Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Scanning Electron Microscopy
2.3. Peel Adhesion and Scratch Tests
2.4. Tensile Test
2.5. Immersion Test
2.6. Electrochemical Impedance Spectroscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphology of PLGA/CaP/Ti Composite
3.2. Adhesion Strength between PLGA/CaP/Ti Layers and Ti Substrate
3.3. Tensile Stress–Strain Behavior of CaP/Ti Composite
3.4. Biodegradation of PLGA/CaP/Ti Composites
3.5. Electrochemical Properties of PLGA/CaP/Ti Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dayanandan, A.P.; Cho, W.J.; Kang, H.; Bello, A.B.; Kim, B.J.; Arai, Y.; Lee, S.-H. Emerging Nano-Scale Delivery Systems for the Treatment of Osteoporosis. Biomater. Res. 2023, 27, 68. [Google Scholar] [CrossRef] [PubMed]
- Khlusov, I.A.; Porokhova, E.D.; Komarova, E.G.; Kazantseva, E.A.; Sharkeev, Y.P.; Yurova, K.A.; Litvinova, L.S. Scaffolds as Carriers of Drugs and Biological Molecules for Bone-Tissue Bioengineering. Cell Tiss. Biol. 2022, 16, 412–433. [Google Scholar] [CrossRef]
- Losic, D. Advancing of Titanium Medical Implants by Surface Engineering: Recent Progress and Challenges. Expert Opin. Drug Deliv. 2021, 18, 1355–1378. [Google Scholar] [CrossRef] [PubMed]
- Fattah-alhosseini, A.; Molaei, M.; Babaei, K. The Effects of Nano- and Micro-Particles on Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Titanium Substrates: A Review. Surf. Interfaces 2020, 21, 100659. [Google Scholar] [CrossRef]
- Kozelskaya, A.I.; Verzunova, K.N.; Akimchenko, I.O.; Frueh, J.; Petrov, V.I.; Slepchenko, G.B.; Bakina, O.V.; Lerner, M.I.; Brizhan, L.K.; Davydov, D.V.; et al. Antibacterial Calcium Phosphate Coatings for Biomedical Applications Fabricated via Micro-Arc Oxidation. Biomimetics 2023, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Komarova, E.G.; Sharkeev, Y.P.; Sedelnikova, M.B.; Prosolov, K.A.; Khlusov, I.A.; Prymak, O.; Epple, M. Zn- or Cu-Containing CaP-Based Coatings Formed by Micro-Arc Oxidation on Titanium and Ti-40Nb Alloy: Part I—Microstructure, Composition and Properties. Materials 2020, 13, 4116. [Google Scholar] [CrossRef] [PubMed]
- Prosolov, K.A.; Komarova, E.G.; Kazantseva, E.A.; Lozhkomoev, A.S.; Kazantsev, S.O.; Bakina, O.V.; Mishina, M.V.; Zima, A.P.; Krivoshchekov, S.V.; Khlusov, I.A.; et al. UMAOH Calcium Phosphate Coatings Designed for Drug Delivery: Vancomycin, 5-Fluorouracil, Interferon α-2b Case. Materials 2022, 15, 4643. [Google Scholar] [CrossRef]
- Xu, C.; Chen, L.-Y.; Zheng, C.; Zhang, Z.-Y.; Li, R.; Yang, H.-Y.; Peng, J.; Zhang, L.; Zhang, L.-C. Bioactive Performances of Surface Modification of Ti–6Al–4V Jointly Using Ultrasonic-Assisted Microarc Oxidation and Hydrothermal Treatment. Adv. Eng. Mater. 2022, 24, 2200674. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Liu, P.; Qi, S.; Li, W.; Zhang, K.; Chen, X. Review of Micro-Arc Oxidation of Titanium Alloys: Mechanism, Properties and Applications. J. Alloys Compd. 2023, 948, 169773. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Lv, Y.; Zhang, Y.; Lu, X.; Xiao, J.; Ma, C.; Li, Z.; Dong, Z. Enhanced Uniformity, Corrosion Resistance and Biological Performance of Cu-Incorporated TiO2 Coating Produced by Ultrasound-Auxiliary Micro-Arc Oxidation. Appl. Surf. Sci. 2021, 569, 150932. [Google Scholar] [CrossRef]
- Xu, C.; Chen, L.-Y.; Zheng, C.-B.; Zhang, H.-Y.; Zhao, C.-H.; Wang, Z.-X.; Lu, S.; Zhang, J.-W.; Zhang, L.-C. Improved Wear and Corrosion Resistance of Microarc Oxidation Coatings on Ti–6Al–4V Alloy with Ultrasonic Assistance for Potential Biomedical Applications. Adv. Eng. Mater. 2021, 23, 2001433. [Google Scholar] [CrossRef]
- Kazantseva, E.A.; Komarova, E.G.; Sharkeev, Y.P. Structural and Morphological Features of the Ultrasound-Assisted Micro-Arc Oxidation Coatings. AIP Conf. Proc. 2019, 2167, 020156. [Google Scholar] [CrossRef]
- Shen, D.; He, D.; Liu, F.; Guo, C.; Cai, J.; Li, G.; Ma, H. Effects of Ultrasound on the Evolution of Plasma Electrolytic Oxidation Process on 6061Al Alloy. Ultrasonics 2014, 54, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Jambagi, S.C.; Malik, V.R. A Review on Surface Engineering Perspective of Metallic Implants for Orthopaedic Applications. JOM 2021, 73, 4349–4364. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, W.; Ngai, T. Polymer coatings on magnesium-based implants for orthopedic applications. J. Polym. Sci. 2022, 60, 32–51. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Ramakrishna, S. Surface Engineering of Biomaterials in Orthopedic and Dental Implants: Strategies to Improve Osteointegration, Bacteriostatic and Bactericidal Activities. Biotechn. J. 2021, 16, 2000116. [Google Scholar] [CrossRef] [PubMed]
- Prokopowicz, M.; Szewczyk, A.; Skwira, A.; Sądej, R.; Walker, G. Biphasic Composite of Calcium Phosphate-Based Mesoporous Silica as a Novel Bone Drug Delivery System. Drug Deliv. Transl. Res. 2020, 10, 455–470. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Jiang, J.; Cui, N.; Xue, X.; Wang, T.; Wang, X.; He, Y.; Wang, D. Doxorubicin-Loaded Carbon Dots Lipid-Coated Calcium Phosphate Nanoparticles for Visual Targeted Delivery and Therapy of Tumor. IJN 2020, 15, 433–444. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, Y.; Guo, Q.; Shi, Q.; Zhang, J.; Meng, Y.; Xia, F.; Wang, J. Preparation and Application of Calcium Phosphate Nanocarriers in Drug Delivery. Mater. Today Bio 2022, 17, 100501. [Google Scholar] [CrossRef]
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A Unique Polymer for Drug Delivery. Ther. Deliv. 2015, 6, 41–58. [Google Scholar] [CrossRef]
- Liu, G.Y.; Hu, J.; Ding, Z.K.; Wang, C. Bioactive Calcium Phosphate Coating Formed on Micro-Arc Oxidized Magnesium by Chemical Deposition. Appl. Surf. Sci. 2011, 257, 2051–2057. [Google Scholar] [CrossRef]
- Vecstaudza, J.; Gasik, M.; Locs, J. Amorphous Calcium Phosphate Materials: Formation, Structure and Thermal Behaviour. J. Eur. Ceram. Soc. 2019, 39, 1642–1649. [Google Scholar] [CrossRef]
- LeGeros, R.Z. Biodegradation and Bioresorption of Calcium Phosphate Ceramics. Clin. Mater. 1993, 14, 65–88. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.B.; Baldin, E.K.; Krieger, D.A.; De Castro, V.V.; Aguzzoli, C.; Fonseca, J.C.; Rodrigues, M.; Lopes, M.A.; Malfatti, C.D.F. Wear Performance and Osteogenic Differentiation Behavior of Plasma Electrolytic Oxidation Coatings on Ti-6Al-4V Alloys: Potential Application for Bone Tissue Repairs. Surf. Coat. Technol. 2021, 417, 127179. [Google Scholar] [CrossRef]
- Alves, S.A.; Bayón, R.; De Viteri, V.S.; Garcia, M.P.; Igartua, A.; Fernandes, M.H.; Rocha, L.A. Tribocorrosion Behavior of Calcium- and Phosphorous-Enriched Titanium Oxide Films and Study of Osteoblast Interactions for Dental Implants. J. Bio-Tribo-Corros. 2015, 1, 23. [Google Scholar] [CrossRef]
- Eliaz, N.; Metoki, N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials 2017, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Komarova, E.G.; Kazantseva, E.A.; Prosolov, K.A.; Kazantsev, S.O.; Lozhkomoev, A.S. Structure, Morphology and Composition of Composite PLGA/CaP/Ti Scaffolds for Drug Delivery. AIP Conf. Proc. 2023, 2899, 020076. [Google Scholar] [CrossRef]
- ASTM E1382-9; Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis. ASTM International: West Conshohocken, PA, USA, 2015.
- ISO 13779-4-2018; Implants for surgery. International Organization for Standardization: Geneva, Switzerland, 2018.
- GOST 11701-84; Metals. Method of tensile testing of thin sheets and strips. Publishing House of Standards: Moscow, Russia, 1984.
- GOST 1497-84; Metals. Methods of tension test. Publishing House of Standards: Moscow, Russia, 1986.
- ASTM G31-21; Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM F1147; Standard Test Method for Tension Testing of Calcium Phosphate and Metallic Coatings. ASTM International: West Conshohocken, PA, USA, 2022.
- Kazantseva, E.A.; Komarova, E.G. Microstructure and Elemental Composition of UMAO Calcium Phosphate Coatings. Procedia Struct. Integr. 2022, 40, 207–213. [Google Scholar] [CrossRef]
- Chou, S.-F.; Woodrow, K.A. Relationships between Mechanical Properties and Drug Release from Electrospun Fibers of PCL and PLGA Blends. J. Mech. Behav. Biomed. Mater. 2017, 65, 724–733. [Google Scholar] [CrossRef]
- McManamon, C.; De Silva, J.P.; Delaney, P.; Morris, M.A.; Cross, G.L.W. Characteristics, Interactions and Coating Adherence of Heterogeneous Polymer/Drug Coatings for Biomedical Devices. Mater. Sci. Eng. C 2016, 59, 102–108. [Google Scholar] [CrossRef]
- Jin, J.; Chen, X.; Zhou, S. Biocorrosion Evaluation and Bonding Strength of HA-CS/PLA Hybrid Coating on Micro-Arc Oxidised AZ91D Magnesium Alloy. Mater. Technol. 2022, 37, 503–510. [Google Scholar] [CrossRef]
- Miao, X.; Tan, D.M.; Li, J.; Xiao, Y.; Crawford, R. Mechanical and Biological Properties of Hydroxyapatite/Tricalcium Phosphate Scaffolds Coated with Poly(Lactic-Co-Glycolic Acid). Acta Biomater. 2008, 4, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, D.; Mao, D.; Bai, N.; Chen, Y.; Li, Q. Enhanced Performance of Magnesium Alloy for Drug-Eluting Vascular Scaffold Application. Appl. Surf. Sci. 2018, 435, 320–328. [Google Scholar] [CrossRef]
- Barnes, D.; Johnson, S.; Snell, R.; Best, S. Using Scratch Testing to Measure the Adhesion Strength of Calcium Phosphate Coatings Applied to Poly(Carbonate Urethane) Substrates. J. Mech. Behav. Biomed. Mate. 2012, 6, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, Y.; Wei, D.; Du, Q.; Ouyang, J.; Jia, D.; Zhou, Y. In-Situ SEM Analysis of Brittle Plasma Electrolytic Oxidation Coating Bonded to Plastic Aluminum Substrate: Microstructure and Fracture Behaviors. Mater. Charact. 2019, 156, 109851. [Google Scholar] [CrossRef]
- Tsitsiashvili, A.M.; Silant’ev, A.S.; Panin, A.M.; Arutyunov, S.D. Short Dental Implant Biomechanics in the Mandible Bone Tissue. Stomatologiia 2019, 98, 33. [Google Scholar] [CrossRef] [PubMed]
- Wasekar, N.P.; Ravi, N.; Suresh Babu, P.; Rama Krishna, L.; Sundararajan, G. High-Cycle Fatigue Behavior of Microarc Oxidation Coatings Deposited on a 6061-T6 Al Alloy. Metall. Mater. Trans. A 2010, 41, 255–265. [Google Scholar] [CrossRef]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Xu, J.-S.; Zhang, X.-C.; Xuan, F.-Z.; Tian, F.-Q.; Wang, Z.-D.; Tu, S.-T. Tensile Properties and Fracture Behavior of Laser Cladded WC/Ni Composite Coatings with Different Contents of WC Particle Studied by in-Situ Tensile Testing. Mater. Sci. Eng. A 2013, 560, 744–751. [Google Scholar] [CrossRef]
- Zhang, Y. The In Vitro Biological Properties of Mg-Zn-Sr Alloy and Superiority for Preparation of Biodegradable Intestinal Anastomosis Rings. Med. Sci. Monit. 2014, 20, 1056–1066. [Google Scholar] [CrossRef]
- Lu, L.; Peter, S.J.; Lyman, M.D.; Lai, H.-L.; Leite, S.M.; Tamada, J.A.; Uyama, S.; Vacanti, J.P.; Langer, R.; Mikos, A.G. In Vitro and In Vivo Degradation of Porous Poly(Dl-Lactic-Co-Glycolic Acid) Foams. Biomaterials 2000, 21, 1837–1845. [Google Scholar] [CrossRef]
- Ravnholt, G. Corrosion Current and pH Rise around Titanium Coupled to Dental Alloys. Eur. J. Oral Sci. 1988, 96, 466–472. [Google Scholar] [CrossRef]
- Mohammadzadeh Asl, S.; Ganjali, M.; Karimi, M. Surface Modification of 316L Stainless Steel by Laser-Treated HA-PLA Nanocomposite Films toward Enhanced Biocompatibility and Corrosion-Resistance In Vitro. Surf. Coat. Technol. 2019, 363, 236–243. [Google Scholar] [CrossRef]
- Johnson, I.; Akari, K.; Liu, H. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid. Nanotechnology 2013, 24, 375103. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Egorkin, V.S.; Sidorova, M.V.; Gnedenkov, A.S. Composite Polymer-Containing Protective Coatings on Magnesium Alloy MA8. Corros. Sci. 2014, 85, 52–59. [Google Scholar] [CrossRef]
Sample Group | Adhesion Strength (Peel Adhesion Test), MPa | Critical Load, H | ||
---|---|---|---|---|
CL1 | CL2 | CL3 | ||
CaP/Ti | 20.1 ± 1.6 | 0.5 ± 0.1 | 9.4 ± 3.2 | 30.3 ± 5.2 |
5% PLGA/CaP/Ti | 15.6 ± 5.9 | 1.2 ± 0.1 | 15.5 ± 4.0 | 33.3 ± 4.6 |
8% PLGA/CaP/Ti | 9.8 ± 3.8 | 1.3 ± 0.1 | 23.5 ± 0.9 | 35.0 ± 0.8 |
10% PLGA/CaP/Ti | 8.1 ± 2.2 | 1.2 ± 0.1 | 25.6 ± 3.5 | 36.0 ± 1.9 |
Sample Group | Eocp, V | Ecorr, V | Icorr, ×10−9 A/cm2 | Rp, ×106 Ω·cm2 |
---|---|---|---|---|
0.9% NaCl | ||||
CaP/Ti | −0.044 | −0.065 | 228.2 | 0.3 |
5% PLGA/CaP/Ti | −0.051 | −0.393 | 0.6 | 37.8 |
8% PLGA/CaP/Ti | −0.061 | −0.508 | 0.3 | 91.1 |
10% PLGA/CaP/Ti | −0.068 | −0.433 | 0.6 | 24.1 |
PBS | ||||
CaP/Ti | −0.029 | −0.088 | 355.0 | 0.2 |
5% PLGA/CaP/Ti | −0.030 | −0.345 | 3.8 | 20.7 |
8% PLGA/CaP/Ti | −0.061 | −0.566 | 1.1 | 17.8 |
10% PLGA/CaP/Ti | −0.057 | −0.416 | 0.1 | 26.7 |
Sample Group | |Z|, ×106 Ω·cm2 | Ccoat, F·cm−2 | Rcoat, ×106 Ω·cm2 |
---|---|---|---|
0.9% NaCl | |||
CaP/Ti | 0.2 | 7 × 10−8 | 9 × 104 |
5% PLGA/CaP/Ti | 26.3 | 4 × 10−8 | 9 × 104 |
8% PLGA/CaP/Ti | 22.4 | 5 × 10−8 | 9 × 104 |
10% PLGA/CaP/Ti | 18.1 | 3 × 10−8 | 9 × 104 |
PBS | |||
CaP/Ti | 0.1 | 1.2 × 10−7 | 8 × 10−2 |
5% PLGA/CaP/Ti | 1.3 | 3.4 × 10−7 | 1 |
8% PLGA/CaP/Ti | 15.0 | 1 × 10−8 | 9 × 104 |
10% PLGA/CaP/Ti | 19.6 | 5 × 10−8 | 9 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosolov, K.A.; Komarova, E.G.; Kazantseva, E.A.; Luginin, N.A.; Kashin, A.D.; Uvarkin, P.V.; Sharkeev, Y.P. Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants. Polymers 2024, 16, 826. https://doi.org/10.3390/polym16060826
Prosolov KA, Komarova EG, Kazantseva EA, Luginin NA, Kashin AD, Uvarkin PV, Sharkeev YP. Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants. Polymers. 2024; 16(6):826. https://doi.org/10.3390/polym16060826
Chicago/Turabian StyleProsolov, Konstantin A., Ekaterina G. Komarova, Ekaterina A. Kazantseva, Nikita A. Luginin, Alexander D. Kashin, Pavel V. Uvarkin, and Yurii P. Sharkeev. 2024. "Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants" Polymers 16, no. 6: 826. https://doi.org/10.3390/polym16060826
APA StyleProsolov, K. A., Komarova, E. G., Kazantseva, E. A., Luginin, N. A., Kashin, A. D., Uvarkin, P. V., & Sharkeev, Y. P. (2024). Enhanced Corrosion Resistance and Mechanical Durability of the Composite PLGA/CaP/Ti Scaffolds for Orthopedic Implants. Polymers, 16(6), 826. https://doi.org/10.3390/polym16060826