Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,275)

Search Parameters:
Keywords = biomonitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 70
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

21 pages, 1623 KiB  
Article
Derivation of Human Toxicokinetic Parameters and Chemical-Specific Adjustment Factor of Citrinin Through a Human Intervention Trial and Hierarchical Bayesian Population Modeling
by Lia Visintin, Camilla Martino, Sarah De Saeger, Eugenio Alladio, Marthe De Boevre and Weihsueh A. Chiu
Toxins 2025, 17(8), 382; https://doi.org/10.3390/toxins17080382 - 31 Jul 2025
Viewed by 200
Abstract
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method [...] Read more.
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method was validated for CIT quantification in capillary blood (VAMS Mitra® tips), feces, and urine obtaining LLOQs ≤ 0.05 ng/mL. A human TK study was conducted following a single oral bolus of 200 ng/kg bw CIT. Individual capillary blood (VAMS Mitra® tips), feces, and urine samples were collected for 48 h after exposure. Samples were analyzed to determine CIT’s TK profile. Results: TK modeling was performed using a multi-compartmental structure with a hierarchical Bayesian population approach, allowing robust parameter estimation despite the lack of standards for CIT metabolites. Conclusions: The derived TK parameters align with preliminary human data and significantly advance CIT exposure assessment via biomonitoring. A human inter-individual toxicokinetic variability (HKAF) of 1.92 was calculated based on the derived AUC, indicating that EFSA’s current default uncertainty factor for TK variability is adequately protective for at least 95% of the population. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
Show Figures

Figure 1

11 pages, 711 KiB  
Article
Cadmium Accumulation and Regulation in the Freshwater Mussel Anodonta woodiana
by Xiubao Chen, Chao Song, Jiazhen Jiang, Tao Jiang, Junren Xue, Ibrahim Bah, Mengying Gu, Meiyi Wang and Shunlong Meng
Toxics 2025, 13(8), 646; https://doi.org/10.3390/toxics13080646 - 30 Jul 2025
Viewed by 151
Abstract
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular [...] Read more.
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular regulatory mechanisms underlying Cd accumulation are poorly understood. To address these gaps, this study employed a novel stable isotope dual-tracer technique to trace Cd from water (waterborne 112Cd) and the green alga Chlorella vulgaris (dietary 113Cd) during the simultaneous exposure experiment. Comparative transcriptomic analysis was then conducted to characterize molecular responses in A. woodiana following Cd exposure. The results showed that although newly accumulated 112Cd and 113Cd increased with exposure concentration and duration, the relative importance of 112Cd (91.6 ± 2.8%) was significantly higher than that of 113Cd (8.4 ± 2.8%) (p < 0.05). Cd exposure induced differentially expressed genes primarily enriched in the metabolic processes, cellular processes, and/or the ubiquitin-mediated proteolysis pathway. Within the ubiquitin-mediated proteolysis pathway, TRIP12 (E3 ubiquitin-protein ligase TRIP12) and Cul5 (cullin-5) were significantly upregulated. The findings will provide critical insights for interpreting Cd biomonitoring data in freshwater environments using mussels as bioindicators. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

18 pages, 1057 KiB  
Article
Participant Experiences with Human Biomonitoring in Communities Affected by Chronic PFAS Environmental Contamination in the Veneto Region (Italy)
by Marialuisa Menegatto, Andrea Bobbio, Gloria Freschi, Francesca Celeste Conti, Maria Cristina Cola, Michela Zamboni and Adriano Zamperini
Int. J. Environ. Res. Public Health 2025, 22(8), 1190; https://doi.org/10.3390/ijerph22081190 - 29 Jul 2025
Viewed by 208
Abstract
This exploratory study investigated how health concerns related to chronic environmental contamination and how satisfaction with the human biomonitoring (HBM) process influence the perceived quality of life in the context of per- and polyfluoroalkyl substances (PFAS) contamination in the Veneto Region (Italy). We [...] Read more.
This exploratory study investigated how health concerns related to chronic environmental contamination and how satisfaction with the human biomonitoring (HBM) process influence the perceived quality of life in the context of per- and polyfluoroalkyl substances (PFAS) contamination in the Veneto Region (Italy). We administered a questionnaire to 84 residents of the Red Area, where PFAS exposure is classified as most severe. The main findings revealed that satisfaction with HBM was positively correlated with perceived quality of life and showed a statistically significant but modest moderation effect on the relationship between PFAS-related health concerns and quality of life (explaining 17.4% of the variance). Particularly, it attenuates the negative effect that PFAS health concerns have on quality of life. Differences between subgroups revealed heightened concern regarding PFAS health risks among women vs. men and participants with children vs. those without. These results underscore the central role of relational and communication aspects of HBM programs to mitigate psychological distress and possibly contribute to higher perceived well-being. The study highlights the need for tailored public health interventions, including transparent communication, empathetic support, and community engagement, to address the psychosocial dimensions of environmental contamination. Full article
Show Figures

Figure 1

16 pages, 1192 KiB  
Article
Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
by Gordana Jovanović, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić and Mirjana Perišić
Toxics 2025, 13(8), 631; https://doi.org/10.3390/toxics13080631 - 27 Jul 2025
Viewed by 310
Abstract
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence [...] Read more.
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside p,p’-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138–PCB-153, PCB-138–PCB-180, and PCB-180–PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios. Full article
Show Figures

Figure 1

13 pages, 893 KiB  
Article
Children and Adolescents’ Susceptibility to Domoic Acid in Southern China: Preliminary Evidence Revealing Baseline Exposure Profiles and Multidimensional Influencing Factors
by Yuxin Lin, Tingze Long, Siyi Zou, Rui Hua, Meixia Ye, Shengtao Ma and Bo Peng
Toxics 2025, 13(8), 628; https://doi.org/10.3390/toxics13080628 - 26 Jul 2025
Viewed by 531
Abstract
Domoic acid (DA) is a potent neurotoxin that poses public health concerns, especially for children and adolescents during critical neurodevelopmental periods. In the present study, urinary DA concentrations in 216 children and adolescents at the age of 6 to 18 in southern China [...] Read more.
Domoic acid (DA) is a potent neurotoxin that poses public health concerns, especially for children and adolescents during critical neurodevelopmental periods. In the present study, urinary DA concentrations in 216 children and adolescents at the age of 6 to 18 in southern China were determined using a novel dansyl-chloride (DNS-Cl) derivatization high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method with ultrahigh sensitivity (LOQ: 0.087 ng/mL). The median urinary DA concentration was 2.17 ng/mL (interquartile range (IQR): 0.87–4.08 ng/mL). When analyzed by age group, the medians were 1.40 ng/mL (6–9 years; IQR: 0.55–3.49 ng/mL), 2.16 ng/mL (10–13 years; IQR: 0.94–4.07 ng/mL), and 2.93 ng/mL (14–18 years; IQR: 1.06–5.06 ng/mL). Our findings revealed that urinary DA concentrations increased with age and varied significantly across different body mass index groups (p < 0.05), while no significant gender differences were observed. The estimated daily intake (1.73–374 ng/kg/day) remained below established safety thresholds. This study represents the first systematic biomonitoring of urinary DA exposure in children and adolescents from southern China’s coastal communities, addressing critical knowledge gaps and establishing baseline data amid rising harmful algal bloom frequency. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

15 pages, 6386 KiB  
Article
Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks
by Marek Pająk, Michał Gąsiorek, Marta Szostak and Wiktor Halecki
Sustainability 2025, 17(15), 6708; https://doi.org/10.3390/su17156708 - 23 Jul 2025
Viewed by 226
Abstract
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal [...] Read more.
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal concentrations in P. schreberi, leaf tissues of selected tree species, and soil samples collected from various locations within a designated urban parks. The order of heavy metal accumulation was Zn > Pb > Cr > Cu > Ni > Cd > Hg in soil and Zn > Cu > Pb > Cr > Ni > Cd > Hg in P. schreberi. The order was Zn > Cu > Cr > Ni > Pb > Cd > Hg in linden and sycamore leaves, while birch leaves displayed a similar order but with slightly more Ni than Cr. The heavy metal concentration in the tested soils correlated positively with finer textures (clay and silt) and negatively with sand. The highest metal accumulation index (MAI) was noted in birch and P. schreberi, corresponding to the highest total heavy metal accumulation. The bioconcentration factor (BAF) was also higher in P. schreberi, indicating a greater ability to accumulate heavy metals than tree leaves, except silver birch for Zn in one of the parks. Silver birch displayed the highest phytoremediation capacity among the analysed tree species, highlighting its potential as a suitable bioindicator in heavy metal-laden urban parks. Our findings revealed significant variation in heavy metal accumulation, highlighting the potential of these bioindicators to map contamination patterns. Full article
(This article belongs to the Special Issue Evaluation of Landscape Ecology and Urban Ecosystems)
Show Figures

Figure 1

23 pages, 2437 KiB  
Article
From Farmworkers to Urban Residents: Mapping Multi-Class Pesticide Exposure Gradients in Morocco via Urinary Biomonitoring
by Zineb Ben Khadda, Andrei-Flavius Radu, Souleiman El Balkhi, Fagroud Mustapha, Yahya El Karmoudi, Gabriela Bungau, Pierre Marquet, Tarik Sqalli Houssaini and Sanae Achour
J. Xenobiot. 2025, 15(4), 120; https://doi.org/10.3390/jox15040120 - 23 Jul 2025
Viewed by 325
Abstract
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using [...] Read more.
Pesticide exposure gradients between occupational, para-occupational, and general populations remain poorly characterized in North African agricultural contexts. This study evaluates urinary pesticide levels among farmers, indirectly exposed individuals, and a control group in Morocco’s Fez-Meknes region. A cross-sectional survey measured pesticide concentrations using LC-MS/MS in urine samples collected from 154 adults residing in both rural and urban areas. A questionnaire was used to gather information from participants regarding factors that may elevate the risk of pesticide exposure. The results revealed that farmers exhibited the highest concentrations of pesticides in their urine, including compounds classified as Ia/Ib by the World Health Organization. Indirectly exposed individuals showed moderate levels of contamination, with notable detections such as dichlofluanid (22.13 µg/L), while the control group had residual traces of neonicotinoids, notably imidacloprid (2.05 µg/L). Multivariate analyses revealed several sociodemographic factors significantly associated with increased pesticide exposure. The main risk factors identified included low education, residence in an agricultural area, and the consumption of untreated water (wells/rivers). Conversely, wearing personal protective equipment was associated with reduced urinary concentrations. This study highlights intense occupational exposure among farmers, secondary environmental contamination among residents living near treated areas, and the widespread dispersion of pesticide residues into urban areas. Full article
Show Figures

Figure 1

23 pages, 2483 KiB  
Article
A Unionid Mussel Biodiversity Hotspot Experiencing Unexplained Declines: Evaluating the Influence of Chemical Stressors Using Caged Juveniles
by W. Aaron Wilson, Christine Bergeron, Jennifer Archambault, Jason Unrine, Jess Jones, Braven Beaty, Damian Shea, Peter R. Lazaro, Jody L. Callihan, Jennifer J. Rogers and W. Gregory Cope
Diversity 2025, 17(8), 503; https://doi.org/10.3390/d17080503 - 22 Jul 2025
Viewed by 297
Abstract
Unionid mussel populations in a section of the Clinch River in Virginia, USA, has declined substantially, but the causes of the decline remain unknown. To investigate this zone of decline (ZOD), we deployed juvenile freshwater mussels (Villosa iris in 2012 and Lampsilis [...] Read more.
Unionid mussel populations in a section of the Clinch River in Virginia, USA, has declined substantially, but the causes of the decline remain unknown. To investigate this zone of decline (ZOD), we deployed juvenile freshwater mussels (Villosa iris in 2012 and Lampsilis fasciola in 2013) in both cages and silos at sites within the Clinch River System. We analyzed mussel tissues for trace element and organic contaminant concentrations, shells for trace elements, and environmental media (total water, dissolved water, particulate sediment, and bedload sediment) for both inorganic and organic contaminants. We found a few differences between mussels deployed in cages and those deployed in silos: survival was slightly lower in cages due to periodic sedimentation. Our results identified the ZOD based on the accumulation of trace elements (notably As, Cu, Fe, Mn, Ni, and Sr), polycyclic aromatic hydrocarbons (PAHs), and δ15N enrichment, with especially high concentrations found in the human-impacted tributaries, Dumps Creek and Guest River. Some correlations were found between environmental media and both mussel tissues and shells. In particular, PAHs and Mn had several significant relationships between bioaccumulated concentrations and environmental concentrations. Finally, Co, Cu, Fe, and V in soft tissues negatively correlated with mussel growth, whereas bioaccumulated PAH concentrations correlated negatively with resident mussel densities. Full article
(This article belongs to the Special Issue Freshwater Biodiversity Hotspots in 2025)
Show Figures

Figure 1

26 pages, 2170 KiB  
Article
Exploratory Metabolomic and Lipidomic Profiling in a Manganese-Exposed Parkinsonism-Affected Population in Northern Italy
by Freeman Lewis, Daniel Shoieb, Somaiyeh Azmoun, Elena Colicino, Yan Jin, Jinhua Chi, Hari Krishnamurthy, Donatella Placidi, Alessandro Padovani, Andrea Pilotto, Fulvio Pepe, Marinella Tula, Patrizia Crippa, Xuexia Wang, Haiwei Gu and Roberto Lucchini
Metabolites 2025, 15(7), 487; https://doi.org/10.3390/metabo15070487 - 20 Jul 2025
Viewed by 572
Abstract
Background/Objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles. Methods: A case–control study (N = 97) was conducted [...] Read more.
Background/Objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles. Methods: A case–control study (N = 97) was conducted in Brescia, Italy, stratifying participants by Parkinsonism diagnosis and residential Mn exposure. Whole-blood Mn was quantified using ICP-MS. Untargeted metabolomic and lipidomic profiling was conducted using LC-MS. Statistical analyses included Mann–Whitney U tests, conditional logistic regression, ANCOVA, and pathway analysis. Results: Whole-blood Mn levels were significantly elevated in Parkinsonism cases vs. controls (median: 1.55 µg/dL [IQR: 0.75] vs. 1.02 µg/dL [IQR: 0.37]; p = 0.001), with Mn associated with increased odds of Parkinsonism (OR = 2.42, 95% CI: 1.13–5.17; p = 0.022). The disease effect metabolites included 3-sulfoxy-L-tyrosine (β = 1.12), formiminoglutamic acid (β = 0.99), and glyoxylic acid (β = 0.83); all FDR p < 0.001. The exposure effect was associated with elevated glycocholic acid (β = 0.51; FDR p = 0.006) and disrupted butanoate (Impact = 0.03; p = 0.004) and glutamate metabolism (p = 0.03). Additionally, SLC-mediated transmembrane transport was enriched (p = 0.003). The interaction effect identified palmitelaidic acid (β = 0.30; FDR p < 0.001), vitamin B6 metabolism (Impact = 0.08; p = 0.03), and glucose homeostasis pathways. In lipidomics, triacylglycerols and phosphatidylethanolamines were associated with the disease effect (e.g., TG(16:0_10:0_18:1), β = 0.79; FDR p < 0.01). Ferroptosis and endocannabinoid signaling were enriched in both disease and interaction effects, while sphingolipid metabolism was specific to the interaction effect. Conclusions: Mn exposure and Parkinsonism are associated with distinct metabolic and lipidomic perturbations. These findings support the utility of omics in identifying environmentally linked Parkinsonism biomarkers and mechanisms. Full article
(This article belongs to the Special Issue Metabolomics in Human Diseases and Health)
Show Figures

Figure 1

12 pages, 641 KiB  
Article
Do Patients with Complaints Attributed to Chemicals in the Environment Trust in Biomonitoring as a Valid Diagnostic Tool? A Prospective, Observational Study from a German University Outpatient Clinic
by Claudia Schultz, Catharina Sadaghiani, Stefan Schmidt, Roman Huber and Vanessa M. Eichel
Int. J. Environ. Res. Public Health 2025, 22(7), 1143; https://doi.org/10.3390/ijerph22071143 - 18 Jul 2025
Viewed by 262
Abstract
Biomonitoring often yields normal results in patients who report environmental sensitivities, such as in multiple chemical sensitivity. This study examined whether biomonitoring results influence disease attribution and perception. Patients over 18 presenting for the first time to the University Environmental Medicine Outpatient Clinic [...] Read more.
Biomonitoring often yields normal results in patients who report environmental sensitivities, such as in multiple chemical sensitivity. This study examined whether biomonitoring results influence disease attribution and perception. Patients over 18 presenting for the first time to the University Environmental Medicine Outpatient Clinic in Freiburg with suspected complaints linked to heavy metals, wood preservatives, pesticides, solvents, or mold spores were included. Illness perceptions were assessed before and after biomonitoring using the Illness Perception Questionnaire (IPQ-R). Of 358 patients, 51 met inclusion criteria; 3 showed relevant findings, and 15 did not attribute their symptoms to environmental causes at baseline. The remaining 33 patients were analyzed. After receiving a normal biomonitoring result, only seven patients (21%) altered their illness attribution. These individuals also reported milder perceived consequences, less personal control over the illness, and showed lower levels of somatization and compulsiveness than those who maintained their original attribution. Most patients remained convinced of an environmental cause despite unremarkable findings. This suggests that a substantial subset of patients is strongly attached to an environmental explanation for their symptoms, with stable attribution linked to higher psychological symptom burden and a belief in personal control over the illness. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

15 pages, 1514 KiB  
Article
Mercury Concentration and Distribution in Remiges, Rectrices, and Contour Feathers of the Barn Swallow Hirundo rustica
by Luca Canova, Federica Maraschi, Roberto Ambrosini, Alessandra Costanzo, Marco Parolini, Antonella Profumo, Andrea Romano, Diego Rubolini and Michela Sturini
Environments 2025, 12(7), 249; https://doi.org/10.3390/environments12070249 - 18 Jul 2025
Viewed by 586
Abstract
Feathers are commonly used to monitor trace elements in birds, including heavy metals. Typically, a single feather is analyzed to avoid harming living birds, assuming it reflects the organism’s overall contamination. To verify this assumption, we analyzed mercury concentrations in 12 flight and [...] Read more.
Feathers are commonly used to monitor trace elements in birds, including heavy metals. Typically, a single feather is analyzed to avoid harming living birds, assuming it reflects the organism’s overall contamination. To verify this assumption, we analyzed mercury concentrations in 12 flight and contour feathers from 25 barn swallows Hirundo rustica (16 adults and nine juveniles) that had died accidentally in a colony of the Po Plain (northern Italy). The median concentration in all feathers examined was 1.03 µg g−1 in adults (range 0.76 µg g−1–1.30 µg g−1) and 0.39 µg g−1 in juveniles (range 0.28 µg g−1–0.71 µg g−1), which is consistent with the results of similar research carried out on other world regions. No significant differences were observed between sexes, whereas marked differences were observed between adults and juveniles. In adults, mercury concentration was similar across remiges, rectrices, and contour feathers while in juveniles it was higher in contour feathers than in flight feathers. Mercury accumulation was highest in primary remiges and contour feathers, accounting for 67.6% of total mercury in adults and 77.5% in juveniles. However, primary remiges cannot be collected from live adults due to their importance in flight. In juveniles, contour feathers carry about 50% of total mercury, suggesting ventral and dorsal plumage may be useful for assessing mercury burden. Our findings are consistent with the hypothesis that mercury accumulation in feathers aids detoxification, with early-molted feathers (primary remiges and contour feathers) containing higher mercury levels than those replaced later (rectrices and secondary remiges). Full article
Show Figures

Figure 1

19 pages, 2552 KiB  
Article
The Biogeographic Patterns of Two Typical Mesopelagic Fishes in the Cosmonaut Sea Through a Combination of Environmental DNA and a Trawl Survey
by Yehui Wang, Chunlin Liu, Mi Duan, Peilong Ju, Wenchao Zhang, Shuyang Ma, Jianchao Li, Jianfeng He, Wei Shi and Yongjun Tian
Fishes 2025, 10(7), 354; https://doi.org/10.3390/fishes10070354 - 17 Jul 2025
Viewed by 278
Abstract
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a [...] Read more.
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a more cost-effective and sustainable alternative to traditional sampling approaches. To study the biogeographic patterns of two typical mesopelagic fishes, Antarctic lanternfish (Electrona antarctica) and Antarctic deep-sea smelt (Bathylagus antarcticus), in the Cosmonaut Sea in the Indian Ocean sector of the Southern Ocean, we conducted both eDNA and trawling sampling at a total of 86 stations in the Cosmonaut Sea during two cruises in 2021–2022. Two sets of species-specific primers and probes were developed for a quantitative eDNA analysis of two fish species. Both the eDNA and trawl results indicated that the two fish species are widely distributed in the Cosmonaut Sea, with no significant difference in eDNA concentration, biomass, or abundance between stations. Spatially, E. antarctica tended to be distributed in shallow waters, while B. antarcticus tended to be distributed in deep waters. Vertically, E. antarctica was more abundant above 500 m, while B. antarcticus had a wider range of habitat depths. The distribution patterns of both species were affected by nutrients, with E. antarctica additionally affected by chlorophyll, indicating that their distribution is primarily influenced by food resources. Our study provides broader insight into the biogeographic patterns of the two mesopelagic fishes in the remote Cosmonaut Sea, demonstrates the potential of combining eDNA with traditional methods to study biodiversity and ecosystem dynamics in the Southern Ocean and even at high latitudes, and contributes to future ecosystem research and biodiversity conservation in the region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

13 pages, 1243 KiB  
Article
A Tandem MS Platform for Simultaneous Determination of Urinary Malondialdehyde and Diphenyl Phosphate
by Gabriela Chango, Diego García-Gómez, Carmelo García Pinto, Encarnación Rodríguez-Gonzalo and José Luis Pérez Pavón
Int. J. Environ. Res. Public Health 2025, 22(7), 1130; https://doi.org/10.3390/ijerph22071130 - 17 Jul 2025
Viewed by 265
Abstract
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography [...] Read more.
This study presents an advanced analytical method for the simultaneous quantification of malondialdehyde (MDA), a biomarker of oxidative stress, and diphenyl phosphate (DPhP), a metabolite of the organophosphate flame retardant triphenyl phosphate (TPhP), in human urine. The method integrates hydrophilic interaction liquid chromatography (HILIC), a type of liquid chromatography suitable for polar compounds, for MDA separation, and an online restricted access material (RAM), a preconcentration column, for DPhP isolation, achieving high specificity and sensitivity. Validation with certified urine samples confirmed its robustness across diverse analyte concentrations and complex biological matrices. The optimized clean-up steps effectively minimized carryover, allowing for high-throughput analysis. Application to 72 urine samples revealed a significant positive correlation (ρ = 0.702, p-value = 1.9 × 10−7) between MDA and DPhP levels, supporting a potential link between oxidative stress and TPhP exposure. The subset analysis demonstrated a statistically significant moderate positive correlation in women (ρ = 0.622, p-value = 0.020), although this result should be interpreted with caution because of the limited sample size (N = 14). This method provides a powerful tool for biomonitoring oxidative stress and environmental contaminants, offering valuable insights into exposure-related health risks. Full article
(This article belongs to the Special Issue Research on Environmental Exposure, Pollution, and Epidemiology)
Show Figures

Graphical abstract

13 pages, 2020 KiB  
Article
Sampling Techniques Affect Mayfly Nymph Community Indices and May Bias Bioassessments
by Zohar Yanai and Netta Dorchin
Insects 2025, 16(7), 723; https://doi.org/10.3390/insects16070723 - 16 Jul 2025
Viewed by 320
Abstract
Mayfly nymphs are reliable indicators of aquatic habitat quality, and whilst their presence and relative abundance are often used in bioassessment schemes, it is important to recognise that these attributes are affected by the sampling method employed. To test these effects, we sampled [...] Read more.
Mayfly nymphs are reliable indicators of aquatic habitat quality, and whilst their presence and relative abundance are often used in bioassessment schemes, it is important to recognise that these attributes are affected by the sampling method employed. To test these effects, we sampled stream habitats for mayflies using two commonly used techniques in a standardised setup: aquatic sweep nets and manual collection from stones. These methods resulted in different success rates in detecting certain taxa depending on their biological traits (preferred microhabitat and locomotion type). Whilst species lists generally overlapped between the two methods, they yielded different values of total abundance, taxon richness, Shannon–Wiener’s diversity index, assemblage saprobic index, and general community structure. These results suggest that reliance on a single collection method is prone to yield only partial information for ecological assessments and emphasises the importance of employing a sampling technique that is appropriate for the study question and goals or combining more than one method. Based on these findings, we outline the scientific justifications for using each sampling method. Full article
(This article belongs to the Special Issue Aquatic Insects: Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop