessing vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure. Clim. Chang. 2016, 136, 615–629. [Google Scholar] [CrossRef]
- Engström, J.; Jafarzadegan, K.; Moradkhani, H. Drought Vulnerability in the United States: An Integrated Assessment. Water 2020, 12, 2033. [Google Scholar] [CrossRef]
- Balbus, J.; Crimmins, A.; Gamble, J.L.; Easterling, D.R.; Kunkel, K.E.; Saha, S.; Sarofim, M.C. Chapter 1: Climate Change and Human Health|Climate and Health Assessment. U.S. Global Change Research Program. Available online: https://web.archive.org/web/20250628112054/https://health2016.globalchange.gov/climate-change-and-human-health (accessed on 3 July 2025).
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Cutter, S.L. The origin and diffusion of the social vulnerability index (SoVI). Int. J. Disaster Risk Reduct. 2024, 109, 104576. [Google Scholar] [CrossRef]
- Cutter, S.L.; Emrich, C.T. Social Vulnerability Index (SoVI®): Methodology and Limitations; Hazards and Vulnerability Research Institute: Columbia, SC, USA, 2017; Available online: https://www.vulnerabilitymap.org/Portals/0/Files/Social%20Vulnerability%20Index%20SoVI%20-%20Methodology%20and%20Limitations.pdf?ver=Dtf6UG34OrlIsrehg3sjLQ%3D%3D (accessed on 1 July 2025).
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster Resilience Indicators for Benchmarking Baseline Conditions. J. Homel. Secur. Emerg. Manag. 2010, 7, 1–22. [Google Scholar] [CrossRef]
- AQUASTAT—FAO’s Global Information System on Water and Agriculture. Available online: https://www.fao.org/aquastat/en/ (accessed on 3 July 2025).
- Carrão, H.; Naumann, G.; Barbosa, P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob. Environ. Chang. 2016, 39, 108–124. [Google Scholar] [CrossRef]
- Madadgar, S.; AghaKouchak, A.; Farahmand, A.; Davis, S.J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 2017, 44, 7799–7807. [Google Scholar] [CrossRef]
- Sluyter, A. Cattle in Latin American History. Oxf. Res. Encycl. Lat. Am. Hist. 2023. [Google Scholar] [CrossRef]
- Klein, H.S.; Luna, F.V. Cattle. In Brazilian Crops in the Global Market: The Emergence of Brazil as a World Agribusiness Exporter Since 1950; Springer Nature: Cham, Switzerland, 2023; pp. 295–323. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; García-Ruiz, J.M.; Portela, M.M.; Almeida, A.B. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- United Nations. Human Development Index. Available online: https://hdr.undp.org/data-center/human-development-index (accessed on 4 July 2025).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Elkouk, A.; Pokhrel, Y.; Satoh, Y.; Bouchaou, L. Implications of changes in climate and human development on 21st-century global drought risk. J. Environ. Manag. 2022, 317, 115378. [Google Scholar] [CrossRef]
- Mullin, M. The effects of drinking water service fragmentation on drought-related water security. Science 2020, 368, 274–277. [Google Scholar] [CrossRef]
- International Energy Agency. Electricity Supply Mix by Region, 2020—Charts—Data & Statistics. IEA. Available online: https://www.iea.org/data-and-statistics/charts/electricity-supply-mix-by-region-2020 (accessed on 6 July 2025).
- Wiatros-Motyka, M.; Fulghum, N.; Jones, D. Global Electricity Review 2024. May 2024. Available online: https://policycommons.net/artifacts/12310492/untitled/13206852/ (accessed on 3 July 2025).
- Naylor, R.L.; Kishore, A.; Sumaila, U.R.; Issifu, I.; Hunter, B.P.; Belton, B.; Bush, S.R.; Cao, L.; Gelcich, S.; Gephart, J.A.; et al. Blue food demand across geographic and temporal scales. Nat. Commun. 2021, 12, 5413. [Google Scholar] [CrossRef] [PubMed]
- Matthews, W.J.; Marsh-Matthews, E. Effects of drought on fish across axes of space, time and ecological complexity. Freshw. Biol. 2003, 48, 1232–1253. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas-Rodriguez, S.G.; Hamdani, J.; Abushaban, A.; Sawalha, H.; Schippers, J.C.; Kennedy, M.D. Is Desalination a Solution to Freshwater Scarcity in Developing Countries? Membranes 2022, 12, 381. [Google Scholar] [CrossRef]
- Morote, Á.-F.; Olcina, J.; Hernández, M. The Use of Non-Conventional Water Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions: South-Eastern Spain. Water 2019, 11, 93. [Google Scholar] [CrossRef]
- United Nations Convention to Combat Desertification. Drought planning. UNCCD. Available online: https://www.unccd.int/land-and-life/drought/drought-planning (accessed on 7 July 2025).
- De Smith, M.J.; Goodchild, M.; Longley, P.A. Univariate classification schemes. In Geospatial Analysis—A Comprehensive Guide, 6th ed.; Troubador Publishing Ltd.: Leicester, UK, 2007; Available online: https://www.spatialanalysisonline.com/extractv6.pdf (accessed on 1 July 2025).
- Hedayat, H.; Seyed Kaboli, H. Drought risk assessment: The importance of vulnerability factors interdependencies in regional drought risk management. Int. J. Disaster Risk Reduct. 2024, 100, 104152. [Google Scholar] [CrossRef]
- Rahman, G.; Jung, M.-K.; Kim, T.-W.; Kwon, H.-H. Drought impact, vulnerability, risk assessment, management and mitigation under climate change: A comprehensive review. KSCE J. Civ. Eng. 2025, 29, 100120. [Google Scholar] [CrossRef]
Ranking | Exposure | Sensitivity | Adaptive Capacity | Total Vulnerability |
---|---|---|---|---|
1 | Ecuador | Paraguay | Bolivia | Ecuador |
2 | Argentina | Ecuador | Uruguay | Colombia |
3 | Uruguay | Colombia | Paraguay | Uruguay |
4 | Chile | Bolivia | Suriname | Paraguay |
5 | Venezuela | Peru | Colombia | Argentina |
6 | Colombia | Venezuela | Argentina | Bolivia |
7 | Peru | Brazil | Guyana | Venezuela |
8 | Brazil | Guyana | Ecuador | Peru |
9 | Paraguay | Uruguay | Brazil | Brazil |
10 | Bolivia | Suriname | Chile | Chile |
11 | Suriname | Argentina | Venezuela | Suriname |
12 | Guyana | Chile | Peru | Guyana |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silverman, E.; Engström, J. Drought Vulnerability in South America. Water 2025, 17, 2332. https://doi.org/10.3390/w17152332
Silverman E, Engström J. Drought Vulnerability in South America. Water. 2025; 17(15):2332. https://doi.org/10.3390/w17152332
Chicago/Turabian StyleSilverman, Emma, and Johanna Engström. 2025. "Drought Vulnerability in South America" Water 17, no. 15: 2332. https://doi.org/10.3390/w17152332
APA StyleSilverman, E., & Engström, J. (2025). Drought Vulnerability in South America. Water, 17(15), 2332. https://doi.org/10.3390/w17152332