Crystal Structure and Theoretical Analysis of Cs2Ca3(SO4)4
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Powder XRD
3.2. Crystal Structure
3.3. UV–vis–NIR Diffuse Reflectance Spectroscopy
3.4. Electronic Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Liang, F.; Zhao, S.; Li, L.; Wu, Z.; Ding, Q.; Liu, S.; Lin, Z.; Hong, M.; Luo, J. Two non-π-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 2019, 141, 3833–3837. [Google Scholar] [CrossRef]
- Dong, X.; Huang, L.; Hu, C.; Zeng, H.; Lin, Z.; Wang, X.; Ok, K.M.; Zou, G. CsSbF2SO4: An excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew. Chem. 2019, 131, 6598–6604. [Google Scholar] [CrossRef]
- Yang, F.; Huang, L.; Zhao, X.; Huang, L.; Gao, D.; Bi, J.; Wang, X.; Zou, G. An energy band engineering design to enlarge the band gap of KTiOPO4 (KTP)-type sulfates via aliovalent substitution. J. Mater. Chem. C 2019, 7, 8131–8138. [Google Scholar] [CrossRef]
- Chen, K.C.; Yang, Y.; Peng, G.; Yang, S.D.; Yan, T.; Fan, H.X.; Lin, Z.S.; Ye, N. A2Bi2(SO4)2Cl4 (A = NH4, K, Rb): Achieving a subtle balance of the large second harmonic generation effect and sufficient birefringence in sulfate nonlinear optical materials. J. Mater. Chem. C 2019, 7, 9900–9907. [Google Scholar] [CrossRef]
- Tang, H.X.; Zhang, Y.X.; Zhuo, C.; Fu, R.B.; Lin, H.; Ma, Z.J.; Wu, X.T. A niobium oxyiodate sulfate with a strong second-harmonic-generation response built by rational multi-component design. Angew. Chem. Int. Ed. 2019, 58, 3824–3828. [Google Scholar] [CrossRef]
- Wu, C.; Wu, T.H.; Jiang, X.X.; Wang, Z.J.; Sha, H.Y.; Lin, L.; Lin, Z.S.; Huang, Z.P.; Long, X.F.; Humphrey, M.G.; et al. Large second-harmonic response and giant birefringence of CeF2(SO4) induced by highly polarizable polyhedra. J. Am. Chem. Soc. 2021, 143, 4138–4142. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.Y.; Lin, C.S.; Peng, G.; Fan, H.X.; Zhao, X.; Chen, K.C.; Luo, M.; Ye, N. Te(CS(NH2)2)4SO4·2H2O: A three-in-one semiorganic nonlinear optical crystal with an unusual quadrilateral (TeS4)6− chromophore. Cryst. Growth Des. 2021, 21, 2596–2601. [Google Scholar] [CrossRef]
- Ramajothi, J.; Dhanuskodi, S.; Nagarajan, K. Crystal growth, thermal, optical and microhardness studies of tris (thiourea) zinc sulphate—A semiorganic NLO material. Cryst. Res. Technol. 2004, 39, 414–420. [Google Scholar] [CrossRef]
- Peng, G.; Lin, C.-S.; Yang, Y.; Zhao, D.; Lin, Z.; Ye, N.; Huang, J.-S. Y2(CO3)3·H2O and (NH4)2Ca2Y4(CO3)9·H2O: Partial aliovalent cation substitution enabling evolution from centrosymmetry to noncentrosymmetry for nonlinear optical response. Chem. Mater. 2019, 31, 52–56. [Google Scholar] [CrossRef]
- Lu, J.; Yue, J.-N.; Xiong, L.; Zhang, W.-K.; Chen, L.; Wu, L.-M. Uniform alignment of non-π-conjugated species enhances deep ultraviolet optical nonlinearity. J. Am. Chem. Soc. 2019, 141, 8093–8097. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; An, D.H.; Hu, C.; Chen, X.L.; Yang, Z.H.; Pan, S.L. Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene. J. Am. Chem. Soc. 2019, 141, 3258–3264. [Google Scholar] [CrossRef]
- Yang, Y.C.; Liu, X.; Lu, J.; Wu, L.M.; Chen, L. [Ag(NH3)2]2SO4: A strategy for the coordination of cationic moieties to design nonlinear optical materials. Angew. Chem. Int. Ed. 2021, 60, 21216–21220. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, S.; Shan, P.; Li, X.; Ding, Q.; Liu, S.; Wu, Z.; Wang, S.; Li, L.; Luo, J. Li8NaRb3(SO4)6·2H2O as a new sulfate deep-ultraviolet nonlinear optical material. J. Mater. Chem. C 2018, 6, 12240–12244. [Google Scholar] [CrossRef]
- Shen, Y.G.; Xue, X.L.; Tu, W.Y.; Liu, Z.Q.; Yan, R.W.; Zhang, H.; Jia, J.R. Synthesis, crystal structure, and characterization of a noncentrosymmetric sulfate Cs2Ca2(SO4)3. Eur. J. Inorg. Chem. 2020, 2020, 854–858. [Google Scholar] [CrossRef]
- Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: Ammonium sulfate hydrogen sulphamate (ASHS). Appl. Phys. A Mater. 2018, 124, 334. [Google Scholar] [CrossRef]
- He, F.F.; Wang, Q.; Hu, C.F.; He, W.; Luo, X.Y.; Huang, L.; Gao, D.J.; Bi, J.; Wang, X.; Zou, G.H. Centrosymmetric (NH4)2SbCl(SO4)2 and non-centrosymmetric NH4SbCl2SO4: Synergistic effect of hydrogen-bonding interactions and lone-pair cations on the framework structures and macroscopic centricities. Cryst. Growth Des. 2018, 18, 6239–6247. [Google Scholar] [CrossRef]
- He, F.F.; Wang, L.; Hu, C.F.; Zhou, J.; Li, Q.; Huang, L.; Gao, D.J.; Bi, J.; Wang, X.; Zou, G.H. Cation-tuned synthesis of the A2SO4·SbF3 (A = Na+, NH4+, K+, Rb+) family with nonlinear optical properties. Dalton Trans. 2018, 47, 17486–17492. [Google Scholar] [CrossRef]
- Wang, M.; Wei, D.Q.; Liang, L.J.; Yan, X.; Lv, K.K. Centrosymmetric Rb2Mg3(SO4)4 and non-centrosymmetric Cs2Mg3(SO4)4 with a phase-matching nonlinear optical response. Inorg. Chem. Commun. 2019, 107, 107486. [Google Scholar] [CrossRef]
- Shen, Y.G.; Xue, X.L.; Yan, R.W.; Lin, H. Synthesis, characterizations and theoretical analysis of a noncentrosymmetric sulfate. Inorg. Chem. Commun. 2020, 116, 107899. [Google Scholar] [CrossRef]
- Zhong, X.Y.; Wu, E.Q.; Yang, S.D.; Wang, H.H.; Lin, X.X.; Shen, Y.G. Optical properties and thermal stability of a cubic sulfate Rb2Ca2(SO4)3. Chin. J. Struc. Chem. 2021, 40, 949–954. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sec. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Ceperley, D.M.; Alder, B.J. Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Rappe, A.M.; Rabe, K.M.; Kaxiras, E.; Joannopoulos, J.D. Optimized pseudopotentials. Phys. Rev. B 1990, 41, 1227–1230. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, C.H.; Jan, J.H. Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials. Phys. Rev. B 2004, 70, 235110. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, P.; Tang, W.; Shen, Y.; Hong, J.; Li, Y.; Jia, J. Crystal Structure and Theoretical Analysis of Cs2Ca3(SO4)4. Crystals 2022, 12, 126. https://doi.org/10.3390/cryst12020126
Fang P, Tang W, Shen Y, Hong J, Li Y, Jia J. Crystal Structure and Theoretical Analysis of Cs2Ca3(SO4)4. Crystals. 2022; 12(2):126. https://doi.org/10.3390/cryst12020126
Chicago/Turabian StyleFang, Penglin, Wenyue Tang, Yaoguo Shen, Jinquan Hong, Yongming Li, and Junrong Jia. 2022. "Crystal Structure and Theoretical Analysis of Cs2Ca3(SO4)4" Crystals 12, no. 2: 126. https://doi.org/10.3390/cryst12020126
APA StyleFang, P., Tang, W., Shen, Y., Hong, J., Li, Y., & Jia, J. (2022). Crystal Structure and Theoretical Analysis of Cs2Ca3(SO4)4. Crystals, 12(2), 126. https://doi.org/10.3390/cryst12020126