Previous Issue
Volume 11, August

Table of Contents

Polymers, Volume 11, Issue 9 (September 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Preparation of Phase Change Microcapsules with the Enhanced Photothermal Performance
Polymers 2019, 11(9), 1507; https://doi.org/10.3390/polym11091507 (registering DOI) - 16 Sep 2019
Abstract
The performance of solar-thermal conversion systems can be improved by incorporation of encapsulated phase change materials. In this study, for the first time, CrodathermTM 60 as a phase change material (PCM) was successfully encapsulated within polyurea as the shell supporting material. While [...] Read more.
The performance of solar-thermal conversion systems can be improved by incorporation of encapsulated phase change materials. In this study, for the first time, CrodathermTM 60 as a phase change material (PCM) was successfully encapsulated within polyurea as the shell supporting material. While preparing the slurry samples, graphite nanoplatelet (GNP) sheets were also incorporated to enhance the thermal and photothermal properties of the prepared materials. The morphology and chemical properties of these capsules were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrum, respectively. The results show the spherical-like and core-shell structure of capsules with an average diameter size of 3.34 μm. No chemical interaction was observed between the core and the supporting materials. The thermal characteristics of the microencapsulated PCMs (MEPCMs), analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), indicate that the prepared samples with 0.1 weight percentage of GNP possess the latent heat of 95.5 J/g at the phase transition temperature of about 64 °C. Analyzing the rheological properties of the prepared slurry with 16 wt % of MEPCMs proves that the prepared material meet the requirements given by the heat transfer applications. The thermal storage capacity, good thermal stability, and improved photothermal performance of the prepared material make it a potential candidate for using in direct absorption solar thermal applications. Full article
(This article belongs to the Special Issue Polymers for Thermal Energy Conversion and Storage)
Show Figures

Graphical abstract

Open AccessArticle
Poly-L-lysine as an Effective and Safe Desquamation Inducer of Urinary Bladder Epithelium
Polymers 2019, 11(9), 1506; https://doi.org/10.3390/polym11091506 (registering DOI) - 16 Sep 2019
Abstract
Induced desquamation of urinary bladder epithelial cells, also called urothelial cells, is frequently used in studies of bladder epithelial regeneration and also in treating recurrent bacterial cystitis. Positively charged polymer chitosan is known to cause large-scale desquamation of terminally differentiated urothelial cells called [...] Read more.
Induced desquamation of urinary bladder epithelial cells, also called urothelial cells, is frequently used in studies of bladder epithelial regeneration and also in treating recurrent bacterial cystitis. Positively charged polymer chitosan is known to cause large-scale desquamation of terminally differentiated urothelial cells called umbrella cells. Aiming to compare the desquamation ability of another polycation poly-L-lysine, we studied the effect of this polymer on the functional and structural integrity of the urothelium in ex vivo and in vivo experiments. The urothelium was analyzed by measuring transepithelial electrical resistance, and the structural changes of its luminal surface were analyzed with scanning electron microscopy. The results revealed a selective and concentration-dependent desquamation effect of poly-L-lysine on superficial urothelial cells followed by quick regeneration of the urothelium, which functionally and structurally recovers in 2 to 3 h after poly-L-lysine–induced injury. Poly-L-lysine was thus proven to be a promising polymer to be used when desquamation of urothelial cells is required in basic and potentially clinical studies. Full article
Show Figures

Graphical abstract

Open AccessArticle
Simonkolleite Coating on Poly(Amino Acids) to Improve Osteogenesis and Suppress Osteoclast Formation in Vitro
Polymers 2019, 11(9), 1505; https://doi.org/10.3390/polym11091505 (registering DOI) - 16 Sep 2019
Abstract
Zinc can enhance osteoblastic bone formation and stimulate osteogenic differentiation, suppress the differentiation of osteoclast precursor cells into osteoclasts, and inhibit pathogenic bacterial growth in a dose-dependent manner. In this study, simonkolleite, as a novel zinc resource, was coated on poly (amino acids) [...] Read more.
Zinc can enhance osteoblastic bone formation and stimulate osteogenic differentiation, suppress the differentiation of osteoclast precursor cells into osteoclasts, and inhibit pathogenic bacterial growth in a dose-dependent manner. In this study, simonkolleite, as a novel zinc resource, was coated on poly (amino acids) (PAA) via suspending PAA powder in different concentrations of zinc chloride (ZnCl2) solution, and the simonkolleite-coated PAA (Zn–PAA) was characterized by SEM, XRD, FT-IR and XPS. Zinc ions were continuously released from the coating, and the release behavior was dependent on both the concentration of the ZnCl2 immersing solution and the type of soak solutions (SBF, PBS and DMEM). The Zn–PAA was cultured with mouse bone marrow stem cells (BMSCs) through TranswellTM plates, and the results indicated that the relative cell viability, alkaline phosphatase (ALP) activity and mineralization of BMSCs were significantly higher with Zn–PAA as compared to PAA. Moreover, the Zn–PAA was cultured with RAW264.7 cells, and the results suggested an inhibiting effect of Zn–PAA on the cell differentiation into osteoclasts. In addition, Zn–PAA exhibited an antibacterial activity against both S. aureus and E. coli. These findings suggest that simonkolleite coating with certain contents could promote osteogenesis, suppress osteoclast formation and inhibit bacteria, indicating a novel way of enhancing the functionality of synthetic bone graft material and identifying the underline principles for designing zinc-containing bone grafts. Full article
(This article belongs to the Special Issue Polymers for Bone Tissue Engineering)
Show Figures

Figure 1

Open AccessArticle
Application of Xanthan Gum as a Pre-Treatment and Sharpness Evaluation for Inkjet Printing on Polyester
Polymers 2019, 11(9), 1504; https://doi.org/10.3390/polym11091504 (registering DOI) - 16 Sep 2019
Abstract
Inkjet printing on polyester fabric displays versatile environmental advantages. One of the significant benefits of inkjet printing is a dramatic enhancement of the printing quality. In this study, xanthan gum—a bio-based thickening agent accompanied by several salts—was adopted for the pretreatment of polyester [...] Read more.
Inkjet printing on polyester fabric displays versatile environmental advantages. One of the significant benefits of inkjet printing is a dramatic enhancement of the printing quality. In this study, xanthan gum—a bio-based thickening agent accompanied by several salts—was adopted for the pretreatment of polyester fabric aiming at improving the sharpness and color depth of inkjet printed patterns. The influences of four metal salts (NaCl, KCl, CaCl2 and MgCl2) on inkjet printing performance were studied. More importantly, a quantitative method for evaluating the sharpness of an inkjet printed pattern was established according to the characteristics of anisotropy and isotropy of diffusion and adsorption of ink droplets on a fiber surface. Results showed that xanthan gum along with a low dosage of bivalent salts can significantly improve the color depth (K/S value) and sharpness of the printed polyester fabrics. It is feasible to evaluate the sharpness of inkjet printed polyester fabrics using a five-stage system, selecting the inkjet ellipse coefficient (T) and inkjet ellipse area (S), which can provide a quantitative and rapid evaluation method for defining inkjet printing. Full article
Show Figures

Graphical abstract

Open AccessArticle
A Facile and Simple Method for Preparation of Novel High-Efficient Form-Stable Phase Change Materials Using Biomimetic–Synthetic Polydopamine Microspheres as a Matrix for Thermal Energy Storage
Polymers 2019, 11(9), 1503; https://doi.org/10.3390/polym11091503 - 15 Sep 2019
Viewed by 155
Abstract
Polydopamine microspheres (PDAMs), synthesized using a biomimetic method, were used as a matrix for polyethylene glycol (PEG) to develop a novel high-efficient form-stable phase change material (PEG/PDAM) using a simple vacuum impregnation strategy. The PDAMs were first used as a support for the [...] Read more.
Polydopamine microspheres (PDAMs), synthesized using a biomimetic method, were used as a matrix for polyethylene glycol (PEG) to develop a novel high-efficient form-stable phase change material (PEG/PDAM) using a simple vacuum impregnation strategy. The PDAMs were first used as a support for the organic phase change materials, and the biomimetic synthesis of the PDAMs had the advantages of easy operation, mild conditions, and environmental friendliness. The characteristics and thermal properties of the PEG/PDAMs were investigated using SEM, FTIR, XRD, TGA, DSC, and XPS, and the results demonstrated that the PEG/PDAMs possessed favourable heat storage capacity, excellent thermal stability, and reliability, and the melting and freezing latent heats of PEG/PDAM-3 reached 133.20 ± 2.50 J/g and 107.55 ± 4.45 J/g, respectively. Therefore, the PEG/PDAMs possess great potential in real-world applications for thermal energy storage. Additionally, the study on the interaction mechanism between the PEG and PDAMs indicated that PEG was immobilized on the surface of PDAMs through hydrogen bonds between the PEG molecules and the PDAMs. Moreover, the PDAMs can also be used as a matrix for other organic materials for the preparation of form-stable phase change materials. Full article
(This article belongs to the Special Issue Polymers for Thermal Energy Conversion and Storage)
Show Figures

Figure 1

Open AccessArticle
Homocrystallization and Stereocomplex Crystallization Behaviors of As-Spun and Hot-Drawn Poly(l-lactide)/Poly(d-lactide) Blended Fibers During Heating
Polymers 2019, 11(9), 1502; https://doi.org/10.3390/polym11091502 - 14 Sep 2019
Viewed by 173
Abstract
A series of poly(l-lactide)/poly(d-lactide) blended chips (LDC), as-spun LD fibers (LDA) and hot-drawn LD fibers (LDH) were prepared for investigating the homocrystallization and stereocomplex crystallization behaviors of LDA and LDH fibers during heating. Modulated differential [...] Read more.
A series of poly(l-lactide)/poly(d-lactide) blended chips (LDC), as-spun LD fibers (LDA) and hot-drawn LD fibers (LDH) were prepared for investigating the homocrystallization and stereocomplex crystallization behaviors of LDA and LDH fibers during heating. Modulated differential scanning calorimetry (MDSC), hot stage polarized microscopy (HSPM), and real-time wide-angle X-ray diffraction (WAXD) were used for studying the crystallization and melting behaviors, fiber morphology, and crystalline structure evolution of the LDA and LDH fibers’ homocrystals and stereocomplex crystals during heating. The molecular chain orientations of the LDA and LDH fibers were obtained through spinning and improved through the hot drawing processes. When the molecular chain was oriented on the fiber axis, the homocrystals and stereocomplex crystals of the fibers began to form in turn as the heating temperature exceeded the glass transition temperature of the fiber. The side-by-side packing of the molecular chains was promoted by mixing the molecular chains with the extrusion screw during the spinning process, facilitating stereocomplex crystallization. When the LDA fiber was heated above the glass transition temperature of the fiber, movement of the fiber molecular chain—including molecular chain orientation and relaxation, as well as crystallization, melting, and recrystallization of homocrystals and stereocomplex crystals—were investigated through HSPM. MDSC and real-time WAXD were used to observe the molecular chains of the melted poly(l-lactide) and poly(d-lactide) homocrystals of the fibers rearranging and transiting to form stereocomplex crystals during heating. Full article
Open AccessArticle
Solvent Effects on Morphology and Electrical Properties of Poly(3-hexylthiophene) Electrospun Nanofibers
Polymers 2019, 11(9), 1501; https://doi.org/10.3390/polym11091501 - 14 Sep 2019
Viewed by 167
Abstract
Herein, poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofiber-based organic field-effect transistors were successfully prepared by coaxial electrospinning technique with P3HT as the core polymer and poly(methyl methacrylate) (PMMA) as the shell polymer, followed by extraction of PMMA. Three different solvents for the core polymer, including chloroform, chlorobenzene [...] Read more.
Herein, poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofiber-based organic field-effect transistors were successfully prepared by coaxial electrospinning technique with P3HT as the core polymer and poly(methyl methacrylate) (PMMA) as the shell polymer, followed by extraction of PMMA. Three different solvents for the core polymer, including chloroform, chlorobenzene and 1,2,4-trichlorobenzene, were employed to manipulate the morphologies and electrical properties of P3HT electrospun nanofibers. Through the analyses from dynamic light scattering of P3HT solutions, polarized photoluminescence and X-ray diffraction pattern of P3HT electrospun nanofibers, it is revealed that the P3HT electrospun nanofiber prepared from the chloroform system displays a low crystallinity but highly oriented crystalline grains due to the dominant population of isolated-chain species in solution that greatly facilitates P3HT chain stretching during electrospinning. The resulting high charge-carrier mobility of 3.57 × 10−1 cm2·V−1·s−1 and decent mechanical deformation up to a strain of 80% make the P3HT electrospun nanofiber a promising means for fabricating stretchable optoelectronic devices. Full article
(This article belongs to the Special Issue Stretchable and Smart Polymers)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Conductive Carbon Black on Mechanical Properties of Aqueous Polymer Binders for Secondary Battery Electrode
Polymers 2019, 11(9), 1500; https://doi.org/10.3390/polym11091500 - 14 Sep 2019
Viewed by 146
Abstract
To predict the cyclic stability of secondary battery electrodes, the mechanical behaviors of polymer binders and conductive composites (BCC) is of great significance. In terms of uniaxial tension, tensile stress relaxation, and bonding strength tests, the present study encompasses a systematic investigation of [...] Read more.
To predict the cyclic stability of secondary battery electrodes, the mechanical behaviors of polymer binders and conductive composites (BCC) is of great significance. In terms of uniaxial tension, tensile stress relaxation, and bonding strength tests, the present study encompasses a systematic investigation of the mechanical properties of two typical aqueous binders with different contents of Super-S carbon black (SS) under a liquid electrolyte. Meanwhile, the microstructure of cured film and the surface morphology of the bonding interface are investigated in detail. When the weight ratio of SS increases from 0% to 50%, the cured BCC films manifest a higher ratio of tensile strength to modulus and a shorter characteristic relaxation time. Moreover, suitable loadings of SS can improve the tensile shear strength and remarkably reduce the percentage of interface failure of aqueous polymer-bonded Cu current collector. Nevertheless, an excess of carbon black amount cannot maintain its enhancing effect and can even impair the adhesive layer. Finally, a sodium alginate-based polymer composite holds much more superior mechanical properties than the mixture of sodium carboxymethyl cellulose and styrene-butadiene rubber at the same content of carbon black. Noticeably, the two kinds of aqueous polymer doped by 50 wt % of SS exhibit the best adhesive properties. Full article
Show Figures

Graphical abstract

Open AccessArticle
Polyimide-Based PolyHIPEs Prepared via Pickering High Internal Phase Emulsions
Polymers 2019, 11(9), 1499; https://doi.org/10.3390/polym11091499 - 13 Sep 2019
Viewed by 168
Abstract
Pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) oligoimide particles and PMDA-ODA poly(amic acid) salt (PAAS) were synthesized and used as stabilizers to prepare oil-in-water Pickering high internal phase emulsions (HIPEs). The stability of the Pickering HIPEs was investigated by dispersion stability analysis. Polyimide-based polyHIPEs [...] Read more.
Pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA) oligoimide particles and PMDA-ODA poly(amic acid) salt (PAAS) were synthesized and used as stabilizers to prepare oil-in-water Pickering high internal phase emulsions (HIPEs). The stability of the Pickering HIPEs was investigated by dispersion stability analysis. Polyimide-based polyHIPEs could be prepared through freeze-drying and subsequent thermal imidization of the Pickering HIPEs. The characteristics of the polyHIPEs, including their morphology, porosity, thermal decomposition temperature, and compression modulus, were investigated. The thermal decomposition temperature (T10) of the polyHIPEs was very high (>530 °C), and their porosity was as high as 92%. The polyimide-based polyHIPEs have the potential to be used in high-temperature environments. Full article
(This article belongs to the Special Issue Porous Polymer Micro- and Nano-Structures)
Show Figures

Graphical abstract

Open AccessArticle
Synthesis, Crystal Structures, and Spectroscopic Characterization of Bis-aldehyde Monomers and Their Electrically Conductive Pristine Polyazomethines
Polymers 2019, 11(9), 1498; https://doi.org/10.3390/polym11091498 - 13 Sep 2019
Viewed by 148
Abstract
Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized [...] Read more.
Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Polymers and Polymer Composites)
Show Figures

Graphical abstract

Open AccessArticle
Molecularly Imprinted Nanoparticles Assay (MINA) in Pseudo ELISA: An Alternative to Detect and Quantify Octopamine in Water and Human Urine Samples
Polymers 2019, 11(9), 1497; https://doi.org/10.3390/polym11091497 - 13 Sep 2019
Viewed by 136
Abstract
In 2004, octopamine was added to the list of drugs banned by the world anti-doping agency (WADA) and prohibited in any sport competition. This work aims to develop a new analytical method to detect octopamine in water and human urine samples. We proposed [...] Read more.
In 2004, octopamine was added to the list of drugs banned by the world anti-doping agency (WADA) and prohibited in any sport competition. This work aims to develop a new analytical method to detect octopamine in water and human urine samples. We proposed a pseudo-enzyme-linked immunosorbent assay (pseudo-ELISA) by replacing traditional monoclonal antibodies with molecularly imprinted polymer nanoparticles (nanoMIPs). NanoMIPs were synthesised by a solid-phase approach using a persulfate initiated polymerisation in water. Their performance was analysed in pseudo competitive ELISA based on the competition between free octopamine and octopamine-HRP conjugated. The final assay was able to detect octopamine in water within the range 1 nmol·L−1–0.1 mol·L−1 with a detection limit of 0.047 ± 0.00231 µg·mL−1 and in human urine samples within the range 1 nmol·L−1–0.0001 mol·L−1 with a detection limit of 0.059 ± 0.00281 µg·mL−1. In all experiments, nanoMIPs presented high affinity to the target molecules and almost no cross-reactivity with analogues of octopamine such as pseudophedrine or l-Tyrosine. Only slight interference was observed from the human urine matrix. The high affinity and specificity of nanoMIPs and no need to maintain a cold chain logistics makes the nanoMIPs a competitive alternative to antibodies. Furthermore, this work is the first attempt to use nanoMIPs in pseudo-ELISA assays to detect octopamine. Full article
(This article belongs to the Special Issue Molecular Imprinted Polymers: Challenges and Applications)
Show Figures

Graphical abstract

Open AccessArticle
One Year Evaluation of Material Properties Changes of Polylactide Parts in Various Hydrolytic Degradation Conditions
Polymers 2019, 11(9), 1496; https://doi.org/10.3390/polym11091496 - 13 Sep 2019
Viewed by 148
Abstract
Biodegradable biocompatible materials are widely used in medical applications. Determining the possibility of using biodegradable materials depends on determining the changes in their parameters over time due to degradation. The current scientific research on biodegradable materials has presented results based on research methods [...] Read more.
Biodegradable biocompatible materials are widely used in medical applications. Determining the possibility of using biodegradable materials depends on determining the changes in their parameters over time due to degradation. The current scientific research on biodegradable materials has presented results based on research methods characterized by the different geometry and cross-section size of the specimen, type of degradation medium, or different pH value of the medium or maximum degradation time. This paper presents the results of a one-year study on the influence of the type of degradation medium on the changes in mechanical behavior and the uptake of the degradation medium by biodegradable specimens with large cross-sections. In addition, a prototype of a test stand was created, which allowed for the specimens to be stored vertically to ensure regular medium exposure and eliminate the interaction of the surface of the tested specimens with the sides of the container. The obtained results allowed the statistical significance of differences in the mechanical parameters determined in the uniaxial tensile test after 2, 4, 6, 12, 26, 39, and 52 weeks of degradation to be indicated depending on the type of degradation medium. It was proven that the changes in mechanical behavior depend on the percentage change in the mass of the specimens during degradation. The percentage change in mass depends on the type of degradation medium. Based on the results of this research, it was noted that in long-term degradation above 12 weeks, buffered sodium chloride solution is the optimal choice for the degradation medium. However, distilled water or physiological saline solution can be used as an alternative during the degradation period for up to 12 weeks. Full article
(This article belongs to the Special Issue Biocompatible Polymers)
Show Figures

Graphical abstract

Open AccessArticle
Accelerated Weathering of Polylactide-Based Composites Filled with Linseed Cake: The Influence of Time and Oil Content within the Filler
Polymers 2019, 11(9), 1495; https://doi.org/10.3390/polym11091495 - 12 Sep 2019
Viewed by 210
Abstract
This paper presents the effects of accelerated weathering on the properties of polylactide (PLA) composites filled with linseed cake. The particle-shaped waste filler with different linseed oil content (0.9–39.8 wt %) was incorporated with constant amount of 10 wt % to a polymeric [...] Read more.
This paper presents the effects of accelerated weathering on the properties of polylactide (PLA) composites filled with linseed cake. The particle-shaped waste filler with different linseed oil content (0.9–39.8 wt %) was incorporated with constant amount of 10 wt % to a polymeric matrix and subjected to accelerated weathering tests with different exposition times. The structure of the composites, their mechanical, thermal, and thermo-mechanical properties were evaluated by means of scanning electron microscopy, tensile test, dynamic mechanical thermal analysis, and differential scanning calorimetry prior to and after weathering. The results of the measurements were analyzed in reference to the amount of crude oil contained in the filler. The behavior of the multiphase composite during weathering was described. It was found that the oil-rich samples during the first stage of the process showed increased resistance to hydrolytic degradation due to their relatively high crystallinity. The presence of water and elevated temperatures caused swelling of the filler and cracking of the polymeric matrix. Those discontinuities enabled the plasticizing oil to be rinsed out of the composite and thus water penetrated into the samples. As a result, the PLA-based composites containing oil-rich linseed cake were found to be more vulnerable to hydrolytic degradation in a longer time. Full article
Show Figures

Graphical abstract

Open AccessArticle
Cellulose Degradation by Calcium Thiocyanate
Polymers 2019, 11(9), 1494; https://doi.org/10.3390/polym11091494 - 12 Sep 2019
Viewed by 167
Abstract
The dissolution process of cellulose aerogels is an important part of their production. However, if the cellulose is severely degraded during the dissolution process, the quality may be low. To evaluate the degradation of cellulose during the dissolution process using calcium thiocyanate, the [...] Read more.
The dissolution process of cellulose aerogels is an important part of their production. However, if the cellulose is severely degraded during the dissolution process, the quality may be low. To evaluate the degradation of cellulose during the dissolution process using calcium thiocyanate, the hydrolysis and oxidation of cellulose were evaluated by the change in absolute molecular weight and by the changes in the content of carboxyl and carbonyl groups introduced into the cellulose hydroxyl group, respectively. A noteworthy hydrolysis phenomenon was found in the cellulose dissolution process. The rate of hydrolysis increased as the number of hydrates in calcium thiocyanate decreased and as the reaction temperature increased. In the case of the reaction with calcium thiocyanate containing six hydrates, the time to reach a 50% loss of the degree of polymerization of cellulose reduced from 196 to 47 min as the reaction temperature was increased from 100 to 120 °C; however, the effect on oxidation was not significant. The Brunauer–Emmett–Teller (BET) surface area reduced as the degree of cellulose polymerization decreased. Therefore, it is necessary to consider how the cellulose degradation occurring during the cellulosic dissolution process can affect the quality of the final cellulose aerogels. Full article
Open AccessArticle
Influence of Organo-Sepiolite on the Morphological, Mechanical, and Rheological Properties of PP/ABS Blends
Polymers 2019, 11(9), 1493; https://doi.org/10.3390/polym11091493 - 12 Sep 2019
Viewed by 132
Abstract
To improve the poor impact toughness of polypropylene (PP), organo-sepiolite (O-Sep) filled 80/20 (w/w) polypropylene/poly(acrylonitrile-butadiene-styrene) (PP/ABS) nanocomposites were fabricated. The contents of O-Sep were correlated with the morphological, mechanical, and rheological behavior of PP/ABS/O-Sep blends. Scanning electron microscopy (SEM) was applied [...] Read more.
To improve the poor impact toughness of polypropylene (PP), organo-sepiolite (O-Sep) filled 80/20 (w/w) polypropylene/poly(acrylonitrile-butadiene-styrene) (PP/ABS) nanocomposites were fabricated. The contents of O-Sep were correlated with the morphological, mechanical, and rheological behavior of PP/ABS/O-Sep blends. Scanning electron microscopy (SEM) was applied to study the morphology and thermogravimetric analysis (TGA) was applied to study the thermal stability. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were applied to study the crystallinity. The obtained results show that O-Sep enhanced the dispersion of ABS in the PP matrix and increased the crystallinity of blends. The rheological results show that O-Sep could increase the viscosity, storage modulus, and loss modulus of blends. Moreover, the mechanical behavior shows that O-Sep (at proper content) simultaneously increased the tensile modulus, flexural modulus, and impact strength of PP/ABS/O-Sep blends. Full article
Show Figures

Graphical abstract

Open AccessArticle
Use of Aligned Microscale Sacrificial Fibers in Creating Biomimetic, Anisotropic Poly(glycerol sebacate) Scaffolds
Polymers 2019, 11(9), 1492; https://doi.org/10.3390/polym11091492 - 12 Sep 2019
Viewed by 140
Abstract
Poly(glycerol sebacate) (PGS) is a biocompatible, biodegradable elastomer that has been shown promise as a scaffolding material for tissue engineering; it is still challenging, however, to produce anisotropic scaffolds by using a thermoset polymer, such as PGS. Previously, we have used aligned sacrificial [...] Read more.
Poly(glycerol sebacate) (PGS) is a biocompatible, biodegradable elastomer that has been shown promise as a scaffolding material for tissue engineering; it is still challenging, however, to produce anisotropic scaffolds by using a thermoset polymer, such as PGS. Previously, we have used aligned sacrificial poly(vinyl alcohol) (PVA) fibers to help produce an anisotropic PGS membrane; a composite membrane, formed by embedding aligned PVA fibers in PGS prepolymer, was subjected to curing and subsequent PVA removal, resulting in aligned grooves and cylindrical pores on the surface of and within the membrane, respectively. PVA, however, appeared to react with PGS during its curing, altering the mechanical characteristics of PGS. In this study, aligned sacrificial fibers made of polylactide (PLA) were used instead. Specifically, PLA was blend-electrospun with polyethylene oxide to increase the sacrificial fiber diameter, which in turn increased the size of the grooves and cylindrical pores. The resultant PGS membrane was shown to be in vitro cyto-compatible and mechanically anisotropic. The membrane’s Young’s modulus was 1–2 MPa, similar to many soft tissues. In particular, the microscale grooves on the membrane surface were found to be capable of directing cell alignment. Finally, based on the same approach, we fabricated a biomimetic, anisotropic, PGS tubular scaffold. The compliance of the tubular scaffold was comparable to native arteries and in the range of 2% to 8% per 100 mmHg, depending on the orientations of the sacrificial fibers. The anisotropic PGS tubular scaffolds can potentially be used in vascular tissue engineering. Full article
(This article belongs to the Special Issue Polymeric Materials for Tissue Engineering)
Show Figures

Graphical abstract

Open AccessArticle
A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy “Click” Chemistry and N-Alkylation Reaction
Polymers 2019, 11(9), 1491; https://doi.org/10.3390/polym11091491 - 12 Sep 2019
Viewed by 151
Abstract
In this work, the amine-epoxy “click” reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety [...] Read more.
In this work, the amine-epoxy “click” reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety of amine and epoxide molecules that can serve as hydrophilic network precursors. Therefore, hydrogels can be prepared in a modular fashion through a simple mixing of the precursors in water and used as produced (without requiring any post-synthesis purification step). The gelation behavior and final hydrogel properties depend upon the molecular weight of the precursors and can be changed as per the requirement. A post-synthesis modification through alkylation at the nitrogen atom of the newly formed β-hydroxyl amine linkages allows for functionalizing the hydrogels. For example, ring-opening reaction of cyclic sulfonic ester gives rise to surfaces with a zwitterionic character. Finally, the established gelation chemistry can be combined with soft lithography techniques such as micromolding in capillaries (MIMIC) to obtain hydrogel microstructures. Full article
(This article belongs to the Section Polymer Synthesis)
Show Figures

Graphical abstract

Open AccessArticle
Facile Functionalization via Plasma-Enhanced Chemical Vapor Deposition for the Effective Filtration of Oily Aerosol
Polymers 2019, 11(9), 1490; https://doi.org/10.3390/polym11091490 - 12 Sep 2019
Viewed by 140
Abstract
With the growing concern about the health impacts associated with airborne particles, there is a pressing need to design an effective filter device. The objective of this study is to investigate the effect of plasma-based surface modifications on static charges of electrospun filter [...] Read more.
With the growing concern about the health impacts associated with airborne particles, there is a pressing need to design an effective filter device. The objective of this study is to investigate the effect of plasma-based surface modifications on static charges of electrospun filter media and their resulting filtration performance. Polystyrene (PS) electrospun web (ES) had inherent static charges of ~3.7 kV due to its electric field-driven process, displaying effective filtration performance. When oxygen species were created on the surface by the oxygen plasma process, static charges of electret media decreased, deteriorating the filter performance. When the web surface was fluorinated by the plasma-enhanced chemical vapor deposition (PECVD), the filtration efficiency against oily aerosol significantly increased due to the combined effect of decreased wettability and strong static charges (~−3.9 kV). Solid particles on the charged media formed dendrites as particles were attracted to other layers of particles, building up a pressure drop. The PECVD process is suggested as a facile functionalization method for effective filter design, particularly for capturing oily aerosol. Full article
(This article belongs to the Special Issue Wettabilities and surface properties of polymer materials)
Show Figures

Graphical abstract

Open AccessArticle
Photo-Oxidative and Soil Burial Degradation of Irrigation Tubes Based on Biodegradable Polymer Blends
Polymers 2019, 11(9), 1489; https://doi.org/10.3390/polym11091489 - 12 Sep 2019
Viewed by 139
Abstract
: Irrigation tubes based on biodegradable polymers were prepared via an extrusion-drawing process by Irritec and compared to conventional pipes made of high-density polyethylene (HDPE). A commercial polylactide/poly (butyleneadipate-co-butyleneterephthalate) (PLA/PBAT) blend (Bio-Flex®) and Mater-Bi® were used. The polymers were characterized from [...] Read more.
: Irrigation tubes based on biodegradable polymers were prepared via an extrusion-drawing process by Irritec and compared to conventional pipes made of high-density polyethylene (HDPE). A commercial polylactide/poly (butyleneadipate-co-butyleneterephthalate) (PLA/PBAT) blend (Bio-Flex®) and Mater-Bi® were used. The polymers were characterized from rheological and mechanical points of view. Irrigation pipes were subjected to photoaging with continued exposure to UV radiation up to 22 days. The degradability in the soil of irrigation tube samples was studied. The influence of temperature and UV irradiation on soil burial degradation was investigated. A soil burial degradation test was carried out at 30 °C and 50 °C for up to 70 days. The degree of degradation was evaluated from the weight loss percentage. The degradation rate of irrigation tube samples based on Mater-Bi® was higher at 30 °C and was stimulated after 14 days of UV irradiation. Higher temperatures or UV aging encouraged the disintegration in soil of Bio-Flex®-based irrigation tubes. Furthermore, tube samples, before and after UV and soil burial degradation, were analyzed by Attenuated Total Reflection–Fourier Transform Infra-Red (ATR-FTIR) spectroscopy. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Italy)
Open AccessArticle
Application of Network Analysis to Flow Systems with Alternating Wave Channels: Part A (Pressure Flows)
Polymers 2019, 11(9), 1488; https://doi.org/10.3390/polym11091488 - 12 Sep 2019
Viewed by 151
Abstract
Wave-dispersion screws have been used industrially in many types of extrusion processes, injection molding, and blow molding. These high-performance screws are constructed by replacing the metering section of a conventional screw with a melt-conveying zone consisting of two or more parallel flow channels [...] Read more.
Wave-dispersion screws have been used industrially in many types of extrusion processes, injection molding, and blow molding. These high-performance screws are constructed by replacing the metering section of a conventional screw with a melt-conveying zone consisting of two or more parallel flow channels that oscillate periodically in-depth over multiple cycles. With the barrier flight between the screw channels being selectively undercut, the molten resin is strategically forced to flow across the secondary flight, assuring repeated cross-channel mixing of the polymer melt. Despite the industrial relevance, very few scientific studies have investigated the flow in wave-dispersion sections in detail. As a result, current screw designs are often based on traditional trial-and-error procedures rather than on the principles of extrusion theory. This study, which was split into two parts, was carried out to systematically address this issue. The research reported here (Part A) was designed to reduce the complexity of the problem, exclusively analyzing the pressure-induced flows of polymer melts in wave sections. Ignoring the influence of the screw rotation on the conveying characteristics of the wave section, the results could be clearly assigned to the governing type of flow mechanism, thereby providing a better understanding of the underlying physics. Experimental studies were performed on a novel extrusion die equipped with a dual wave-channel system with alternating channel depth profiles. A seminumerical modeling approach based on network theory is proposed that locally describes the downchannel and cross-channel flows along the wave channels and accurately predicts the pressure distributions in the flow domain. The solutions of our seminumerical approach were, moreover, compared to the results of three-dimensional non-Newtonian CFD simulations. The results of this study will be extended to real screw designs in Part B, which will include the influence of the screw rotation in the flow analysis. Full article
(This article belongs to the Special Issue Processing and Molding of Polymers)
Show Figures

Graphical abstract

Open AccessArticle
Effect of Porosity and Crystallinity on 3D Printed PLA Properties
Polymers 2019, 11(9), 1487; https://doi.org/10.3390/polym11091487 - 12 Sep 2019
Viewed by 131
Abstract
Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product [...] Read more.
Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object. Full article
Show Figures

Graphical abstract

Open AccessArticle
Highly Bendable and Durable Waterproof Paper for Ultra-High Electromagnetic Interference Shielding
Polymers 2019, 11(9), 1486; https://doi.org/10.3390/polym11091486 - 12 Sep 2019
Viewed by 115
Abstract
An efficient electromagnetic interference (EMI) shielding paper with excellent water repellency and mechanical flexibility has been developed, by assembling silver nanowires (AgNWs) and hydrophobic inorganic ceramic on the cellulose paper, via a facile dip-coating preparation. Scanning electron microscope (SEM) observations confirmed that AgNWs [...] Read more.
An efficient electromagnetic interference (EMI) shielding paper with excellent water repellency and mechanical flexibility has been developed, by assembling silver nanowires (AgNWs) and hydrophobic inorganic ceramic on the cellulose paper, via a facile dip-coating preparation. Scanning electron microscope (SEM) observations confirmed that AgNWs were interconnected and densely coated on both sides of the cellulose fiber, which endows the as-prepared paper with high conductivity (33.69 S/cm in-plane direction) at a low AgNW area density of 0.13 mg/cm2. Owing to multiple reflections and scattering between the two outer highly conductive surfaces, the obtained composite presented a high EMI shielding effectiveness (EMI SE) of up to 46 dB against the X band, and ultrahigh specific EMI SE of 271.2 dB mm–1. Moreover, the prepared hydrophobic AgNW/cellulose (H-AgNW/cellulose) composite paper could also maintain high EMI SE and extraordinary waterproofness (water contact angle > 140°) by suffering dozens of bending tests or one thousand peeling tests. Overall, such a multifunctional paper might have practical applications in packaging conductive components and can be used as EMI shielding elements in advanced application areas, even under harsh conditions. Full article
Show Figures

Graphical abstract

Open AccessArticle
New Strategy to Cope with Common Fishery Policy Landing Obligation: Collagen Extraction from Skins and Bones of Undersized Hake (Merluccius merluccius)
Polymers 2019, 11(9), 1485; https://doi.org/10.3390/polym11091485 - 11 Sep 2019
Viewed by 133
Abstract
In order to promote sustainable fishing practices within European fishing fleets and to avoid the large waste of valuable fish biomass through the practice of fish discarding, the new reform of the common fisheries policy includes the obligation of landing all species under [...] Read more.
In order to promote sustainable fishing practices within European fishing fleets and to avoid the large waste of valuable fish biomass through the practice of fish discarding, the new reform of the common fisheries policy includes the obligation of landing all species under total allowable catch (TAC) regulations. The new policy also prohibits the use of specimens under minimum conservation reference size for direct human cons38umption. In this context, it is necessary to find new uses for undersized fish, which might help to alleviate the costs associated with the landing obligation but without prompting the creation of a market. European hake (EH) (Merluccius merluccius), which is one of the most important commercial fish species for the Spanish fishing industry, with a total TAC for 2018 of 3,7423 t, is used for this study. Consistent with the current policy framework and taking into account the commercial importance of this species, the aim of this work is to study a new strategy for the extraction of collagen from the skin and bone fraction of Merluccius merluccius undersized discards. Three collagen fractions are successfully isolated for the first time from the skin of M. merluccius skin and bone discarded raw material: acid-soluble collagen (ASC) fraction 1 and pepsin-soluble collagen (PSC) fraction 2 from the skin and ASC fraction 3 from bones. The total collagen yield of the process is 13.55 ± 3.18% in a dry basis (g collagen/100 g of skin and bone fraction (SBF)) and 47.80 ± 9.83% (g collagen/100 g of collagen determined by the hydroxyproline content in SBF). The three fractions are further characterized by using different physical and chemical analysis techniques, with the conclusion drawn that the triple helix structure is preserved in the three fractions, although ASC fractions (F1 and F3) present more or stronger hydrogen bonds than the PSC fraction (F2). With the process herein presented, deboned and skinned hake specimens could represent an interesting source of high quality type I collagen, which could be useful as a raw material for the biomedical, cosmetic, and nutraceutical industries. Full article
(This article belongs to the Special Issue Marine Polymeric Materials and Biomimetics)
Show Figures

Graphical abstract

Open AccessArticle
A Novel Strategy for the Synthesis of Amphiphilic and Thermoresponsive Poly(N-isopropylacrylamide)-b-Polystyrene Block Copolymers via ATRP
Polymers 2019, 11(9), 1484; https://doi.org/10.3390/polym11091484 - 11 Sep 2019
Viewed by 201
Abstract
A new synthetic approach is presented for the preparation of Poly(N-isopropylacrylamide-block-styrene) PNIPAM-b-PS via an Atom Transfer Radical Polymerization (ATRP) technique. The proposed method is based on application of 2-chloro-N-(2-hydroxyethyl)propanamide (NCPAE) as a bifunctional initiator, which enables ATRP of two monomers, differing [...] Read more.
A new synthetic approach is presented for the preparation of Poly(N-isopropylacrylamide-block-styrene) PNIPAM-b-PS via an Atom Transfer Radical Polymerization (ATRP) technique. The proposed method is based on application of 2-chloro-N-(2-hydroxyethyl)propanamide (NCPAE) as a bifunctional initiator, which enables ATRP of two monomers, differing in activity and polarity, into two stages. The synthesized copolymer molecules contain two well-defined polymer chains connected by a linker, which is a derivative of the proposed initiator. Using NCPAE led to PNIPAMs with well-planned molecular weight, low polydispersities (PDI=1.1÷1.3) and hydroxyl functionality. Activation of such blocks for initiation of styrene polymerization was performed using α-bromoisobutyryl bromide. After such a modification, the synthesized homopolymers acted as macroinitiators in ARGET ATRP and a well-defined polystyrene block, as the next one in the polymer chain was successfully formed. Both of the synthesized macromolecules, PNIPAM and PNIPAM-b-PS, exhibit a thermoresponsive behavior with explicit lower critical solution temperatures (LCST) in their aqueous solutions. The synthesized homopolymers and subsequently derived block copolymers were characterized using Size-Exclusion Chromatography, Differential Scanning Calorimetry, Dynamic Light Scattering, and NMR spectroscopy. Full article
Show Figures

Graphical abstract

Open AccessArticle
Feasibility Study of Applying Modified Nano-SiO2 Hyperbranched Copolymers for Enhanced Oil Recovery in Low-Mid Permeability Reservoirs
Polymers 2019, 11(9), 1483; https://doi.org/10.3390/polym11091483 - 11 Sep 2019
Viewed by 198
Abstract
To improve oil recovery significantly in low-mid permeability reservoirs, a novel modified nano-SiO2 hyperbranched copolymer (HPBS), consisting of polyacrylamide as hydrophilic branched chains and modified nano-SiO2 as the core, was synthesized via an in situ free radical polymerization reaction. The structure [...] Read more.
To improve oil recovery significantly in low-mid permeability reservoirs, a novel modified nano-SiO2 hyperbranched copolymer (HPBS), consisting of polyacrylamide as hydrophilic branched chains and modified nano-SiO2 as the core, was synthesized via an in situ free radical polymerization reaction. The structure and properties of the hyperbranched copolymer were characterized through a range of experiments, which showed that HBPS copolymers have better stability and enhanced oil recovery (EOR) capacity and also smaller hydrodynamic radius in comparison with hydrolyzed polyacrylamide (HPAM). The flooding experiments indicated that when a 1000 mg/L HPBS solution was injected, the resistance factor (RF) and residual resistance factor (RRF) increased after the injection. Following a 98% water cut after preliminary water flooding, 0.3 pore volume (PV) and 1000 mg/L HPBS solution flooding and extended water flooding (EWF) can further increase the oil recovery by 18.74% in comparison with 8.12% oil recovery when using HPAM. In this study, one can recognize that polymer flooding would be applicable in low-mid permeability reservoirs. Full article
Show Figures

Graphical abstract

Open AccessArticle
Amphoteric Ion Exchange Membranes Prepared by Preirradiation-Induced Emulsion Graft Copolymerization for Vanadium Redox Flow Battery
Polymers 2019, 11(9), 1482; https://doi.org/10.3390/polym11091482 - 11 Sep 2019
Viewed by 159
Abstract
A series of poly(vinylidene difluoride)-based amphoteric ion exchange membranes (AIEMs) were prepared by preirradiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate in an aqueous emulsion media followed by solution casting, sulfonation, and protonation. The effects of absorbed dose and comonomer concentration on grafting [...] Read more.
A series of poly(vinylidene difluoride)-based amphoteric ion exchange membranes (AIEMs) were prepared by preirradiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate in an aqueous emulsion media followed by solution casting, sulfonation, and protonation. The effects of absorbed dose and comonomer concentration on grafting yield (GY) were investigated. The highest GY of 44.5% at a low comonomer concentration of 0.9 M could be achieved. FTIR, TGA, and X-ray photoelectron spectroscopy (XPS) confirmed the successful grafting and sulfonation of the as-prepared AIEMs. Properties of the AIEMs such as water uptake, ion exchange capacity (IEC), ionic conductivity, and crossover behavior of VO2+ ions prepared by this novel technique were systematically investigated and compared with those of the commercial Nafion 115 membrane. It was found that at a GY of 28.4%, the AIEMs showed higher IEC and conductivity, lower permeability of VO2+ ions, and a longer time to maintain open circuit voltage than Nafion 115, which was attributed to their high GY and elaborate amphoteric structure. Consequently, this work has paved the way for the development of green and low-cost AIEMs with good performance for vanadium redox flow battery applications. Full article
(This article belongs to the Special Issue Radiation Polymers)
Show Figures

Graphical abstract

Open AccessArticle
A Quantitative Spectroscopic Study of the Bleaching Phenomena in Plasticized Formulations Containing PVC Exposed to Outdoor Conditions
Polymers 2019, 11(9), 1481; https://doi.org/10.3390/polym11091481 - 11 Sep 2019
Viewed by 180
Abstract
In this work, a quantitative spectroscopic study of the bleaching phenomena occurring in plasticized formulations containing poly(vinyl chloride) was performed, proposing a general methodology to comparatively analyze the effect of degrading conditions on the polyene accumulation behaviors (PABs) exhibited by a set of [...] Read more.
In this work, a quantitative spectroscopic study of the bleaching phenomena occurring in plasticized formulations containing poly(vinyl chloride) was performed, proposing a general methodology to comparatively analyze the effect of degrading conditions on the polyene accumulation behaviors (PABs) exhibited by a set of tested formulations. In the study, a set of environmental indexes (temperature (T*), UV energy (UV*), and days with rain) were proposed, which allowed for the suitable globalization of the changing environmental conditions occurring throughout the different degrading periods. A procedure to numerically describe the PAB, followed by each formulation undergoing each degrading condition was also proposed, which required only two primary fitting parameters and four secondary fitting parameters. Then, the combined effects of certain environmental conditions on the PABs were studied, quantifying the stabilizing effects of the rain and the combined decrement on the T* and UV* indexes. Finally, on the basis of the proposed fitting equation and the values of its fitting parameters, the relative importance of the dehydrochlorination reactions as compared with the photo-oxidative reactions simultaneously occurring in the studied systems was estimated. Full article
(This article belongs to the Special Issue Degradation and Stabilization of Polymer-Based Materials)
Show Figures

Graphical abstract

Open AccessArticle
In situ Fabrication of Multi-Walled Carbon Nanotubes/Silica Hybrid Colloidosomes by Pickering Emulsion Templating Using Trialkoxysilanes of Opposite Polarity
Polymers 2019, 11(9), 1480; https://doi.org/10.3390/polym11091480 - 10 Sep 2019
Viewed by 205
Abstract
A simple and effective way to prepare multi-walled carbon nanotubes (MWNT)//silica hybrid microcapsules (colloidosomes) is presented. These microcapsules have been generated by emulsion templating in a biphasic oil-in-water (o/w) system. Two trialkoxysilanes of complementary polarity, (3-aminopropyl)triethoxysilane (APTES) and dodecyltriethoxysilane (DTES), were used to [...] Read more.
A simple and effective way to prepare multi-walled carbon nanotubes (MWNT)//silica hybrid microcapsules (colloidosomes) is presented. These microcapsules have been generated by emulsion templating in a biphasic oil-in-water (o/w) system. Two trialkoxysilanes of complementary polarity, (3-aminopropyl)triethoxysilane (APTES) and dodecyltriethoxysilane (DTES), were used to chemically immobilize the silica nanoparticles at the o/w interface and stabilize the as-generated Pickering emulsions. The effects of varying the o/w ratio and the concentration of the added solids on the type of emulsion formed, the oil droplet size, as well as the emulsion stability have been investigated. The emulsion phase fraction was dependent on the silica content while the droplet size increased with increasing oil volume percentage. A solid shell emerged around the oil droplets from copolymerization between silane monomers. The thickness of the resulting shells was several hundreds of nm. Although MWNTs and silica nanoparticles both were co-assembled at the o/w interface, silica has shown to be the sole stabilizer, with APTES being crucial for the formation of the shell structure. Drop-casting of the emulsion and air-drying led to hierarchical open porous MWNT-silica nanocomposites. These new structures are promising as electrically conductive thin films for variety of applications, such as electro-optics, encapsulation, or chemical sensing. Full article
Open AccessArticle
Halogen-Free Flame-Retardant Compounds. Thermal Decomposition and Flammability Behavior for Alternative Polyethylene Grades
Polymers 2019, 11(9), 1479; https://doi.org/10.3390/polym11091479 - 10 Sep 2019
Viewed by 196
Abstract
The effect of six halogen-free flame retardant (FR) formulations was investigated on the thermal stability of two low-density polyethylenes (LDPE) and one linear low-density polyethylene (LLDPE), by means of thermogravimetric analysis (TGA) under nitrogen and air atmosphere. The relative data were combined with [...] Read more.
The effect of six halogen-free flame retardant (FR) formulations was investigated on the thermal stability of two low-density polyethylenes (LDPE) and one linear low-density polyethylene (LLDPE), by means of thermogravimetric analysis (TGA) under nitrogen and air atmosphere. The relative data were combined with flammability properties and the overall performance of the FRs was correlated with the type of branching in the polyethylene grades and to their processing behavior. The thermal degradation kinetics was further determined based on the Kissinger and Coats-Redfern methods. In terms of flammability, the addition of a triazine derivative and ammonium polyphosphate at a loading of 35 wt. %. was found to be the most efficient, leading to UL 94 V0 ranking in the case of the LDPE grade produced in an autoclave reactor. Full article
Show Figures

Graphical abstract

Open AccessArticle
Reactions of Soy Flour and Soy Protein by Non-Volatile Aldehydes Generation by Specific Oxidation
Polymers 2019, 11(9), 1478; https://doi.org/10.3390/polym11091478 - 10 Sep 2019
Viewed by 166
Abstract
Soy protein isolate (SPI) and insoluble soy flour polymeric carbohydrates have been reacted with sodium periodate for the specific oxidation of vicinal –OH groups to investigate the reactions involved in this approach to soy flour adhesives. The reactions have been shown to generate [...] Read more.
Soy protein isolate (SPI) and insoluble soy flour polymeric carbohydrates have been reacted with sodium periodate for the specific oxidation of vicinal –OH groups to investigate the reactions involved in this approach to soy flour adhesives. The reactions have been shown to generate carbohydrate oligomer fractions presenting one, two or multiple aldehyde groups. With the exception of the small molecular weight heptanedial, the smaller molecular weight aldehydes generated from mono- and disaccharides by the same reaction do not appear to form from the insoluble soy flour carbohydrates, or have already reacted. The reaction of periodate with soy protein isolate has been shown to generate some aldehydes too. When the mix of SPI and soy insoluble carbohydrates is treated with periodate, the majority of the observed aldehyde carrying species appear to be higher molecular weight carbohydrate oligomer fractions. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Italy)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop