The Importance of Feedstock and Process Control on the Composition of Recovered Carbon Black
Abstract
1. Introduction
- By preventing the formation of pyrolysis residues, the surface of the recovered fillers is accessible in the elastomer phase, thus promoting reinforcing behaviour.
- The biogenic carbon contained within the feedstock is recovered in the TPO and gas phases, where it adds value by reducing scope 1 emissions when using these materials directly, or after refinement as fuels.
2. Materials and Methods
2.1. Tyre Granulate Preparation and Characterisation
2.2. rCB Materials Preparation
2.3. rCB Material Characterisation
2.4. In-Rubber Characterisation Protocol
- Tensile properties were determined using a Llyod LR5K (AMETEK, Bognor Regis, UK) following ASTM D412 [39].
- Shore A Hardness was determined using a Wallace H17A (Walace Instruments, Dorking, UK) in accordance with ASTM D2240 [40].
- Filler dispersion was assessed by examining surfaces cut with fresh razor blades at 250× magnification using a Hitachi TM3030 Scanning Electron Microscope (SEM) (Tokyo, Japan). Surface roughness plots and average surface roughness (Ra) values were generated using 3D-Image Viewer software v2.0 (Denshi Kougaku Kenkyusyo Co., Ltd., Tokyo, Japan).
- Strain sweeps were conducted using a Perkin-Elmer DM8000 (Waltham, MA, USA) configured in tension mode. During this step, 2 × 2 × 10 mm specimens were tested at 40 °C, 10 Hz and a double strain amplitude (DSA) range of ~0.04 to 4%.
3. Results and Discussion
3.1. Feedstock Characterisation
3.2. rCB Characterisation
3.3. In-Rubber Characterisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| rCB | Recovered carbon black |
| TPO | Tyre pyrolysis oil |
| CB | Carbon black |
| VM | Volatile matter |
| FC | Fixed carbon |
| HCR | High carbonaceous residue |
| BET | Brunauer–Emmett–Teller |
| TGA | Thermogravimetric analysis |
| ICP-OES | Inductively coupled plasma optical emission spectrometer |
| EDX | Energy dispersive X-ray |
| S/TEM | Scanning/transmission electron microscope |
| MDR | Moving die rheometer |
| SEM | Scanning Electron Microscope |
References
- Zerin, N.; Rasul, M.; Jahirul, M.; Sayem, A. End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges. Sci. Total Environ. 2023, 905, 166981. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal, COM(2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Banar, M. Life cycle assessment of waste tire pyrolysis. Fresenius Environ. Bull. 2015, 24, 1215. [Google Scholar]
- Briones-Hidrovo, A.; Costa, S.M.; Maganinho, C.; Silva, C.M.; Rocha, J.; Dias, A.C.; Portugal, I.; Silva, C.M. Recovering carbon black from end-of-life tires: A consequential life cycle assessment. Environ. Impact Assess. Rev. 2025, 115, 108044. [Google Scholar] [CrossRef]
- Zhang, Y.; Hwang, J.Y.; Peng, Z.; Andriese, M.; Li, B.; Huang, X.; Wang, X. Microwave Absorption Characteristics of Tire. In Characterization of Minerals, Metals, and Materials; Carpenter, J.S., Bai, C., Escobedo, J.P., Hwang, J.-Y., Ikhmayies, S., Li, B., Li, J., Monteiro, S.N., Peng, Z., Zhang, M., Eds.; Springer: Cham, Switzerland; Hoboken, NJ, USA, 2015; pp. 235–243. [Google Scholar]
- Inamuddin; Asiri, A.M.; Kanchi, S. (Eds.) Green rubber composites. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 14; pp. 273–312. [Google Scholar]
- ASTM D8178-20; Standard Terminology Relating to Recovered Carbon Black (rCB). ASTM International: West Conshohocken, PA, USA, 2020.
- Norris, C.J.; Lopez-Cerdan, A.; ter Haar, P. Understanding Recovered Carbon Black. Rubber Chem. Technol. 2023, 96, 196. [Google Scholar] [CrossRef]
- Xiao, Z.; Pramanik, A.; Basak, A.; Prakash, C.; Shankar, S. Material recovery and recycling of waste tyres—A review. Clean. Mater. 2022, 5, 100115. [Google Scholar] [CrossRef]
- Martínez, J.D.; Puy, N.; Murillo, R.; García, T.; Navarro, M.V.; Mastral, A.M. Waste tyre pyrolysis—A Review. Renew. Sustain. Energy Rev. 2013, 23, 179. [Google Scholar] [CrossRef]
- Hoyer, S.; Kroll, L.; Sykutera, D. Technology comparison for the production of fine rubber powder from end of life tyres. Procedia Manuf. 2020, 43, 193. [Google Scholar] [CrossRef]
- Valentini, F.; Pegoretti, A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203. [Google Scholar] [CrossRef]
- Bowles, A.J.; Fowler, G.D. Assessing the impacts of feedstock and process control on pyrolysis outputs for tyre recycling. Resour. Conserv. Recycl. 2022, 182, 106277. [Google Scholar] [CrossRef]
- Paul, S.; Rahaman, M.; Ghosh, S.K.; Das, P.; Katheria, A.; Ghosh, T.; Das, N.C. Effects of tire-derived pyrolytic carbon black and pyrolytic heavy oil on the curing and mechanical properties of styrene-butadiene rubber composites. Polym. Eng. Sci. 2023, 63, 2942. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2020/740 of the European Parliament and of the Council of 25 May 2020 on the labelling of tyres with respect to fuel efficiency and other parameters, amending Regulation (EU) 2017/1369 and repealing Regulation (EC) No 1222/2009. Off. J. Eur. Union 2020, 177, 1–31. [Google Scholar]
- Bowles, A.J.; Wilson, A.L.; Fowler, G.D. Synergistic benefits of recovered carbon black demineralisation for tyre recycling. Resour. Conserv. Recycl. 2023, 198, 107124. [Google Scholar] [CrossRef]
- Silva, C.M.; Maganinho, C.; Mendes, A.; Rocha, J.; Portugal, I.; Silva, C.M. Recovered carbon black: A comprehensive review of activation, demineralization, and incorporation in rubber matrices. Carbon Resour. Convers. 2025, 100334. [Google Scholar] [CrossRef]
- Moulin, L.; Da Silva, S.; Bounaceur, A.; Herblot, M.; Soudais, Y. Assessment of Recovered Carbon Black Obtained by Waste Tires Steam Water Thermolysis: An Industrial Application. Waste Biomass Valor. 2017, 8, 2757. [Google Scholar] [CrossRef]
- Hewitt, N. Compounding Precipitated Silica in Elastomers; William Andrew Publishing: Norwich, NY, USA, 2007. [Google Scholar]
- Bridgestone & Michelin, Recovered Carbon Black Guidelines. 2023. Available online: https://business.michelinman.com/blog/articles/michelin-and-bridgestone-tackle-environmental-initiative (accessed on 26 August 2025).
- Norris, C.J.; Hale, M.; Bennett, M. Pyrolytic carbon: Factors controlling in-rubber performance. Plast. Rubber Compos. 2014, 43, 245. [Google Scholar] [CrossRef]
- ASTM D1618-18; Standard Test Method for Carbon Black Extractables—Transmittance of Toluene Extract. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D8474-23; Standard Test Method for Recovered Carbon Black (rCB)—Compositional Analysis by Thermogravimetry (TGA). ASTM International: West Conshohocken, PA, USA, 2023.
- Darmstadt, H.; Roy, C.; Kaliaguine, S.; Sahouli, B.; Blacher, S.; Pirard, R.; Brouers, F. Fractal Analysis of Commercial and Pyrolytic Carbon Blacks Using Nitrogen Adsorption Data. Rubber Chem. Technol. 1995, 68, 330. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Sathiskumar, C.; Moorthy, R. Effect of process parameters on tire pyrolysis: A review. J. Sci. Ind. Res. India 2012, 71, 309. [Google Scholar]
- Darmstadt, H.; Roy, C.; Kaliaguine, S. ESCA characterisation of commercial carbon blacks and of carbon blacks from vacuum pyrolysis of used tires. Carbon 1994, 32, 1399. [Google Scholar]
- Yang, Y.; Wang, J.; Yan, L. Surface character of pyrolytic carbon black. J. Chem. Ind. Eng. 2005, 56, 720. [Google Scholar]
- Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Heat-treatment of carbon blacks obtained by pyrolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity. J. Anal. Appl. Pyrol. 2003, 67, 55. [Google Scholar] [CrossRef]
- Darmstadt, H.; Roy, C.; Kaliaguine, S.; Cormier, H. Surface energy of commercial and pyrolytic carbon blacks by inverse gas chromatography. Rubber Chem. Technol. 1997, 70, 759. [Google Scholar] [CrossRef]
- Chen, J.; Hu, M.; Li, Y.; Li, R.; Qing, L. Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect. Polymers 2023, 15, 2051. [Google Scholar] [CrossRef]
- ASTM D6556-21; Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM WK87480; New Test Method for Dry Powder rCB Particle Size Analysis via Laser Diffraction. ASTM International: West Conshohocken, PA, USA, 2023. Available online: https://www.astm.org/membership-participation/technical-committees/workitems/workitem-wk87480 (accessed on 26 August 2025).
- ASTM D5230-21; Standard Test Method for Carbon Black—Automated Individual Pellet Hardness. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D3849-22; Standard Test Method for Carbon Black-Morphological Characterization of Carbon Black Using Electron Microscopy. ASTM International: West Conshohocken, PA, USA, 2022.
- Grulke, E.A.; Rice, S.B.; Xiong, J.; Yamamoto, K.; Yoon, T.H.; Thomson, K.; Saffaripour, M.; Smallwood, G.J.; Lambert, J.W.; Stromberg, A.J.; et al. Size and Shape distributions of carbon lack aggregates by transmission electron microscopy. Carbon 2018, 130, 822. [Google Scholar] [CrossRef]
- ASTM D3191-10; Standard Test Methods for Carbon Black in SBR (Styrene-Butadiene Rubber)—Recipe and Evaluation Procedures. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM D8491-23; Standard Test Method for Recovered Carbon Black—Rheological Non-Linearity of a Rubber Compound by Fourier Transform Rheology. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D5289-19a; Standard Test Method for Rubber Property—Vulcanization Using Rotorless Cure Meters. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D412-16; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2015.
- Hu, Y.; Yu, X.; Ren, J.; Zeng, Z.; Qian, Q. Waste tire valorization: Advanced technologies, process simulation, system optimization, and sustainability. Sci. Total Environ. 2024, 942, 173561. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Czajka, K.; Krzyżyńska, R.; Jouhara, H. Waste tyre pyrolysis—Impact of the process on its products on the environment. TSEP 2020, 20, 100690. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Krzyżyńska, R.; Ghazal, H.; Jouhara, H. Experimental investigation of waste tyres pyrolysis gas desulfurization through absorption in alkanolamines solutions. Int. J. Hydrogen Energy 2022, 52, 1006. [Google Scholar] [CrossRef]
- Tricás, N.; Vidal-Escales, E.; Borrós, S.; Gerspacher, M. Influence of carbon black amorphous phase content on rubber filled compounds. Compos. Sci. Technol. 2003, 63, 1155. [Google Scholar] [CrossRef]
- Medalia, A.I. Effective degree of immobilization of rubber occluded within carbon black aggregates. Rubber Chem. Technol. 1972, 45, 1171. [Google Scholar] [CrossRef]
- Dannenberg, E.M. Bound rubber and carbon black reinforcement. Rubber Chem. Technol. 1986, 59, 512. [Google Scholar] [CrossRef]
- Hallett, J. Dispersion kinetics of carbonaceous materials during elastomer mixing. In Proceedings of the Tire Tech, Hannover, Germany, 4–6 March 2025. [Google Scholar]
- Payne, A.R. Dynamic mechanical properties of filler loaded vulcanisates. Rubber Plast. Age 1961, 42, 963. [Google Scholar]
- Norris, C.J.; Lopez-Cerdan, A.; Murfitt, M. Ash. In Proceedings of the Recovered Carbon Black, Amsterdam, The Netherlands, 5–6 November 2024. [Google Scholar]
- Costa, S.M.R.; Fowler, D.; Carreira, G.A.; Portugal, I.; Silva, C.M. Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires. Materials 2022, 15, 2030. [Google Scholar] [CrossRef] [PubMed]
- Zainal, N.; Halim, S. A review on demineralization, activation, and potential applications of the solid fraction obtained from the pyrolyzed waste tires. Clean. Waste Syst. 2025, 11, 100285. [Google Scholar] [CrossRef]
- Jiang, G.; Pan, P.; Sun, Y. Recovery of high pure pyrolytic carbon black from waste tires by dual acid treatment. J. Clean. Prod. 2022, 374, 133893. [Google Scholar] [CrossRef]
- ASTM D1506-15; Standard Test Methods for Carbon Black—Ash Content. ASTM International: West Conshohocken, PA, USA, 2015.







| Parameter | Unit | Truck Granulate | Car Granulate |
|---|---|---|---|
| VM Content | wt% | 64.7 (64.0→65.3) | 62.5 (61.8→63.0) |
| FC Content | wt% | 28.2 (27.6→28.8) | 24.5 (23.4→25.7) |
| Ash Content | wt% | 7.1 (6.5→7.8) | 13.1 (12.1→14.0) |
| Theoretical rCB Yield (FC + Ash) | wt% | 35.3 | 37.6 |
| Theoretical rCB Ash Content | wt% | 20.1 | 34.8 |
| Parameter | Unit | Truck rCB (Mi360HP) | Car rCB (Mi360+) | Car rCB HCR |
|---|---|---|---|---|
| Measured rCB Yield | wt% | 36 | 38 | 55 |
| Toluene Transmission | % | 98 | 99 | 100 |
| VM–TGA | wt% | 1.3 | 1.7 | 1.8 |
| FC–TGA | wt% | 79.0 | 67.6 | 79.4 |
| Ash–TGA | wt% | 18.9 | 30.8 | 18.7 |
| Si–ICP | wt% | 3.7 | 9.1 | 7.0 |
| SiO2–Calculated * | wt% | 7.9 | 19.5 | 15.0 |
| Zn–ICP | wt% | 5.0 | 3.5 | 2.5 |
| ZnS–Calculated * | wt% | 7.5 | 5.2 | 3.7 |
| BET Surface Area–Raw rCB | m2/g | 79.3 | 82.7 | 44.7 |
| BET Surface Area–rCB | m2/g | 89.9 | 85.8 | 75.0 |
| Milled Particle Size, d97 | µm | 10.3 | 9.5 | 10.3 |
| Average Pellet Hardness | gF | 33 | 35 | 39 |
| Parameter | Unit | N550 | Truck rCB (Mi360HP) | Car rCB (Mi360+) | Car rCB HCR |
|---|---|---|---|---|---|
| Dispersion–Ra | µm | 0.34 | 0.43 | 0.46 | 0.75 |
| Shore A Hardness | ° | 80 | 78 | 76 | 70 |
| M100% | MPa | 8.38 | 8.51 | 5.08 | 4.74 |
| M200% | MPa | 17.92 | 17.39 | 11.72 | 10.72 |
| Break Stress | MPa | 21.6 | 21.3 | 17.1 | 13.6 |
| Break Strain | % | 252 | 247 | 296 | 303 |
| E′0 | MPa | 24.1 | 23.0 | 19.4 | 15.0 |
| E′∞ | MPa | 14.6 | 14.6 | 13.0 | 11.3 |
| ∆E′ | MPa | 9.5 | 8.4 | 6.4 | 3.8 |
| Tan δmax | - | 0.19 | 0.18 | 0.17 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norris, C.; Lopez-Cerdan, A.; Eaton, P.; Moon, R.; Murfitt, M. The Importance of Feedstock and Process Control on the Composition of Recovered Carbon Black. Polymers 2025, 17, 2913. https://doi.org/10.3390/polym17212913
Norris C, Lopez-Cerdan A, Eaton P, Moon R, Murfitt M. The Importance of Feedstock and Process Control on the Composition of Recovered Carbon Black. Polymers. 2025; 17(21):2913. https://doi.org/10.3390/polym17212913
Chicago/Turabian StyleNorris, Christopher, Antonio Lopez-Cerdan, Peter Eaton, Richard Moon, and Mark Murfitt. 2025. "The Importance of Feedstock and Process Control on the Composition of Recovered Carbon Black" Polymers 17, no. 21: 2913. https://doi.org/10.3390/polym17212913
APA StyleNorris, C., Lopez-Cerdan, A., Eaton, P., Moon, R., & Murfitt, M. (2025). The Importance of Feedstock and Process Control on the Composition of Recovered Carbon Black. Polymers, 17(21), 2913. https://doi.org/10.3390/polym17212913
