Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Biocomposite
2.2. Filament Extrusion
2.3. Thermal Characterization
2.4. Three-Dimensional Printing
2.5. Characterization of Mechanical and Physical Properties
3. Results and Discussion
4. Relevance of Date Palm Fiber-Reinforced PLA for Sustainable Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PLA | Polylactic Acid |
3D | Three-Dimensional |
DSC | Differential Scanning Calorimetry |
FDM | Fused Deposition Modeling |
CAD | Computer-Aided Design |
STL | Standard Tessellation Language |
SEM | Scanning Electron Microscope |
2D | Two-Dimensional |
References
- Olanrewaju, O.; Oladele, I.O.; Adelani, S.O. Recent Advances in Natural Fiber Reinforced Metal/Ceramic/Polymer Composites: An Overview of the Structure-Property Relationship for Engineering Applications. Hybrid Adv. 2025, 8, 100378. [Google Scholar] [CrossRef]
- Ajithkumar, S.; Arulmurugan, B.; Rajeshkumar, L. 14—Prospects of Natural Fiber-Reinforced Polymer Composites in Engineering and Commercial Applications. In Applications of Composite Materials in Engineering; Puttegowda, M., Gowda, T.G.Y., Binoj, J.B., Rangappa, S.M., Siengchin, S., Eds.; Woodhead Series in Materials; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2025; pp. 335–364. ISBN 978-0-443-13989-5. [Google Scholar]
- Awad, S.; Hamouda, T.; Midani, M.; Katsou, E.; Fan, M. Polylactic Acid (PLA) Reinforced with Date Palm Sheath Fiber Bio-Composites: Evaluation of Fiber Density, Geometry, and Content on the Physical and Mechanical Properties. J. Nat. Fibers 2023, 20, 2143979. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Sarmin, S.N.; Jawaid, M.; Zaki, S.A.; Radzi, A.M.; Fouad, H.; Khiari, R.; Rahayu, S.; Amini, M.H.M. Enhancing the Properties of Date Palm Fibre Reinforced Bio-Epoxy Composites with Chitosan—Synthesis, Mechanical Properties, and Dimensional Stability. J. King Saud Univ. Sci. 2023, 35, 102833. [Google Scholar] [CrossRef]
- Ghori, W.; Saba, N.; Jawaid, M.; Asim, M. A Review on Date Palm (Phoenix dactylifera) Fibers and Its Polymer Composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 368, 012009. [Google Scholar] [CrossRef]
- AL-Oqla, F.M. Evaluation and Comparison of Date Palm Fibers with Other Common Natural Fibers. In Date Palm Fiber Composites: Processing, Properties and Applications; Midani, M., Saba, N., Alothman, O.Y., Eds.; Springer: Singapore, 2020; pp. 267–286. ISBN 978-981-15-9339-0. [Google Scholar]
- AL-Oqla, F.M.; Sapuan, S.M. Investigating the Inherent Characteristic/Performance Deterioration Interactions of Natural Fibers in Bio-Composites for Better Utilization of Resources. J. Polym. Environ. 2018, 26, 1290–1296. [Google Scholar] [CrossRef]
- AL-Oqla, F.M.; Hayajneh, M.T.; Fares, O. Investigating the Mechanical Thermal and Polymer Interfacial Characteristics of Jordanian Lignocellulosic Fibers to Demonstrate Their Capabilities for Sustainable Green Materials. J. Clean. Prod. 2019, 241, 118256. [Google Scholar] [CrossRef]
- Alaaeddin, M.H.; Sapuan, S.M.; Zuhri, M.Y.M.; Zainudin, E.S.; AL- Oqla, F.M. Lightweight and Durable PVDF–SSPF Composites for Photovoltaics Backsheet Applications: Thermal, Optical and Technical Properties. Materials 2019, 12, 2104. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, H.N.; Khan, S.H.; Alnaser, I.A.; Karim, M.R.; Saifullah, A.; Zhang, Z. Potential of Date Palm Fibers (DPFs) as a Sustainable Reinforcement for Bio-Composites and Its Property Enhancement for Key Applications: A Review. Macromol. Mater. Eng. 2024, 309, 2400081. [Google Scholar] [CrossRef]
- Bamaga, S.O. A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar. Fibers 2022, 10, 35. [Google Scholar] [CrossRef]
- Mlhem, A.; Abu-Jdayil, B.; Tong-Earn, T.; Iqbal, M. Sustainable Heat Insulation Composites from Date Palm Fibre Reinforced Poly(β-Hydroxybutyrate). J. Build. Eng. 2022, 54, 104617. [Google Scholar] [CrossRef]
- Al Abdallah, H.; Abu-Jdayil, B.; Iqbal, M.Z. The Effect of Alkaline Treatment on Poly(Lactic Acid)/Date Palm Wood Green Composites for Thermal Insulation. Polymers 2022, 14, 1143. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Barkhad, M.S.; Mourad, A.-H.I.; Iqbal, M.Z. Date Palm Wood Waste-Based Composites for Green Thermal Insulation Boards. J. Build. Eng. 2021, 43, 103224. [Google Scholar] [CrossRef]
- Raza, M.; Al Abdallah, H.; Kozal, M.; Al Khaldi, A.; Ammar, T.; Abu-Jdayil, B. Development and Characterization of Polystyrene–Date Palm Surface Fibers Composites for Sustainable Heat Insulation in Construction. J. Build. Eng. 2023, 75, 106982. [Google Scholar] [CrossRef]
- Kharrat, F.; Khlif, M.; Hilliou, L.; Haboussi, M.; Covas, J.A.; Nouri, H.; Bradai, C. Minimally Processed Date Palm (Phoenix dactylifera L.) Leaves as Natural Fillers and Processing Aids in Poly(Lactic Acid) Composites Designed for the Extrusion Film Blowing of Thin Packages. Ind. Crops Prod. 2020, 154, 112637. [Google Scholar] [CrossRef]
- Maou, S.; Meghezzi, A.; Grohens, Y.; Meftah, Y.; Kervoelen, A.; Magueresse, A. Effect of Various Chemical Modifications of Date Palm Fibers (DPFs) on the Thermo-Physical Properties of Polyvinyl Chloride (PVC)–High-Density Polyethylene (HDPE) Composites. Ind. Crops Prod. 2021, 171, 113974. [Google Scholar] [CrossRef]
- Pereira, D.F.; Branco, A.C.; Cláudio, R.; Marques, A.C.; Figueiredo-Pina, C.G. Development of Composites of PLA Filled with Different Amounts of Rice Husk Fibers for Fused Deposition Modeling. J. Nat. Fibers 2023, 20, 2162183. [Google Scholar] [CrossRef]
- Kariz, M.; Sernek, M.; Obućina, M.; Kuzman, M.K. Effect of Wood Content in FDM Filament on Properties of 3D Printed Parts. Mater. Today Commun. 2018, 14, 135–140. [Google Scholar] [CrossRef]
- Xiao, X.; Chevali, V.S.; Song, P.; He, D.; Wang, H. Polylactide/Hemp Hurd Biocomposites as Sustainable 3D Printing Feedstock. Compos. Sci. Technol. 2019, 184, 107887. [Google Scholar] [CrossRef]
- Kumar, R.; Srivastava, P.; Agrawal, A.P.; Kumar, S.; Kumar, V. Development and Characterization of Polypropylene-Carbon Nanotubes (PP-CNT) Composites: An Overview Toward Hurdles and Achievements. Macromol. Symp. 2025, 414, 2400058. [Google Scholar] [CrossRef]
- Srivastava, P.; Arumugam, A.B.; Agrawal, A.P.; Ntumba, Z.N. Development of Hemp Fiber Reinforced PLA Composites for Sustainable 3D Printing: Mechanical and Microstructural Properties. J. Nat. Fibers 2025, 22, 2558214. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. [Google Scholar] [CrossRef]
- Abdellah, M.Y.; Sadek, M.G.; Alharthi, H.; Abdel-Jaber, G.T.; Backar, A.H. Characteristic Properties of Date-Palm Fibre/Sheep Wool Reinforced Polyester Composites. J. Bioresour. Bioprod. 2023, 8, 430–443. [Google Scholar] [CrossRef]
- Ali, M. Epoxy–Date Palm Fiber Composites: Study on Manufacturing and Properties. Int. J. Polym. Sci. 2023, 2023, 5670293. [Google Scholar] [CrossRef]
- Ali, M.; Al-Assaf, A.H.; Salah, M. Date Palm Fiber-Reinforced Recycled Polymer Composites: Synthesis and Characterization. Adv. Polym. Technol. 2022, 2022, 7957456. [Google Scholar] [CrossRef]
- Aly, R.; Olalere, O.; Ryder, A.; Alyammahi, M.; Samad, W.A. Mechanical Property Characterization of Virgin and Recycled PLA Blends in Single-Screw Filament Extrusion for 3D Printing. Polymers 2024, 16, 3569. [Google Scholar] [CrossRef]
- 3devo. Output Too Low or Thin. Available online: https://support.3devo.com/output-too-low-or-thin (accessed on 27 May 2025).
- 3devo. Filament Thickness Deviation (Inconsistent Diameter). Available online: https://support.3devo.com/filament-thickness-deviation-inconsistent-diameter (accessed on 27 May 2025).
- 3devo. FM Essentials: The Heaters. Available online: https://support.3devo.com/fm-essentials-the-heaters (accessed on 27 May 2025).
- ASTM D3418-21; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d3418-21.html (accessed on 1 January 2024).
- Mulligan, D.; Gnaniah, S.; Sims, G. Measurement Good Practice Guide No. 62—Thermal Analysis Techniques for Composites and Adhesives; NPL Materials Centre—National Physical Laboratory: Teddington, UK, 2003. [Google Scholar]
- Billah, K.M.M.; Lorenzana, F.A.R.; Martinez, N.L.; Chacon, S.; Wicker, R.B.; Espalin, D. Thermal Analysis of Thermoplastic Materials Filled with Chopped Fiber for Large Area 3D Printing. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 2019. [Google Scholar]
- Karimi, A.; Rahmatabadi, D.; Baghani, M. Various FDM Mechanisms Used in the Fabrication of Continuous-Fiber Reinforced Composites: A Review. Polymers 2024, 16, 831. [Google Scholar] [CrossRef]
- Khabia, S.; Jain, K.K. Influence of Change in Layer Thickness on Mechanical Properties of Components 3D Printed on Zortrax M 200 FDM Printer with Z-ABS Filament Material & Accucraft I250+ FDM Printer with Low Cost ABS Filament Material. Mater. Today Proc. 2020, 26, 1315–1322. [Google Scholar] [CrossRef]
- Zortrax M200—Award-Winning Desktop 3D Printer. Available online: https://zortrax.com/3d-printers/m200/ (accessed on 25 July 2025).
- Mian, S.H.; Abouel Nasr, E.; Moiduddin, K.; Saleh, M.; Alkhalefah, H. An Insight into the Characteristics of 3D Printed Polymer Materials for Orthoses Applications: Experimental Study. Polymers 2024, 16, 403. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.; Fitriyana, D.F.; Nugraha, F.W.; Bayuseno, A.P.; Ammarullah, M.I. Investigation of the Influence of 3D Printing Parameters on the Properties of Interference Screws Made of PLA/PCL/HA Biocomposite Filaments. Mater. Technol. 2025, 40, 2443598. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Deng, Z.; Zhang, S.; Cai, J. Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties of 3D Printed Polylactic Acid Materials. Polym. Test. 2020, 86, 106483. [Google Scholar] [CrossRef]
- Alsoufi, M.S.; Alhazmi, M.W.; Suker, D.K.; Alghamdi, T.A.; Sabbagh, R.A.; Felemban, M.A.; Bazuhair, F.K. Experimental Characterization of the Influence of Nozzle Temperature in FDM 3D Printed Pure PLA and Advanced PLA+. Am. J. Mech. Eng. 2019, 7, 45–60. [Google Scholar] [CrossRef]
- Kumar, M.S.; Farooq, M.U.; Ross, N.S.; Yang, C.-H.; Kavimani, V.; Adediran, A.A. Achieving Effective Interlayer Bonding of PLA Parts during the Material Extrusion Process with Enhanced Mechanical Properties. Sci. Rep. 2023, 13, 6800. [Google Scholar] [CrossRef] [PubMed]
- ASTM D638-22; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2023.
- Egan, B.C.; Brownell, C.J.; Murray, M.M. Experimental Assessment of Performance Characteristics for Pitching Flexible Propulsors. J. Fluids Struct. 2016, 67, 22–33. [Google Scholar] [CrossRef]
- Selvamani, S.K.; Rajan, K.; Samykano, M.; Kumar, R.R.; Kadirgama, K.; Mohan, R.V. Investigation of Tensile Properties of PLA–Brass Composite Using FDM. Prog. Addit. Manuf. 2022, 7, 839–851. [Google Scholar] [CrossRef]
- Tensile Properties of Rigid and Semi-Rigid Plastics (ASTM D638 and ISO 527); Material Testing System; SHIMADZU Corporation: Kyoto, Japan, 2017.
- Tensile Properties ASTM D638 vs. ASTM D3039; Intetek: London, UK, 2023.
- Cooperstein, I.; Indukuri, S.R.K.C.; Bouketov, A.; Levy, U.; Magdassi, S. 3D Printing of Micrometer-Sized Transparent Ceramics with On-Demand Optical-Gain Properties. Adv. Mater. 2020, 32, 2001675. [Google Scholar] [CrossRef]
- Gong, H.; Crater, C.; Ordonez, A.; Ward, C.; Waller, M.; Ginn, C. Material Properties and Shrinkage of 3D Printing Parts Using Ultrafuse Stainless Steel 316LX Filament. MATEC Web Conf. 2018, 249, 01001. [Google Scholar] [CrossRef]
- ASTM D570-98; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2010; p. 4.
- Kacem, M.A.; Guebailia, M.; Dezaki, M.L.; Abdi, S.; Sabba, N.; Zolfagharian, A.; Bodaghi, M. Development and 3D Printing of PLA Bio-Composites Reinforced with Short Yucca Fibers and Enhanced Thermal and Dynamic Mechanical Performance. J. Mater. Res. Technol. 2025, 36, 1243–1258. [Google Scholar] [CrossRef]
- Paul, A.; Sreedevi, K.; Sharma, S.S.; Anjana, V.N. Polylactic Acid (PLA). In Handbook of Biopolymers; Springer: Singapore, 2022; pp. 1–33. ISBN 978-981-16-6603-2. [Google Scholar]
- Biosurfaces: A Materials Science and Engineering Perspective | Wiley. Available online: https://www.wiley.com/en-us/Biosurfaces%3A+A+Materials+Science+and+Engineering+Perspective-p-9781118299975 (accessed on 31 December 2023).
- Cao, M.; Cui, T.; Yue, Y.; Li, C.; Guo, X.; Jia, X.; Wang, B. Investigation of Carbon Fiber on the Tensile Property of FDM-Produced PLA Specimen. Polymers 2022, 14, 5230. [Google Scholar] [CrossRef]
- Saleh, M.; Anwar, S.; AlFaify, A.Y.; Al-Ahmari, A.M.; Abd Elgawad, A.E.E. Development of PLA/Recycled-Desized Carbon Fiber Composites for 3D Printing: Thermal, Mechanical, and Morphological Analyses. J. Mater. Res. Technol. 2024, 29, 2768–2780. [Google Scholar] [CrossRef]
- Zadeh, K.M.; Inuwa, I.M.; Arjmandi, R.; Hassan, A.; Almaadeed, M.; Mohamad, Z.; Khanam, P.N. Effects of Date Palm Leaf Fiber on the Thermal and Tensile Properties of Recycled Ternary Polyolefin Blend Composites. Fibers Polym. 2017, 18, 1330–1335. [Google Scholar] [CrossRef]
- Araújo, J.R.; Waldman, W.R.; De Paoli, M.A. Thermal Properties of High Density Polyethylene Composites with Natural Fibres: Coupling Agent Effect. Polym. Degrad. Stab. 2008, 93, 1770–1775. [Google Scholar] [CrossRef]
- Mi, Y.; Chen, X.; Guo, Q. Bamboo Fiber-Reinforced Polypropylene Composites: Crystallization and Interfacial Morphology. J. Appl. Polym. Sci. 1997, 64, 1267–1273. [Google Scholar] [CrossRef]
- Andersson, H.; Örtegren, J.; Zhang, R.; Grauers, M.; Olin, H. Variable Low-Density Polylactic Acid and Microsphere Composite Material for Additive Manufacturing. Addit. Manuf. 2021, 40, 101925. [Google Scholar] [CrossRef]
- 3devo. PLA Colored Filament: Extrusion Walkthrough Using Masterbatches. Available online: https://support.3devo.com/colored-filament (accessed on 1 September 2025).
- Fouly, A.; Alnaser, I.A.; Assaifan, A.K.; Abdo, H.S. Evaluating the Performance of 3D-Printed PLA Reinforced with Date Pit Particles for Its Suitability as an Acetabular Liner in Artificial Hip Joints. Polymers 2022, 14, 3321. [Google Scholar] [CrossRef]
- Neoh, K.W.; Tshai, K.Y.; Khiew, P.S.; Chia, C.H. Micro Palm and Kenaf Fibers Reinforced PLA Composite: Effect of Volume Fraction on Tensile Strength. Appl. Mech. Mater. 2012, 145, 1–5. [Google Scholar] [CrossRef]
- Ghanmi, I.; Slimani, F.; Ghanmi, S.; Guedri, M. Development and Characterization of a PLA Biocomposite Reinforced with Date Palm Fibers. Eng. Technol. Appl. Sci. Res. 2024, 14, 13631–13636. [Google Scholar] [CrossRef]
- Ebrahim, A.; Abdellah, M.Y.; Gomaa, A.M.A.; Kourmpetis, M.; Youssef, H.A.H.; Abdel-Jaber, G.T. Enhancing Polymer Composites with Date Palm Residues for Sustainable Innovation: A Review. Int. J. Mater. Res. 2025, 116, 225–239. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Berto, F.; Ayatollahi, M.R.; Reinicke, T. Characterization of 3D-Printed PLA Parts with Different Raster Orientations and Printing Speeds. Sci. Rep. 2022, 12, 1016. [Google Scholar] [CrossRef]
- Yao, T.; Ye, J.; Deng, Z.; Zhang, K.; Ma, Y.; Ouyang, H. Tensile Failure Strength and Separation Angle of FDM 3D Printing PLA Material: Experimental and Theoretical Analyses. Compos. Part B Eng. 2020, 188, 107894. [Google Scholar] [CrossRef]
- Gao, H.; Qiang, T. Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites. Materials 2017, 10, 624. [Google Scholar] [CrossRef]
- Cabrera, F.L.; Arellano, M.T.; Franco-Urquiza, E.A. PLA/Jute Fabric Laminate Composites: Influence of Weight Percentage on Mechanical Properties and Fracture Behavior. Discov. Mech. Eng. 2025, 4, 21. [Google Scholar] [CrossRef]
- Kaiser, M.; Anuar, H.; Razak, S. Ductile–Brittle Transition Temperature of Polylactic Acid-Based Biocomposite. J. Thermoplast. Compos. Mater. 2013, 26, 216–226. [Google Scholar] [CrossRef]
- Azad, M.M.; Shah, A.u.R.; Prabhakar, M.N.; Kim, H.S. Deep Learning-Based Microscopic Damage Assessment of Fiber-Reinforced Polymer Composites. Materials 2024, 17, 5265. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Kao, N. PLA Based Biopolymer Reinforced with Natural Fibre: A Review. J. Polym. Environ. 2011, 19, 714–725. [Google Scholar] [CrossRef]
- Banjo, A.D.; Agrawal, V.; Auad, M.L.; Celestine, A.-D.N. Moisture-Induced Changes in the Mechanical Behavior of 3D Printed Polymers. Compos. Part C Open Access 2022, 7, 100243. [Google Scholar] [CrossRef]
- Ecker, J.V.; Haider, A.; Burzic, I.; Huber, A.; Eder, G.; Hild, S. Mechanical Properties and Water Absorption Behaviour of PLA and PLA/Wood Composites Prepared by 3D Printing and Injection Moulding. Rapid Prototyp. J. 2019, 25, 672–678. [Google Scholar] [CrossRef]
- Schwarz, D.; Pagáč, M.; Petruš, J.; Polzer, S. Effect of Water-Induced and Physical Aging on Mechanical Properties of 3D Printed Elastomeric Polyurethane. Polymers 2022, 14, 5496. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.C.; Palmer, P.; Ji, H.-F.; Ehrlich, G.D.; Król, J.E. Bacterial Biofilm Growth on 3D-Printed Materials. Front. Microbiol. 2021, 12, 646303. [Google Scholar] [CrossRef]
- Augustia, V.A.S.; Chafidz, A.; Setyaningsih, L.; Rizal, M.; Kaavessina, M.; Zahrani, S.M.A. Effect of Date Palm Fiber Loadings on the Mechanical Properties of High Density Polyethylene/Date Palm Fiber Composites. Key Eng. Mater. 2018, 773, 94–99. [Google Scholar] [CrossRef]
- Mohammed, M.; Jawad, A.J.M.; Mohammed, A.M.; Oleiwi, J.K.; Adam, T.; Osman, A.F.; Dahham, O.S.; Betar, B.O.; Gopinath, S.C.B.; Jaafar, M. Challenges and Advancement in Water Absorption of Natural Fiber-Reinforced Polymer Composites. Polym. Test. 2023, 124, 108083. [Google Scholar] [CrossRef]
- Khan, S.H.; Dhakal, H.N.; Saifullah, A.; Zhang, Z. Improved Mechanical and Thermal Properties of Date Palm Microfiber-Reinforced PCL Biocomposites for Rigid Packaging. Molecules 2025, 30, 857. [Google Scholar] [CrossRef]
- Belgacem, C.; Serra-Parareda, F.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M.; Boufi, S. The Integral Utilization of Date Palm Waste to Produce Plastic Composites. Polymers 2021, 13, 2335. [Google Scholar] [CrossRef]
- Mousa, N.; Galiwango, E.; Haris, S.; Al-Marzouqi, A.H.; Abu-Jdayil, B.; Caires, Y.L. A New Green Composite Based on Plasticized Polylactic Acid Mixed with Date Palm Waste for Single-Use Plastics Applications. Polymers 2022, 14, 574. [Google Scholar] [CrossRef]
- Satti, S.M.; Shah, A.A.; Marsh, T.L.; Auras, R. Biodegradation of Poly(Lactic Acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-Augmentation and Bio-Stimulation. J. Polym. Environ. 2018, 26, 3848–3857. [Google Scholar] [CrossRef]
- Kalita, N.K.; Damare, N.A.; Hazarika, D.; Bhagabati, P.; Kalamdhad, A.; Katiyar, V. Biodegradation and Characterization Study of Compostable PLA Bioplastic Containing Algae Biomass as Potential Degradation Accelerator. Environ. Chall. 2021, 3, 100067. [Google Scholar] [CrossRef]
- Wan Ishak, W.H.; Rosli, N.A.; Ahmad, I. Influence of Amorphous Cellulose on Mechanical, Thermal, and Hydrolytic Degradation of Poly(Lactic Acid) Biocomposites. Sci. Rep. 2020, 10, 11342. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, Y.; Tian, J. Study on the Biodegradability of Modified Starch/Polylactic Acid (PLA) Composite Materials. RSC Adv. 2020, 10, 26298–26307. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, J.S.N.; Chandran, M.S. A Comprehensive Review on the Influence of Surface Treatment and 3D Printing of Natural Fiber Composites. Compos. Interfaces 2025, 1–36. [Google Scholar] [CrossRef]
- Mundhe, A.; Kandasubramanian, B. Advancements in Natural Fiber Composites: Innovative Chemical Surface Treatments, Characterizaton Techniques, Environmental Sustainability, and Wide-Ranging Applications. Hybrid Adv. 2024, 7, 100282. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Aisyah, H.A.; Asyraf, M.R.M.; Hassan, S.A.; Zainudin, E.S.; Sapuan, S.M.; Sharma, S.; Bangar, S.P.; Jumaidin, R.; et al. Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers 2022, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Kunanopparat, T.; Menut, P.; Morel, M.-H.; Guilbert, S. Reinforcement of Plasticized Wheat Gluten with Natural Fibers: From Mechanical Improvement to Deplasticizing Effect. Compos. Part A Appl. Sci. Manuf. 2008, 39, 777–785. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Kennedy, J.F. Studies on the Properties of Natural Fibers-Reinforced Thermoplastic Starch Composites. Carbohydr. Polym. 2005, 62, 19–24. [Google Scholar] [CrossRef]
- Nur, H.P.; Hossain, M.A.; Sultana, S.; Mollah, M.M. Preparation of Polymer Composites Using Natural Fiber and Their Physico-Mechanical Properties. Bangladesh J. Sci. Ind. Res. 2010, 45, 117–122. [Google Scholar] [CrossRef]
Parameters | Heater | Pure PLA | Biocomposite |
---|---|---|---|
Screw speed (rpm) | 5 | 6.5 | |
Fan cooling speed (%) | 30 | 30 | |
Feed zone (°C) | H4 | 170 | 170 |
Transition zone (°C) | H3 | 185 | 190 |
H2 | 190 | 195 | |
Metering zone (°C) | H1 | 180 | 180 |
Parameters | Pure PLA | Biocomposite |
---|---|---|
Layer thickness (mm) | 0.14 | 0.14 |
Print speed (mm/s) | 70 | 63 |
Infill (%) | 100 | 100 |
Platform temperature (°C) | 55 | 65 |
Extrusion temperature (°C) | 210 | 220 |
Characterization | Properties | Pure PLA | Biocomposite |
---|---|---|---|
Thermal | Glass Transition Temperature (°C) | 63.2 | 63 |
Crystallization Temperature (°C) | 124.1 | ||
Melting Temperature (°C) | 156.9 | 156.9 | |
Mechanical | Yield Strength (MPa) | 33.37 ± 0.92 | 36.75 ± 2.91 |
Tensile Strength (MPa) | 50.40 ± 0.62 | 53.69 ± 1.75 | |
Elongation at Break (%) | 2.45 ± 0.20 | 1.93 ± 0.10 | |
Physical | Water Absorption (%) | 0.10 ± 0.014 | 0.58 ± 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian, S.H.; bin Jumah, A.; Saleh, M.; Mohammed, J.A. Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications. Polymers 2025, 17, 2707. https://doi.org/10.3390/polym17192707
Mian SH, bin Jumah A, Saleh M, Mohammed JA. Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications. Polymers. 2025; 17(19):2707. https://doi.org/10.3390/polym17192707
Chicago/Turabian StyleMian, Syed Hammad, Abdulrahman bin Jumah, Mustafa Saleh, and Jabair Ali Mohammed. 2025. "Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications" Polymers 17, no. 19: 2707. https://doi.org/10.3390/polym17192707
APA StyleMian, S. H., bin Jumah, A., Saleh, M., & Mohammed, J. A. (2025). Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications. Polymers, 17(19), 2707. https://doi.org/10.3390/polym17192707