Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, Y.; Huang, W.; Di, W.; Wang, X.; Zhu, Z.; Zhou, Y.; Huo, F.; Wang, W.; Cao, Y. Mechanochemical Lithography. J. Am. Chem. Soc. 2022, 144, 9949–9958. [Google Scholar] [CrossRef]
- Tallents, G.; Wagenaars, E.; Pert, G. Lithography at EUV wavelengths. Nat. Photonics 2010, 4, 809–811. [Google Scholar] [CrossRef]
- Wagner, C.; Harned, N. Lithography gets extreme. Nat. Photonics 2010, 4, 24–26. [Google Scholar] [CrossRef]
- Fischer, J.; Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2013, 7, 22–44. [Google Scholar] [CrossRef]
- Gan, Z.; Cao, Y.; Evans, R.A.; Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 2013, 4, 2061. [Google Scholar] [CrossRef]
- Shi, J.; Ravi, A.; Richey, N.E.; Gong, H.; Bent, S.F. Molecular Layer Deposition of a Hafnium-Based Hybrid Thin Film as an Electron Beam Resist. ACS Appl. Mater. Interfaces 2022, 14, 27140–27148. [Google Scholar] [CrossRef]
- Wang, X.; Tao, P.; Wang, Q.; Zhao, R.; Liu, T.; Hu, Y.; Hu, Z.; Wang, Y.; Wang, J.; Tang, Y.; et al. Trends in photoresist materials for extreme ultraviolet lithography: A review. Mater. Today 2023, 67, 299–319. [Google Scholar] [CrossRef]
- Gao, J.; Chen, L.; Yu, J.; Guo, X.; Hu, R.; Wang, S.; Chen, J.; Li, Y.; Yang, G. Research Progress on High Resolution Extreme Ultraviolet Photoresist. Chin. J. Appl. Chem. 2021, 38, 1138–1153. [Google Scholar]
- Tao, P.; Wang, Q.; Vockenhuber, M.; Zhu, D.; Liu, T.; Wang, X.; Hu, Z.; Wang, Y.; Wang, J.; Tang, Y.; et al. Charge Shielding-Oriented Design of Zinc-Based Nanoparticle Liquids for Controlled Nanofabrication. J. Am. Chem. Soc. 2023, 145, 23609–23619. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Chen, J.; Yu, T.; Zeng, Y.; Yang, G.; Li, Y. Chemically Amplified Resist Based on Dendritic Molecular Glass for Electron Beam Lithography. Chem. Res. Chin. Univ. 2023, 39, 139–143. [Google Scholar] [CrossRef]
- Guo, M.; Liu, X.Y.; Li, T.; Duan, Q.; Dong, X.Z.; Liu, J.; Jin, F.; Zheng, M.L. Cross-Scale Topography Achieved by MOPL with Positive Photoresist to Regulate the Cell Behavior. Small 2023, 19, 2303572–2303581. [Google Scholar] [CrossRef] [PubMed]
- Sha, J.; Lee, J.-K.; Kang, S.; Prabhu, V.M.; Soles, C.L.; Bonnesen, P.V.; Ober, C.K. Architectural Effects on Acid Reaction-Diffusion Kinetics in Molecular Glass Photoresists. Chem. Mater. 2010, 22, 3093–3098. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, H.; Wang, X.; Hu, Z.; Tao, P.; Li, M.; Wang, J.; Tang, Y.; Xu, H.; He, X. Exceptional Light Sensitivity by Thiol–Ene Click Lithography. J. Am. Chem. Soc. 2023, 145, 3064–3074. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, J.; Zeng, Y.; Yu, T.; Wang, S.; Guo, X.; Hu, R.; Tian, P.; Vockenhuber, M.; Kazazis, D. Nonchemically Amplified Molecular Resists Based on Sulfonium-Functionalized Sulfone Derivatives for Sub-13 nm Nanolithography. ACS Appl. Nano Mater. 2023, 6, 18480–18490. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, S.; Cui, X.; Cong, X.; Guo, X.; Hu, R.; Wang, S.; Chen, J.; Li, Y.; Yang, G. Effective Optimization Strategy for Electron Beam Lithography of Molecular Glass Negative Photoresist. Adv. Mater. Interfaces 2023, 10, 2300194. [Google Scholar] [CrossRef]
- Cardineau, B.; Garczynski, P.; Earley, W.; Brainard, R.L. Chain-Scission Polyethers for EUV Lithography. J. Photopolym. Sci. Technol. 2013, 26, 665–671. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Yu, T.; Zeng, Y.; Guo, X.; Wang, S.; Allenet, T.; Vockenhuber, M.; Ekinci, Y.; Yang, G.; et al. Sulfonium-Functionalized Polystyrene-Based Nonchemically Amplified Resists Enabling Sub-13 nm Nanolithography. ACS Appl. Mater. Interfaces 2022, 15, 2289–2300. [Google Scholar] [CrossRef]
- Goldfarb, D.L.; Wang, R.; Thomas, C.; Polgrean, H.; Lawson, M.; Hess, A.; De Silva, A.; Gronheid, R.; Sanders, D.P. EUV chemically amplified resist component distribution and efficiency for stochastic defect control. In Advances in Patterning Materials and Processes XXXVII; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Arimitsu, K.; Yonekura, M.; Furutani, M. Acid-amplifying polymers: Synthesis, characterization, and application to environmentally stable chemical amplification positive (ESCAP) resists. RSC Adv. 2015, 5, 80311–80317. [Google Scholar] [CrossRef]
- Liu, J.; Kang, W. New Chemically Amplified Positive Photoresist with Phenolic Resin Modified by GMA and BOC Protection. Polymers 2023, 15, 1598. [Google Scholar] [CrossRef] [PubMed]
- Ober, M.S.; Romer, D.R.; Etienne, J.; Thomas, P.; Jain, V.; Cameron, J.F.; Thackeray, J.W. Backbone degradable poly (aryl acetal) photoresist polymers: Synthesis, acid sensitivity, and extreme ultraviolet lithography performance. Macromolecules 2019, 52, 886–895. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, M.J.; Sohn, K.H.; Kang, H.N.; Kang, M.K.; Lee, H. Enhanced Acid Diffusion Control by Using Photoacid Generator Bound Polymer Resist. J. Nanosci. Nanotechnol. 2015, 15, 1764–1766. [Google Scholar] [CrossRef]
- Deng, J.Y.; Bailey, S.; Jiang, S.Y.; Ober, C.K. High-Performance Chain Scissionable Resists for Extreme Ultraviolet Lithography: Discovery of the Photoacid Generator Structure and Mechanism. Chem. Mater. 2022, 34, 6170–6181. [Google Scholar] [CrossRef]
- Deng, J.; Bailey, S.; Jiang, S.; Ober, C.K. Modular Synthesis of Phthalaldehyde Derivatives Enabling Access to Photoacid Generator-Bound Self-Immolative Polymer Resists with Next-Generation Photolithographic Properties. J. Am. Chem. Soc. 2022, 144, 19508–19520. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Sakai, K.; Kasahara, K.; Kosma, V.; Yang, K.; Herbol, H.C.; Odent, J.; Clancy, P.; Giannelis, E.P.; Ober, C.K. Metal–Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chem. Mater. 2018, 30, 4124–4133. [Google Scholar] [CrossRef]
- Evans, P.J.; Brick, C.M.; Bell, A.; Kandanarachchi, P.; Thoresen, J.; Rhodes, L.F.; Onishi, O.; Ikeda, H.; Benedikt, G.M.; Koronich, E. Polymers of norbornenyl-4-phenol: Dissolution rate characteristics, positive tone photo-patterning, and polymer properties. J. Appl. Polym. Sci. 2017, 134, 44952–44960. [Google Scholar] [CrossRef]
- Kostko, O.; Xu, B.; Ahmed, M.; Slaughter, D.S.; Ogletree, D.F.; Closser, K.D.; Prendergast, D.G.; Naulleau, P.; Olynick, D.L.; Ashby, P.D.; et al. Fundamental understanding of chemical processes in extreme ultraviolet resist materials. J. Chem. Phys. 2018, 149, 154305–154314. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Vesters, Y.; Jiang, J.; De Simone, D.; Vandenberghe, G.; Kozawa, T. Role of Metal Sensitizers for Sensitivity Improvement in EUV Chemically Amplified Resist. J. Photopolym. Sci. Technol. 2018, 31, 747–751. [Google Scholar] [CrossRef]
- Jing, J.; Giordano, G.; Fallica, R.; DeSimone, D.; Vandenberghe, G. Sensitizer for EUV Chemically Amplified Resist: Metal versus Halogen. J. Photopolym. Sci. Technol. 2019, 32, 15–19. [Google Scholar] [CrossRef]
- Uhl, A.; Bendig, J.; Leistner, J.; Jagdhold, U.; Bauer, J. E-beam and deep UV exposure of PMMA based resists–identical or different chemical behavior? In Proceedings of the 15th Annual SPIE Conference on Advances in Resist Technology and Processing, Santa Clara, CA, USA, 23–25 February 1998; pp. 1452–1457. [Google Scholar]
- Thiyagarajan, M.; Dean, K.; Gonsalves, K.E. Improved lithographic performance for EUV resists based on polymers having a photoacid generator (PAG) in the backbone. J. Photopolym. Sci. Technol. 2005, 18, 737–741. [Google Scholar] [CrossRef]
- Shirai, M.; Maki, K.; Okamura, H.; Kaneyama, K.; Itani, T. Non-Chemically Amplified EUV Resist Based on PHS. J. Photopolym. Sci. Technol. 2009, 22, 111–116. [Google Scholar] [CrossRef]
- Nagai, T.; Nakagawa, H.; Naruoka, T.; Tagawa, S.; Oshima, A.; Nagahara, S.; Shiraishi, G.; Yoshihara, K.; Terashita, Y.; Minekawa, Y.; et al. Novel high sensitivity EUV photoresist for sub-7 nm node. Photopolym. Sci. Technol. 2016, 29, 475–478. [Google Scholar] [CrossRef]
- Trikeriotis, M.; Bae, W.J.; Schwartz, E.; Krysak, M.; Lafferty, N.; Xie, P.; Smith, B.; Zimmerman, P.; Ober, C.K.; Giannelis, E.P. Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. In Proceedings of the Conference on Advances in Resist Materials and Processing Technology XXVII, San Jose, CA, USA, 22–24 February 2010; pp. 1–10. [Google Scholar]
- Wang, Y.; Chen, L.; Yu, J.; Guo, X.; Wang, S.; Yang, G. Negative-tone molecular glass photoresist for high-resolution electron beam lithography. R. Soc. Open Sci. 2021, 8, 202132. [Google Scholar] [CrossRef]
- Hu, S.; Chen, J.; Yu, T.; Zeng, Y.; Guo, X.; Wang, S.; Yang, G.; Li, Y. Photoresists based on bisphenol A derivatives with tert-butyl ester groups for electron beam lithography. J. Photochem. Photobiol. A 2023, 436, 114351. [Google Scholar] [CrossRef]
- Kyoko, K.; Takashi, H.; Fukuda, H.; Hirayama, T.; Shiono, D.; Hada, H.; Onodera, J. Negative-tone polyphenol resist based on chemically-amplified polarity change reaction with sub-50 nm resolution capability. In Proceedings of the Conference on Advances in Resist Technology and Processing XXIII, San Jose, CA, USA, 20–22 February 2006; pp. U264–U271. [Google Scholar]
- Zhang, S.; Chen, L.; Gao, J.; Cui, X.; Cong, X.; Guo, X.; Hu, R.; Wang, S.; Chen, J.; Li, Y.; et al. Chemically Amplified Molecular Glass Photoresist Regulated by 2-Aminoanthracene Additive for Electron Beam Lithography and Extreme Ultraviolet Lithography. Acs Omega 2023, 8, 26739–26748. [Google Scholar] [CrossRef] [PubMed]
- Shumway, M.D.; Lee, S.H.; Cho, C.H.; Naulleau, P.; Goldberg, K.A.; Bokor, J. Extremely fine-pitch printing with a 10x Schwarzschild optic at extreme ultraviolet wavelengths. In Proceedings of the Emerging Lithographic Technologies V Conference, Santa Clara, CA, USA, 27 February–1 March 2001; pp. 357–362. [Google Scholar]
- Jie, S. A Lithographic Resist-Based Simple Technology for High Yield Microfabrication of Air Bridges. J. Microelectromech. Syst. 2012, 21, 1285–1287. [Google Scholar] [CrossRef]
- Toomey, E.; Colangelo, M.; Berggren, K.K. Investigation of ma-N 2400 series photoresist as an electron-beam resist for superconducting nanoscale devices. J. Vac. Sci. Technol. B 2019, 37, 051207. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Zheng, X.; Ji, C.; Mu, Q.; Liu, R.; Liu, X. Synthesis of chemically amplified photoresist polymer containing four (Meth) acrylate monomers via RAFT polymerization and its application for KrF lithography. J. Polym. Res. 2016, 23, 102. [Google Scholar] [CrossRef]
- Wu, L.; Baljozovic, M.; Portale, G.; Kazazis, D.; Vockenhuber, M.; Jung, T.; Ekinci, Y.; Castellanos, S. Mechanistic insights in Zr-and Hf-based molecular hybrid EUV photoresists. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 013504. [Google Scholar] [CrossRef]
- Mattson, E.C.; Cabrera, Y.; Rupich, S.M.; Wang, Y.; Oyekan, K.A.; Mustard, T.J.; Halls, M.D.; Bechtel, H.A.; Martin, M.C.; Chabal, Y.J. Chemical modification mechanisms in hybrid hafnium oxo-methacrylate nanocluster photoresists for extreme ultraviolet patterning. Chem. Mater. 2018, 30, 6192–6206. [Google Scholar] [CrossRef]
- Thakur, N.; Bliem, R.; Mochi, I.; Vockenhuber, M.; Ekinci, Y.; Castellanos, S. Mixed-ligand zinc-oxoclusters: Efficient chemistry for high resolution nanolithography. J. Mater. Chem. C 2020, 8, 14499–14506. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, P.; Liu, G. Cu/photoredox-catalyzed decarboxylative radical C(sp3)-C(sp3) cross-coupling reactions. Sci. China Chem. 2023, 66, 2858–2862. [Google Scholar] [CrossRef]
- Zawadzki, M.; Chachereau, A.; Kocisek, J.; Franck, C.M.; Fedor, J. Electron attachment to hexafluoropropylene oxide (HFPO). J. Chem. Phys. 2018, 149, 204305–204312. [Google Scholar] [CrossRef] [PubMed]
- Böhler, E.; Warneke, J.; Swiderek, P. Control of chemical reactions and synthesis by low-energy electrons. Chem. Soc. Rev. 2013, 42, 9219–9231. [Google Scholar] [CrossRef] [PubMed]
- Ikari, Y.; Okamoto, K.; Konda, A.; Kozawa, T.; Tamura, T. Heating effect of the radiation chemistry of polyhydroxystyrene-type chemically amplified resists. Jpn. J. Appl. Phys. 2020, 59, 086506–086514. [Google Scholar] [CrossRef]
- Wang, L.; Han, J.; Yuan, Q.; Cao, W.; Zhou, X.; Liu, S.; Wang, X.-B. Electron Affinity and Electronic Structure of Hexafluoroacetone (HFA) Revealed by Photodetaching the [HFA]•–Radical Anion. J. Phys. Chem. A 2020, 125, 746–753. [Google Scholar] [CrossRef]
- Martin, I.; Langer, J.; Stano, M.; Illenberger, E. Reactions in clusters of acetone and fluorinated acetones triggered by low energy electrons. Int. J. Mass Spectrom. 2009, 280, 107–112. [Google Scholar] [CrossRef]
- Szmytkowski, C.; Mozejko, P.; Ptasinska-Denga, E. Electron scattering from hexafluoroacetone molecules: Cross section measurements and calculations. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 205202. [Google Scholar] [CrossRef]
- Thakur, N.; Vockenhuber, M.; Ekinci, Y.; Watts, B.; Giglia, A.; Mahne, N.; Nannarone, S.; Castellanos, S.; Brouwer, A.M. Fluorine-Rich Zinc Oxoclusters as Extreme Ultraviolet Photoresists: Chemical Reactions and Lithography Performance. ACS Mater. Au. 2022, 2, 343–355. [Google Scholar] [CrossRef]
- Yu, Y.-G.; Chae, C.-G.; Kim, M.-J.; Seo, H.-B.; Grubbs, R.H.; Lee, J.-S. Precise Synthesis of Bottlebrush Block Copolymers from ω-End-Norbornyl Polystyrene and Poly(4-tert-butoxystyrene) via Living Anionic Polymerization and Ring-Opening Metathesis Polymerization. Macromolecules 2018, 51, 447–455. [Google Scholar] [CrossRef]
- Bae, Y.C.; Douki, K.; Yu, T.Y.; Dai, J.Y.; Schmaljohann, D.; Koerner, H.; Ober, C.K. Tailoring transparency of imageable fluoropolymers at 157 nm by incorporation of hexafluoroisopropyl alcohol to photoresist backbones. Chem. Mater. 2002, 14, 1306–1313. [Google Scholar] [CrossRef]
- Chaffins, S.; Hinch, G.; DeKam, K.; Waterhous, V.; Smith, J.; Overbay, M.; Bilich, D.; Hovermale, C.; Jones, J. Epoxidized perfluoropolyethers: A route to hydrophobic, negative-tone photoresists. J. Appl. Polym. Sci. 2012, 124, 4636–4644. [Google Scholar] [CrossRef]
Sample No. | Polymer | PAG b | Additive | Exposure Approach a | |
---|---|---|---|---|---|
UV | Electron Beam | ||||
S01 | HF00 | 3 wt.% | - | √ | √ |
S02 | HF01 | 3 wt.% | - | √ | √ |
S03 | HF02 | 0.5 wt.% | - | √ | √ |
S04 | HF03 | 0.5 wt.% | - | √ | √ |
S05 | HF00 | - | - | × | × |
S06 | HF01 | - | - | × | × |
S07 | HF02 | - | - | √ | √ |
S08 | HF03 | - | - | √ | √ |
S09 | BJ3015 | - | - | × | × |
S10 | BJ3015 | - | HF02 c | √ | √ |
S11 | BJ3015 | - | HF03 c | √ | √ |
S12 | BJ3015 | - | M02 d | √ | √ |
S13 | BJ3015 | - | M03 d | √ | √ |
S14 | HF00 | - | M02 e | △ | - |
S15 | HF00 | - | M03 e | △ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, D.; Li, Y.; Wang, H.; Chen, H.; Wang, Q.; Kang, W. Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists. Polymers 2024, 16, 825. https://doi.org/10.3390/polym16060825
Liu J, Wang D, Li Y, Wang H, Chen H, Wang Q, Kang W. Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists. Polymers. 2024; 16(6):825. https://doi.org/10.3390/polym16060825
Chicago/Turabian StyleLiu, Junjun, Dong Wang, Yitan Li, Haihua Wang, Huan Chen, Qianqian Wang, and Wenbing Kang. 2024. "Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists" Polymers 16, no. 6: 825. https://doi.org/10.3390/polym16060825
APA StyleLiu, J., Wang, D., Li, Y., Wang, H., Chen, H., Wang, Q., & Kang, W. (2024). Exceptional Lithography Sensitivity Boosted by Hexafluoroisopropanols in Photoresists. Polymers, 16(6), 825. https://doi.org/10.3390/polym16060825