Biomagnetic Monitoring vs. CFD Modeling: A Real Case Study of Near-Source Depositions of Traffic-Related Particulate Matter along a Motorway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Elemental Analysis
2.4. Magnetic Treatments and Measurements
2.5. Numerical Simulation of Transport of Particles Emitted from Local Traffic
2.5.1. Assessment of the Emission Source Term (Sc)
2.5.2. Assessment of the Velocity Field u
3. Results
3.1. Magnetic Mapping of Near-Source Depositions of Traffic-Related Particulate Matter
3.2. PM Dispersion Modeling Results
3.3. E-PM µ-Sensors Recording
4. Discussion
4.1. Quality of the Magnetic Measurements
4.2. Determination of the Sources of the Traffic-Related PM from Elemental Analysis
4.3. Biomagnetic Monitoring vs. CFD Simulations
5. Conclusions
- An asymmetry is evidenced in PM traffic-related depositions between the both sides of the motorway carriageways. A recirculation phenomenon and a blockage effect for the opposite wind direction is clearly observed around the noise barrier wall atop of the berm, while standard flat-top earth berms seem to favor the atmospheric dispersion of pollutants. The recent revegetation of merlons (only ≈50 cm high shrubs) clearly has no impact today on the mitigation effect of pollution.
- The IRM intensity of PM deposition on plant leaves has proven to be a useful and relevant tool well suited for an overview of near-source deposition of traffic-related PM with the relevant following precautions. The magnetic data have to be expressed by means of relative change to pinpoint the local traffic signal by subtracting the regional background of PM concentration. Storing the samples in a null-field environment for a few dozen minutes after the acquisition of IRM and before the measurements is required in order to avoid the viscous effect inherent to this type of magnetization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision; UN: New York, NY, USA, 2019; ISBN 9789210043144. [Google Scholar]
- Hama, S.M.L.; Cordell, R.L.; Monks, P.S. Quantifying primary and secondary source contributions to ultrafine particles in the UK urban background. Atmos. Environ. 2017, 166, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, V.; Miller, M.R.; Clift, M.J.D.; Elder, A.; Mills, N.L.; Møller, P.; Schins, R.P.F.; Vogel, U.; Kreyling, W.G.; Alstrup Jensen, K.; et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ. Health Perspect. 2017, 125, 106002. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.E.; Mannucci, P.M.; Tell, G.S.; Baccarelli, A.A.; Brook, R.D.; Donaldson, K.; Forastiere, F.; Franchini, M.; Franco, O.H.; Graham, I.; et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 2015, 36, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Air Quality in Europe—2019 Report; EEA: Copenhagen, Denmark, 2019; Volume 10, Chapter 10; ISBN 978-92-9480-088-6.
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- EUROPEAN COMMISSION. A Europe that Protects: Clean Air for All. Available online: https://ec.europa.eu/environment/air/pdf/clean_air_for_all.pdf (accessed on 5 June 2018).
- Van Renterghem, T.; Botteldooren, D. On the choice between walls and berms for road traffic noise shielding including wind effects. Landsc. Urban Plan. 2012, 105, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.J. A CFD Study of Roadside Barrier Impact on the Dispersion of Road Air Pollution. Asian J. Atmos. Environ. 2015, 9, 22–30. [Google Scholar] [CrossRef]
- Baldauf, R.; Thoma, E.; Khlystov, A.; Isakov, V.; Bowker, G.; Long, T.; Snow, R. Impacts of noise barriers on near-road air quality. Atmos. Environ. 2008, 42, 7502–7507. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Lin, M.-Y.; Khlystov, A.; Baldauf, R.W.; Isakov, V.; Faircloth, J.; Jackson, L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Sci. Total Environ. 2012, 419, 7–15. [Google Scholar] [CrossRef]
- Mao, Y.; Wilson, J.D.; Kort, J. Effects of a shelterbelt on road dust dispersion. Atmos. Environ. 2013, 79, 590–598. [Google Scholar] [CrossRef]
- Steffens, J.T.; Heist, D.K.; Perry, S.G.; Zhang, K.M. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions. Atmos. Environ. 2013, 69, 76–85. [Google Scholar] [CrossRef]
- Tong, Z.; Baldauf, R.W.; Isakov, V.; Deshmukh, P.; Max Zhang, K. Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Sci. Total Environ. 2016, 541, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, H. Mitigation impact of roadside trees on fine particle pollution. Sci. Total Environ. 2019, 659, 1176–1185. [Google Scholar] [CrossRef]
- Ram, S.S.; Majumder, S.; Chaudhuri, P.; Chanda, S.; Santra, S.C.; Chakraborty, A.; Sudarshan, M. A Review on Air Pollution Monitoring and Management Using Plants with Special Reference to Foliar Dust Adsorption and Physiological Stress Responses. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2489–2522. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure. Environ. Pollut. 2020, 265, 114884. [Google Scholar] [CrossRef]
- Hofman, J.; Maher, B.A.; Muxworthy, A.R.; Wuyts, K.; Castanheiro, A.; Samson, R. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors. Environ. Sci. Technol. 2017, 51, 6648–6664. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.A.; Moore, C.; Matzka, J. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ. 2008, 42, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Castanheiro, A.; Samson, R.; De Wael, K. Magnetic- and particle-based techniques to investigate metal deposition on urban green. Sci. Total Environ. 2016, 571, 594–602. [Google Scholar] [CrossRef]
- Wang, H.; Maher, B.A.; Ahmed, I.A.M.; Davison, B. Efficient Removal of Ultrafine Particles from Diesel Exhaust by Selected Tree Species: Implications for Roadside Planting for Improving the Quality of Urban Air. Environ. Sci. Technol. 2019, 53, 6906–6916. [Google Scholar] [CrossRef] [PubMed]
- Maher, B.A.; Thompson, R. Quaternary Climates, Environments and Magnetism; Maher, B.A., Thompson, R., Eds.; Cambridge University Press: Cambridge, UK, 1999; ISBN 9780521624176. [Google Scholar]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Chiam, Z.; Song, X.P.; Lai, H.R.; Tan, H.T.W. Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Sci. Total Environ. 2019, 688, 398–408. [Google Scholar] [CrossRef]
- Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. Leaf accumulation of atmospheric dust: Biomagnetic, morphological and elemental evaluation using SEM, ED-XRF and HR-ICP-MS. Atmos. Environ. 2020, 221, 117082. [Google Scholar] [CrossRef]
- Cao, L.; Appel, E.; Hu, S.; Ma, M. An economic passive sampling method to detect particulate pollutants using magnetic measurements. Environ. Pollut. 2015, 205, 97–102. [Google Scholar] [CrossRef]
- Néel, L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann. Géophys. 1949, 5, 99–136. [Google Scholar]
- Sagnotti, L.; Taddeucci, J.; Winkler, A.; Cavallo, A. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Guo, L.; Maghirang, R.G. Numerical Simulation of Airflow and Particle Collection by Vegetative Barriers. Eng. Appl. Comput. Fluid Mech. 2012, 6, 110–122. [Google Scholar] [CrossRef]
- Bonifacio, H.F.; Maghirang, R.G.; Glasgow, L.A. Numerical Simulation of Transport of Particles Emitted From Ground-Level Area Source Using Aermod and CFD. Eng. Appl. Comput. Fluid Mech. 2014, 8, 488–502. [Google Scholar] [CrossRef] [Green Version]
- Jeanjean, A.P.R.; Hinchliffe, G.; McMullan, W.A.; Monks, P.S.; Leigh, R.J. A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale. Atmos. Environ. 2015, 120, 1–14. [Google Scholar] [CrossRef] [Green Version]
- ACEA. Vehicles in Use Europe 2019. Available online: https://www.acea.be/publications/article/report-vehicles-in-use-europe-2019 (accessed on 15 July 2020).
- Wang, X.; Khlystov, A.; Ho, K.-F.; Campbell, D.; Chow, J.C.; Kohl, S.D.; Watson, J.G.; Lee, S.-C.F.; Chen, L.-W.A.; Lu, M.; et al. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States. Res. Rep. Health. Eff. Inst. 2019. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282032/ (accessed on 25 November 2020).
- Lawrence, S.; Sokhi, R.; Ravindra, K. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques. Environ. Pollut. 2016. [Google Scholar] [CrossRef] [PubMed]
- Abu-Allaban, M.; Coulomb, W.; Gertler, A.W.; Gillies, J.; Pierson, W.R.; Rogers, C.F.; Sagebiel, J.C.; Tarnay, L. Exhaust Particle Size Distribution Measurements at the Tuscarora Mountain Tunnel. Aerosol Sci. Technol. 2002, 36, 771–789. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef] [Green Version]
- Jones, W.; Launder, B. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 1972, 15, 301–314. [Google Scholar] [CrossRef]
- Peralta, C.; Nugusse, H.; Kokilavani, S.P.; Schmidt, J.; Stoevesandt, B. Validation of the simpleFoam (RANS) solver for the atmospheric boundary layer in complex terrain. ITM Web Conf. 2014, 2, 01002. [Google Scholar] [CrossRef] [Green Version]
- Solazzo, E.; Cai, X.; Vardoulakis, S. Modelling wind flow and vehicle-induced turbulence in urban streets. Atmos. Environ. 2008, 42, 4918–4931. [Google Scholar] [CrossRef]
- Wang, Y.J.; Nguyen, M.T.; Steffens, J.T.; Tong, Z.; Wang, Y.; Hopke, P.K.; Zhang, K.M. Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model. Sci. Total Environ. 2013, 443, 375–386. [Google Scholar] [CrossRef]
- Buccolieri, R.; Jeanjean, A.P.R.; Gatto, E.; Leigh, R.J. The impact of trees on street ventilation, NOx and PM2.5 concentrations across heights in Marylebone Rd street canyon, central London. Sustain. Cities Soc. 2018, 41, 227–241. [Google Scholar] [CrossRef]
- Bowker, G.E.; Baldauf, R.; Isakov, V.; Khlystov, A.; Petersen, W. The effects of roadside structures on the transport and dispersion of ultrafine particles from highways. Atmos. Environ. 2007, 41, 8128–8139. [Google Scholar] [CrossRef]
- Reiminger, N.; Jurado, X.; Vazquez, J.; Wemmert, C.; Blond, N.; Dufresne, M.; Wertel, J. Effects of wind speed and atmospheric stability on the air pollution reduction rate induced by noise barriers. J. Wind Eng. Ind. Aerodyn. 2020, 200, 104160. [Google Scholar] [CrossRef]
- Patterson, R.F.; Harley, R.A. Evaluating near-roadway concentrations of diesel-related air pollution using RLINE. Atmos. Environ. 2019, 199, 244–251. [Google Scholar] [CrossRef]
- Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B. Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment; European Cooperation in Science and Technology: Brussels, Belgium, 2007; ISBN 3000183124. [Google Scholar]
- Richards, P.J.; Norris, S.E. Appropriate boundary conditions for computational wind engineering models revisited. J. Wind Eng. Ind. Aerodyn. 2011, 99, 257–266. [Google Scholar] [CrossRef]
- Richards, P.J.; Norris, S.E. Appropriate boundary conditions for computational wind engineering: Still an issue after 25 years. J. Wind Eng. Ind. Aerodyn. 2019, 190, 245–255. [Google Scholar] [CrossRef]
- Van Doormaal, J.P.; Raithby, G.D. Enhancements of the Simple Method for Predicting Incompressible Fluid Flows. Numer. Heat Transf. Part B Fundam. 1984, 7, 147–163. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25. [Google Scholar] [CrossRef] [Green Version]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Carsignol, J.; Calovi, L. La Pollution des Sols et des Végétaux à Proximité des Routes—Les éléments Traces Métalliques (ETM); SETRA: Sourdun, France, 2004. [Google Scholar]
- Birmili, W.; Allen, A.G.; Bary, F.; Harrison, R.M. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ. Sci. Technol. 2006, 40, 1144–1153. [Google Scholar] [CrossRef]
- Weckwerth, G. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmos. Environ. 2001, 35, 5525–5536. [Google Scholar] [CrossRef]
- Sarkar, B. Heavy Metals in the Environment; CRC Press: Boca Raton, FL, USA, 2002; ISBN 0203909305/9780203909300. [Google Scholar]
- Veschambre, S. Caractérisation et Quantification des Eléments Traces Métalliques Dans les Dépôts et les Particules Atmosphériques de la Vallée d’Aspe-Mise en Place d’Indicateurs de la Qualité de l’Air. Ph.D. Thesis, Ecole Doctorale des Sciences Exactes et de leurs Applications, Universite de Pau et de Pays de l’Adour, Pau, France, 2006. [Google Scholar]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Zenodo Open-Access Repository. Available online: https://zenodo.org/record/3961496#.X7vOTqpKiwU (accessed on 8 August 2020).
- ICCT. DielselNet Transport Policy. Available online: https://www.transportpolicy.net (accessed on 15 June 2020).
- Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: Size distribution, potential source, and fingerprinting metal ratio. Atmos. Chem. Phys. 2015, 15, 4117–4130. [Google Scholar] [CrossRef] [Green Version]
Lane | LD | HD | Total | LD:HD | Distance (m) | U (m s−1) | ||
---|---|---|---|---|---|---|---|---|
A9 Motorway | ||||||||
right | 9441 | 9441 | 18,882 | 3:2 | 114 | |||
middle | 25,176 | 3147 | 28,323 | 7:1 | 76 | |||
left | 12,742 | 0 | 12,742 | 4:0 | 170 | |||
59,947 | 7.3 | 2.1 | 1.3 | |||||
A709 Motorway | ||||||||
right | 21,696 | 3616 | 25,312 | 6:1 | 85 | |||
middle | 32,009 | 0 | 32,009 | 9:0 | 68 | |||
left | 16,004 | 0 | 16,004 | 5:0 | 135 | |||
73,325 | 6.5 | 1.7 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letaïef, S.; Camps, P.; Poidras, T.; Nicol, P.; Bosch, D.; Pradeau, R. Biomagnetic Monitoring vs. CFD Modeling: A Real Case Study of Near-Source Depositions of Traffic-Related Particulate Matter along a Motorway. Atmosphere 2020, 11, 1285. https://doi.org/10.3390/atmos11121285
Letaïef S, Camps P, Poidras T, Nicol P, Bosch D, Pradeau R. Biomagnetic Monitoring vs. CFD Modeling: A Real Case Study of Near-Source Depositions of Traffic-Related Particulate Matter along a Motorway. Atmosphere. 2020; 11(12):1285. https://doi.org/10.3390/atmos11121285
Chicago/Turabian StyleLetaïef, Sarah, Pierre Camps, Thierry Poidras, Patrick Nicol, Delphine Bosch, and Romane Pradeau. 2020. "Biomagnetic Monitoring vs. CFD Modeling: A Real Case Study of Near-Source Depositions of Traffic-Related Particulate Matter along a Motorway" Atmosphere 11, no. 12: 1285. https://doi.org/10.3390/atmos11121285
APA StyleLetaïef, S., Camps, P., Poidras, T., Nicol, P., Bosch, D., & Pradeau, R. (2020). Biomagnetic Monitoring vs. CFD Modeling: A Real Case Study of Near-Source Depositions of Traffic-Related Particulate Matter along a Motorway. Atmosphere, 11(12), 1285. https://doi.org/10.3390/atmos11121285