Atmospheric and Ionospheric Effects of La Palma Volcano 2021 Eruption
Abstract
:1. Introduction
1.1. Introduction and Motivation of the Work
1.2. Brief Overview of Previous Studies about La Palma Volcano Eruption 2021
1.3. Lithosphere Atmosphere and Ionosphere Coupling Associated with Natural Hazards
- A pure electromagnetic channel. In this case, electromagnetic (EM) waves are supposed to be generated by the separation of electrical charges due to microfracturing at fault level. Such EM waves can be potentially detected at ground level and ionosphere [6,26]. Another more recent explanation of seismo-electromagnetic phenomena relies on the generation of positive charges (p-holes) due to the stress increase, which is supposed to break peroxy links in the rocks [7,27]. Accumulation of p-holes at the Earth’s surface may induce ionospheric perturbations (such as plasma bubbles) as a consequence of the alteration of atmospheric and ionospheric electrical circuits as simulated by Kuo et al. [28].
- A mix of chemical and physical processes. This mechanism involves more observable and has been proposed by Pulinets and Ouzounov [8]. The key phenomenon is the air ionisation induced by radon release. Similar action may also be induced by p-holes instead of radon. The consequences of the air ionisation would be an increase in temperature at the Earth surface associated with a drop in humidity (for hydration of ionised particles in the air), formation of clouds, thermal emission (detected as Outgoing Longwave radiation) and electromagnetic alteration of the atmospheric and ionospheric global circuit [29,30].
- Acoustic gravity waves. Such mechanism has been demonstrated to occur during a volcano eruption [31] and earthquake occurrence [32], but it is debated if it could happen before an eruption or earthquake. The source mechanism is the explosion of the volcano that generates mechanical pressure waves in the atmosphere or seismic shaking of the ground. Such waves propagated vertically combined in the gravity field and so they combined an acoustic and gravity wave [33].
- The existence of these LAIC phenomena, especially before the earthquake, is debated, and certain researchers propose that the empirical evidence are by chance before the specific events [34]. Despite this, a lot of recent studies identify not only empirical evidence before volcano eruptions [23,35,36,37,38] and earthquakes [39,40,41,42,43,44,45,46,47,48] but also statistical evidence [49,50,51,52,53].
2. Materials and Methods
2.1. Vertical Temperature Profiles to Search for Acoustic Gravity Waves
2.2. Atmospheric Time Series
2.3. Swarm Ionospheric Magnetic Data Processing
3. Results
3.1. Results of the Lithosphere
3.2. Results of Atmosphere
3.2.1. Research of Possible Acoustic Gravity Wave Signature in Vertical Temperature Profiles and Comparison with Aerosol Maps on the Same Days
3.2.2. Investigation of the Evolution of the Volcanic Plume
3.2.3. Atmospheric Time Series
3.3. Results of the Ionosphere
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Distribution Maps of SO2 and CO on Certain Days in September, October and November
Appendix B. Inspection of the Original Swarm B Data of 21 September 2021
References
- De Luca, C.; Valerio, E.; Giudicepietro, F.; Macedonio, G.; Casu, F.; Lanari, R. Pre- and Co-Eruptive Analysis of the September 2021 Eruption at Cumbre Vieja Volcano (La Palma, Canary Islands) through DInSAR Measurements and Analytical Modeling. Geophys. Res. Lett. 2022, 49, e2021GL097293. [Google Scholar] [CrossRef]
- Dóniz-Páez, J.; Németh, K.; Becerra-Ramírez, R.; Hernández, W.; Gosálvez, R.U.; Escobar, E.; González, E. Tajogaite 2021 Eruption (La Palma, Canary Islands, Spain): An Exceptional Volcanic Heritage to Develop Geotourism. Proceedings 2023, 87, 26. [Google Scholar] [CrossRef]
- Pankhurst, M.J.; Scarrow, J.H.; Barbee, O.A.; Hickey, J.; Coldwell, B.C.; Rollinson, G.K.; Rodríguez-Losada, J.A.; Martín Lorenzo, A.; Rodríguez, F.; Hernández, W.; et al. Rapid Response Petrology for the Opening Eruptive Phase of the 2021 Cumbre Vieja Eruption, La Palma, Canary Islands. Volcanica 2022, 5, 1–10. [Google Scholar] [CrossRef]
- Civico, R.; Ricci, T.; Scarlato, P.; Taddeucci, J.; Andronico, D.; Del Bello, E.; D’Auria, L.; Hernández, P.A.; Pérez, N.M. High-Resolution Digital Surface Model of the 2021 Eruption Deposit of Cumbre Vieja Volcano, La Palma, Spain. Sci. Data 2022, 9, 435. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, D.; Zhu, K.; Zhang, H.; Zhima, Z.; Yan, R.; Shen, X.; Chen, W.; Cheng, Y.; He, X.; Wang, T.; et al. Clues of Lithosphere, Atmosphere and Ionosphere Variations Possibly Related to the Preparation of La Palma 19 September 2021 Volcano Eruption. Remote Sens. 2022, 14, 5001. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Generation of ULF Electromagnetic Emissions by Microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Freund, F. Pre-Earthquake Signals: Underlying Physical Processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) Model—An Unified Concept for Earthquake Precursors Validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling-A Concept for Pre-Earthquake Signals Generation. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 77–98. ISBN 978-1-119-15694-9. [Google Scholar]
- Torres-González, P.A.; Luengo-Oroz, N.; Lamolda, H.; D’Alessandro, W.; Albert, H.; Iribarren, I.; Moure-García, D.; Soler, V. Unrest Signals after 46 Years of Quiescence at Cumbre Vieja, La Palma, Canary Islands. J. Volcanol. Geotherm. Res. 2020, 392, 106757. [Google Scholar] [CrossRef]
- Amonte, C.; Melián, G.V.; Asensio-Ramos, M.; Pérez, N.M.; Padrón, E.; Hernández, P.A.; D’Auria, L. Hydrogeochemical Temporal Variations Related to the Recent Volcanic Eruption at the Cumbre Vieja Volcano, La Palma, Canary Islands. Front. Earth Sci. 2022, 10, 1003890. [Google Scholar] [CrossRef]
- Di Paolo, F.; Ledo, J.; Ślęzak, K.; Martínez van Dorth, D.; Cabrera-Pérez, I.; Pérez, N.M. La Palma Island (Spain) Geothermal System Revealed by 3D Magnetotelluric Data Inversion. Sci. Rep. 2020, 10, 18181. [Google Scholar] [CrossRef]
- Padrón, E.; Pérez, N.M.; Hernández, P.A.; Sumino, H.; Melián, G.V.; Alonso, M.; Rodríguez, F.; Asensio-Ramos, M.; D’Auria, L. Early Precursory Changes in the 3He/4He Ratio Prior to the 2021 Tajogaite Eruption at Cumbre Vieja Volcano, La Palma, Canary Islands. Geophys. Res. Lett. 2022, 49, e2022GL099992. [Google Scholar] [CrossRef]
- D’Auria, L.; Koulakov, I.; Prudencio, J.; Cabrera-Pérez, I.; Ibáñez, J.M.; Barrancos, J.; García-Hernández, R.; Martínez van Dorth, D.; Padilla, G.D.; Przeor, M.; et al. Rapid Magma Ascent beneath La Palma Revealed by Seismic Tomography. Sci. Rep. 2022, 12, 17654. [Google Scholar] [CrossRef]
- Del Fresno, C.; Cesca, S.; Klügel, A.; Domínguez Cerdeña, I.; Díaz-Suárez, E.A.; Dahm, T.; García-Cañada, L.; Meletlidis, S.; Milkereit, C.; Valenzuela-Malebrán, C.; et al. Magmatic Plumbing and Dynamic Evolution of the 2021 La Palma Eruption. Nat. Commun. 2023, 14, 358. [Google Scholar] [CrossRef]
- Romero, J.E.; Burton, M.; Cáceres, F.; Taddeucci, J.; Civico, R.; Ricci, T.; Pankhurst, M.J.; Hernández, P.A.; Bonadonna, C.; Llewellin, E.W.; et al. The Initial Phase of the 2021 Cumbre Vieja Ridge Eruption (Canary Islands): Products and Dynamics Controlling Edifice Growth and Collapse. J. Volcanol. Geotherm. Res. 2022, 431, 107642. [Google Scholar] [CrossRef]
- Bonadonna, C.; Pistolesi, M.; Biass, S.; Voloschina, M.; Romero, J.; Coppola, D.; Folch, A.; D’Auria, L.; Martin-Lorenzo, A.; Dominguez, L.; et al. Physical Characterization of Long-Lasting Hybrid Eruptions: The 2021 Tajogaite Eruption of Cumbre Vieja (La Palma, Canary Islands). J. Geophys. Res. Solid Earth 2022, 127, e2022JB025302. [Google Scholar] [CrossRef]
- Miguelsanz, L.; Fernández, J.; Prieto, J.F.; Tiampo, K.F. Tidal Modulation of the Seismic Activity Related to the 2021 La Palma Volcanic Eruption. Sci. Rep. 2023, 13, 6485. [Google Scholar] [CrossRef] [PubMed]
- Milford, C.; Torres, C.; Vilches, J.; Gossman, A.-K.; Weis, F.; Suárez-Molina, D.; García, O.E.; Prats, N.; Barreto, Á.; García, R.D.; et al. Impact of the 2021 La Palma Volcanic Eruption on Air Quality: Insights from a Multidisciplinary Approach. Sci. Total Environ. 2023, 869, 161652. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, J.; Mediato, J.F.; Mata, M.P.; Ordóñez, B.; del Moral, B.; Bellido, E.; Pérez-López, R.; Rodríguez-Pascua, M.A.; Vegas, J.; Lozano Otero, G.; et al. Early Fumarolic Minerals from the Tajogaite Volcanic Eruption (La Palma, 2021). J. Volcanol. Geotherm. Res. 2023, 435, 107771. [Google Scholar] [CrossRef]
- Mezcua, J.; Rueda, J. Seismic Swarms and Earthquake Activity B-Value Related to the September 19, 2021, La Palma Volcano Eruption in Cumbre Vieja, Canary Islands (Spain). Bull. Volcanol. 2023, 85, 32. [Google Scholar] [CrossRef]
- Liperovsky, V.A.; Pokhotelov, O.A.; Meister, C.-V.; Liperovskaya, E.V. Physical Models of Coupling in the Lithosphere-Atmosphere-Ionosphere System before Earthquakes. Geomagn. Aeron. 2008, 48, 795–806. [Google Scholar] [CrossRef]
- Dautermann, T.; Calais, E.; Lognonné, P.; Mattioli, G.S. Lithosphere–Atmosphere–Ionosphere Coupling after the 2003 Explosive Eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int. 2009, 179, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Spogli, L.; Sabbagh, D.; Regi, M.; Cesaroni, C.; Perrone, L.; Alfonsi, L.; Di Mauro, D.; Lepidi, S.; Campuzano, S.A.; Marchetti, D.; et al. Ionospheric Response Over Brazil to the August 2018 Geomagnetic Storm as Probed by CSES-01 and Swarm Satellites and by Local Ground-Based Observations. JGR Space Phys. 2021, 126, e2020JA028368. [Google Scholar] [CrossRef]
- Ghamry, E.; Marchetti, D.; Yoshikawa, A.; Uozumi, T.; De Santis, A.; Perrone, L.; Shen, X.; Fathy, A. The First Pi2 Pulsation Observed by China Seismo-Electromagnetic Satellite. Remote Sens. 2020, 12, 2300. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. On the Generation Mechanism of ULF Seismogenic Electromagnetic Emissions. Phys. Earth Planet. Inter. 1998, 105, 201–210. [Google Scholar] [CrossRef]
- Freund, F.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake Precursors in the Light of Peroxy Defects Theory: Critical Review of Systematic Observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An Improved Coupling Model for the Lithosphere-Atmosphere-Ionosphere System. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Pulinets, S.A. Physical Mechanism of the Vertical Electric Field Generation over Active Tectonic Faults. Adv. Space Res. 2009, 44, 767–773. [Google Scholar] [CrossRef]
- Pulinets, S.; Khachikyan, G. The Global Electric Circuit and Global Seismicity. Geosciences 2021, 11, 491. [Google Scholar] [CrossRef]
- Astafyeva, E. Ionospheric Detection of Natural Hazards. Rev. Geophys. 2019, 57, 1265–1288. [Google Scholar] [CrossRef]
- Rolland, L.M.; Lognonné, P.; Munekane, H. Detection and Modeling of Rayleigh Wave Induced Patterns in the Ionosphere. J. Geophys. Res. 2011, 116, A05320. [Google Scholar] [CrossRef] [Green Version]
- Godin, O.A. Finite-Amplitude Acoustic-Gravity Waves: Exact Solutions. J. Fluid Mech. 2015, 767, 52–64. [Google Scholar] [CrossRef]
- Masci, F.; Thomas, J.N. Are There New Findings in the Search for ULF Magnetic Precursors to Earthquakes? J. Geophys. Res. Space Phys. 2015, 120, 10,289–10,304. [Google Scholar] [CrossRef] [Green Version]
- Heki, K. Ionospheric Signatures of Repeated Passages of Atmospheric Waves by the 2022 Jan. 15 Hunga Tonga Eruption Detected by QZSS-TEC Observations in Japan. Earth Planets Space 2022, 74, 112. [Google Scholar] [CrossRef]
- Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H. Electric and Magnetic Phenomena Observed before the Volcano-Seismic Activity in 2000 in the Izu Island Region, Japan. Proc. Natl. Acad. Sci. USA 2002, 99, 7352–7355. [Google Scholar] [CrossRef] [PubMed]
- Zlotnicki, J.; Li, F.; Parrot, M. Ionospheric Disturbances Recorded by DEMETER Satellite over Active Volcanoes: From August 2004 to December 2010. Int. J. Geophys. 2013, 2013, 530865. [Google Scholar] [CrossRef] [Green Version]
- Tramutoli, V.; Marchese, F.; Falconieri, A.; Filizzola, C.; Genzano, N.; Hattori, K.; Lisi, M.; Liu, J.-Y.; Ouzounov, D.; Parrot, M.; et al. Tropospheric and Ionospheric Anomalies Induced by Volcanic and Saharan Dust Events as Part of Geosphere Interaction Phenomena. Geosciences 2019, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling Effects Prior to the 2018 Mw = 7.5 Indonesia Earthquake from Seismic, Atmospheric and Ionospheric Data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Zhu, K.; Fan, M.; He, X.; Marchetti, D.; Li, K.; Yu, Z.; Chi, C.; Sun, H.; Cheng, Y. Analysis of Swarm Satellite Magnetic Field Data Before the 2016 Ecuador (Mw = 7.8) Earthquake Based on Non-Negative Matrix Factorization. Front. Earth Sci. 2021, 9, 621976. [Google Scholar] [CrossRef]
- Zhu, K.; Li, K.; Fan, M.; Chi, C.; Yu, Z. Precursor Analysis Associated With the Ecuador Earthquake Using Swarm A and C Satellite Magnetic Data Based on PCA. IEEE Access 2019, 7, 93927–93936. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi Precursors Analysis Associated with the Powerful Ecuador (MW= 7.8) Earthquake of 16 April 2016 Using Swarm Satellites Data in Conjunction with Other Multi-Platform Satellite and Ground Data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous Seismo-LAI Variations Potentially Associated with the 2017 Mw = 7.3 Sarpol-e Zahab (Iran) Earthquake from Swarm Satellites, GPS-TEC and Climatological Data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Shen, X. Land—Atmosphere—Meteorological Coupling Associated with the 2015 Gorkha (M 7.8) and Dolakha (M 7.3) Nepal Earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Wang, T. Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sens. 2022, 14, 1582. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Zhuang, J.; Chen, C.-H.; Liu, J.-Y.; Yoshida, S. Evaluation of ULF Seismo-Magnetic Phenomena in Kakioka, Japan by Using Molchan’s Error Diagram. Geophys. J. Int. 2017, 208, 482–490. [Google Scholar] [CrossRef]
- Chen, H.; Han, P.; Hattori, K. Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sens. 2022, 14, 5893. [Google Scholar] [CrossRef]
- Wu, L.; Qi, Y.; Mao, W.; Lu, J.; Ding, Y.; Peng, B.; Xie, B. Scrutinizing and Rooting the Multiple Anomalies of Nepal Earthquake Sequence in 2015 with the Deviation–Time–Space Criterion and Homologous Lithosphere–Coversphere–Atmosphere–Ionosphere Coupling Physics. Nat. Hazards Earth Syst. Sci. 2023, 23, 231–249. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory Worldwide Signatures of Earthquake Occurrences on Swarm Satellite Data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Yan, R.; Parrot, M.; Pinçon, J.-L. Statistical Study on Variations of the Ionospheric Ion Density Observed by DEMETER and Related to Seismic Activities: Ionospheric Density and Seismic Activity. J. Geophys. Res. Space Phys. 2017, 122, 12,421–12,429. [Google Scholar] [CrossRef] [Green Version]
- Genzano, N.; Filizzola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical Correlation Analysis Between Thermal Infrared Anomalies Observed From MTSATs and Large Earthquakes Occurred in Japan (2005–2015). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020108. [Google Scholar] [CrossRef]
- Filizzola, C.; Corrado, A.; Genzano, N.; Lisi, M.; Pergola, N.; Colonna, R.; Tramutoli, V. RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sens. 2022, 14, 381. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Chen, W.; Zhu, K.; Marchetti, D.; Cheng, Y.; Fan, M.; Wang, S.; Wen, J.; Zhang, D.; et al. Are There One or More Geophysical Coupling Mechanisms before Earthquakes? The Case Study of Lushan (China) 2013. Remote Sens. 2023, 15, 1521. [Google Scholar] [CrossRef]
- Kundu, S.; Chowdhury, S.; Ghosh, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Yang, S.-S.; Chakrabarti, S.K.; Hayakawa, M. Seismogenic Anomalies in Atmospheric Gravity Waves as Observed from SABER/TIMED Satellite during Large Earthquakes. J. Sens. 2022, 2022, 3201104. [Google Scholar] [CrossRef]
- Yang, S.-S.; Hayakawa, M. Gravity Wave Activity in the Stratosphere before the 2011 Tohoku Earthquake as the Mechanism of Lithosphere-Atmosphere-Ionosphere Coupling. Entropy 2020, 22, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Hu, X.; Yan, Z.; Pan, W.; Guo, W.; Yang, J.; Du, X. Atmospheric Gravity Wave Potential Energy Observed by Rayleigh Lidar above Jiuquan (40° N, 95° E), China. Atmosphere 2022, 13, 1098. [Google Scholar] [CrossRef]
- Yang, S.; Asano, T.; Hayakawa, M. Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. JGR Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Piscini, A.; Marchetti, D.; De Santis, A. Multi-Parametric Climatological Analysis Associated with Global Significant Volcanic Eruptions During 2002–2017. Pure Appl. Geophys. 2019, 176, 3629–3647. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A Multi-Parametric Climatological Approach to Study the 2016 Amatrice–Norcia (Central Italy) Earthquake Preparatory Phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Shen, X. Swarm-TEC Satellite Measurements as a Potential Earthquake Precursor Together With Other Swarm and CSES Data: The Case of Mw7.6 2019 Papua New Guinea Seismic Event. Front. Earth Sci. 2022, 10, 820189. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Marchetti, D. Developing a Fuzzy Inference System Based on Multi-Sensor Data to Predict Powerful Earthquake Parameters. Remote Sens. 2022, 14, 3203. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pavón-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential Earthquake Precursory Pattern from Space: The 2015 Nepal Event as Seen by Magnetic Swarm Satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Wiemer, S. A Software Package to Analyze Seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Marchetti, D.; Zhu, K.; Marchetti, L.; Zhang, Y.; Chen, W.; Cheng, Y.; Fan, M.; Wang, S.; Wang, T.; Wen, J.; et al. Quick Report on the ML = 3.3 on 1 January 2023 Guidonia (Rome, Italy) Earthquake: Evidence of a Seismic Acceleration. Remote Sens. 2023, 15, 942. [Google Scholar] [CrossRef]
- D’Arcangelo, S.; Martín-Hernández, F.; Parés, J.M. Magnetic Properties of Cave Sediments at Gran Dolina Site in Sierra de Atapuerca (Burgos, Spain). Quat. Int. 2021, 583, 1–13. [Google Scholar] [CrossRef]
- Marchetti, D.; Zhu, K.; Yan, R.; Zhima, Z.; Shen, X.; Chen, W.; Cheng, Y.; Fan, M.; Wang, T.; Wen, J.; et al. Ionospheric Effects of Natural Hazards in Geophysics: From Single Examples to Statistical Studies Applied to M5.5+ Earthquakes. Proceedings 2023, 87, 34. [Google Scholar] [CrossRef]
- Pinheiro, K.J.; Jackson, A.; Finlay, C.C. Measurements and Uncertainties of the Occurrence Time of the 1969, 1978, 1991, and 1999 Geomagnetic Jerks. Geochem. Geophys. Geosyst. 2011, 12, Q10015. [Google Scholar] [CrossRef]
- Yu, T.; Mao, T.; Wang, Y.; Wang, J. Study of the Ionospheric Anomaly before the Wenchuan Earthquake. Chin. Sci. Bull. 2009, 54, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ding, J.; Shen, X.; Wang, M.; Liu, J.; Yu, S.; Wang, Y.; Ouyang, X. Electromagnetic perturbations before Wenchuan M8 earthquake and stereo electromagnetic observation system. Chin. J. Radio Sci. 2009, 24, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, J.; Shen, X.; Ouyang, X.; Huang, J.; Zeren, Z.; Zhao, S.; Liu, J. The Analysis on the Electromagnetic Anomalies before Wenchuan from Ground and Satellite Data. In Proceedings of the International Disaster and Risk Conference, Chengdu, China, 13–15 July 2009; pp. 399–403. [Google Scholar]
- Sarkar, S.; Gwal, A.K. Satellite Monitoring of Anomalous Effects in the Ionosphere Related to the Great Wenchuan Earthquake of May 12 2008. Nat. Hazards 2010, 55, 321–332. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. Statistical Analysis of the Ionospheric Ion Density Recorded by DEMETER in the Epicenter Areas of Earthquakes as Well as in Their Magnetically Conjugate Point Areas. Adv. Space Res. 2018, 61, 974–984. [Google Scholar] [CrossRef]
- Ruzhin, Y.Y.; Sorokin, V.M.; Yashchenko, A.K. Physical Mechanism of Ionospheric Total Electron Content Perturbations over a Seismoactive Region. Geomagn. Aeron. 2014, 54, 337–346. [Google Scholar] [CrossRef]
- Hayakawa, M. Earthquake Prediction with Electromagnetic Phenomena. AIP Conf. Proc. 2016, 1709, 020002. [Google Scholar]
- Marchetti, D.; De Santis, A.; Jin, S.; Campuzano, S.A.; Cianchini, G.; Piscini, A. Co-Seismic Magnetic Field Perturbations Detected by Swarm Three-Satellite Constellation. Remote Sens. 2020, 12, 1166. [Google Scholar] [CrossRef] [Green Version]
- Grayver, A.V.; Olsen, N. The Magnetic Signatures of the M2, N2, and O1 Oceanic Tides Observed in Swarm and CHAMP Satellite Magnetic Data. Geophys. Res. Lett. 2019, 46, 4230–4238. [Google Scholar] [CrossRef] [Green Version]
Day | Ep | Swarm Mag, Sat A | Swarm Mag, Sat B | Swarm Mag, Sat C | AOT 1 | SO2 1 | CO 1 |
---|---|---|---|---|---|---|---|
19 September 2021 | 20:39 | Track: 31 Time: 21:42 | \ | Track:31 Time: 22:41 | 27.5°, −19.375° | 27.5°, −19.375° | 27.5°, −19.375° |
21 September 2021 | 06:15 | \ | Track: 30 Time: 22:34 | \ | 27.5°, −18.75° | 28.5°, −18.125° | \ |
25 September 2021 | 05:25, 05:27 | \ | \ | \ | \ | 28°, −18.75° | 28°, −21.25° |
27 September 2021 | 18:59 | \ | \ | \ | \ | \ | 27, −19.375 |
28 September 2021 | \ | \ | Track: 29 Time: 21:49 | \ | 27°, −20.625° | 26.5°, −21.25° | 26.5°, −20.625° |
1 October 2021 | 18:17 | \ | \ | \ | 27°, −19.375° | 26.5°, −19.375° | 27°, −19.375° |
9 October 2021 | 16:37 | \ | \ | \ | 27.5°, −18.75° | 27°, −19.375° | 27°, −19.375° |
20 October 2021 | 00:51 | \ | \ | \ | 27.5°, −20.625° | 27.5°, −20.625° | 27.5°, −19.375° |
24 October 2021 | 23:37 | \ | \ | \ | 28°, −18.75° | 28°, −18.75° | 27.5°, −18.75° |
2 November 2021 | 08:32 | \ | \ | \ | 28°, −18.75° | 28°, −18.125° | 28°, −18.75° |
10 November 2021 | 06:56, 06:58 | \ | \ | \ | 28°, −19.375° | 28°, −19.375° | \ |
13 November 2021 | 22:43 | \ | \ | \ | 28°, −18.75° | 28°, −18.75° | 28°, −18.75° |
14 November 2021 | 06:07 | \ | \ | \ | 28°, −18.75° | 28°, −18.75° | 28°, −18.75° |
22 November 2021 | 04:31 | \ | \ | \ | 28.5°, −18.125° | 28.5°, −18.125° | 28.5°, −18.125° |
25 November 2021 | 20:20 | \ | \ | \ | 29.5°, −19.375° | \ | 29°, −18.75° |
26 November 2021 | 03:43 | \ | \ | \ | 26.5°, −20.625° | 26.5°, −20.625° | 26.5°, −20.625° |
27 November 2021 | 03:56 | \ | \ | \ | 27°, −19.375° | 26.5°, −19.375° | 26.5°, −19.375° |
29 November 2021 | 19:34 | Track: 22 Time: 16:24 | \ | Track: 22 Time: 16:23 | 27.5°, −19.375° | 27°, −20° | 27°, −20° |
1 December 2021 | 03:09 | \ | \ | \ | \ | 27.5°, −19.375° | 27.5°, −19.375° |
19 December 2021 | 22:25 | \ | \ | \ | \ | 29.5°, −15.625° | 30°, −16.25° |
23 December 2021 | 11:42 | \ | \ | \ | \ | 28.5°, −16.25° | 28.5°, −16.25° |
27 December 2021 | 10:52 | \ | \ | \ | \ | 28.5°, −16.875° | 26.5°, −20.625° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhu, K.; Cheng, Y.; Marchetti, D.; Chen, W.; Fan, M.; Wang, S.; Wang, T.; Zhang, D.; Zhang, Y. Atmospheric and Ionospheric Effects of La Palma Volcano 2021 Eruption. Atmosphere 2023, 14, 1198. https://doi.org/10.3390/atmos14081198
Zhang H, Zhu K, Cheng Y, Marchetti D, Chen W, Fan M, Wang S, Wang T, Zhang D, Zhang Y. Atmospheric and Ionospheric Effects of La Palma Volcano 2021 Eruption. Atmosphere. 2023; 14(8):1198. https://doi.org/10.3390/atmos14081198
Chicago/Turabian StyleZhang, Hanshuo, Kaiguang Zhu, Yuqi Cheng, Dedalo Marchetti, Wenqi Chen, Mengxuan Fan, Siyu Wang, Ting Wang, Donghua Zhang, and Yiqun Zhang. 2023. "Atmospheric and Ionospheric Effects of La Palma Volcano 2021 Eruption" Atmosphere 14, no. 8: 1198. https://doi.org/10.3390/atmos14081198
APA StyleZhang, H., Zhu, K., Cheng, Y., Marchetti, D., Chen, W., Fan, M., Wang, S., Wang, T., Zhang, D., & Zhang, Y. (2023). Atmospheric and Ionospheric Effects of La Palma Volcano 2021 Eruption. Atmosphere, 14(8), 1198. https://doi.org/10.3390/atmos14081198