Study on Treatment of Low Concentration Oily Wastewater Using Alumina Ceramic Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. O/W Emulsion Separation by Ceramic Plate Microfiltration Membranes
2.3. Analytical Methods
2.3.1. Permeation Flux
2.3.2. Rejection Percentage (%)
2.4. Membrane Characterization
2.5. Membrane Fouling Models
3. Results and Discussion
3.1. Characterization and Basic Properties Test of Membranes
3.2. Separation Performance
3.3. Membrane Fouling Model Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Padaki, M.; Murali, R.S.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
- Tomczak, W.; Gryta, M. Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation. Sep. Purif. Technol. 2021, 261, 118259. [Google Scholar] [CrossRef]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2012, 9, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.B.W.J.F. New progress in oilfield produced water treatment technology. Mod. Chem. Ind. 2018, 38, 52–57. [Google Scholar]
- Li, A.; Li, G.; Yang, J.; Yang, Y.; Liang, Y.; Zhang, D. Geo-distribution pattern of microbial carbon cycling genes responsive to petroleum contamination in continental horizontal oilfields. Sci. Total Environ. 2020, 731, 139188. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, T.; Gutierrez, L.; Ma, J.; Croué, J.-P. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion. Environ. Sci. Technol. 2016, 50, 4668–4674. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Chen, J.; Cai, X.; Han, Y.; Xiong, S. Oil–water pre-separation with a novel axial hydrocyclone. Chin. J. Chem. Eng. 2018, 26, 60–66. [Google Scholar] [CrossRef]
- Suresh, K.; Pugazhenthi, G. Cross flow microfiltration of oil-water emulsions using clay based ceramic membrane support and TiO2 composite membrane. Egypt. J. Pet. 2017, 26, 679–694. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. J. Membr. Sci. 2020, 595, 595. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, M.; Dong, Y.; Tang, C.Y.; Huang, A.; Li, L. A low-cost mullite-titania composite ceramic hollow fiber micro-filtration membrane for highly efficient separation of oil-in-water emulsion. Water Res. 2016, 90, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhu, L.; Chen, J.; Yang, F.; Tang, C.Y.; Guiver, M.; Dong, Y. Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Res. 2020, 169, 115180. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, S.; Mao, H.; Li, M.; Xue, A.; Zhao, Y.; Xing, W. A novel ceramic microfiltration membrane fabricated by an-thurium andraeanum-like attapulgite nanofibers for high-efficiency oil-in-water emulsions separation. J. Membr. Sci. 2021, 630, 119291. [Google Scholar] [CrossRef]
- Hlavacek, M. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane. J. Membr. Sci. 1995, 102, 1–7. [Google Scholar] [CrossRef]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Nasir, A.; Masood, F.; Yasin, T.; Hameed, A. Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications. J. Ind. Eng. Chem. 2019, 79, 29–40. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Su, Y.-N.; Lin, W.-S.; Hou, C.-H.; Den, W. Performance of integrated membrane filtration and electrodialysis processes for copper recovery from wafer polishing wastewater. J. Water Process Eng. 2014, 4, 149–158. [Google Scholar] [CrossRef]
- Sandu, T.; Chiriac, A.L.; Tsyntsarski, B.; Stoycheva, I.; Căprărescu, S.; Damian, C.M.; Iordache, T.V.; Pătroi, D.; Marinescu, V.; Sârbu, A. Advanced hybrid membranes for efficient nickel retention from simulated wastewater. Polym. Int. 2021, 70, 866–876. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Salahi, A.; Gheshlaghi, A.; Mohammadi, T.; Madaeni, S.S. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 2010, 262, 235–242. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Su, Y.; Zheng, L.; Wang, L.; Jiang, Z. Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Sep. Purif. Technol. 2009, 66, 591–597. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Willershausen, D.; Ashaghi, K.S.; Engel, L.; Placido, L.; Mund, P.; Bolduan, P.; Czermak, P. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination 2010, 250, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Zhang, T.; Ma, J. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabili-zation surfactants of oil droplets. Environ. Sci. Technol. 2015, 49, 4235–4244. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Li, J.; He, B.; Wang, T.; Liao, S. Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ. Sci. Technol. 2012, 46, 6815–6821. [Google Scholar] [CrossRef] [PubMed]
- Zhaoyu Bai, R.Z. Songxue Wang Membrane fouling behaviors of ceramic hollow fiber microfiltration (MF) membranes by typical organic matters. Sep. Purif. Technol. 2021, 274, 1–9. [Google Scholar]
- Li, L.; Cao, G.; Zhao, R.; Wu, S.; Wang, L.; Li, X.; Zeng, S. Recycling of construction and demolition waste to fabricate cost-effective anorthite ceramic membranes for enhanced separation of an oil-in-water emulsion. Constr. Build. Mater. 2020, 265, 120512. [Google Scholar] [CrossRef]
- Son, D.-J.; Kim, D.-G.; Kim, W.-Y.; Hong, K.-H. Anti-fouling effect by internal air injection in plate-type ceramic membrane fabricated for the treatment of agro-industrial wastewater. J. Water Process. Eng. 2021, 41, 102021. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, L.; Dong, Y.; Li, L.; Liu, J. Waste-to-Resource Strategy To Fabricate Highly Porous Whisker-Structured Mul-lite Ceramic Membrane for Simulated Oil-in-Water Emulsion Wastewater Treatment. ACS Sustain. Chem. Eng. 2016, 4, 2098–2106. [Google Scholar] [CrossRef]
- Hu, X.; Yu, Y.; Zhou, J.; Wang, Y.; Liang, J.; Zhang, X.; Chang, Q.; Song, L. The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. J. Membr. Sci. 2015, 476, 200–204. [Google Scholar] [CrossRef]
- Bortot Coelho, F.E.; Kaiser, N.N.; Magnacca, G.; Candelario, V.M. Corrosion resistant ZrO2/SiC ultrafiltration membranes for wastewater treatment and operation in harsh environments. J. Eur. Ceram. Soc. 2021, 41, 7792–7806. [Google Scholar] [CrossRef]
- Nandi, B.K.; Moparthi, A.; Uppaluri, R.; Purkait, M.K. Treatment of oily wastewater using low cost ceramic membrane: Comparative assessment of pore blocking and artificial neural network models. Chem. Eng. Res. Des. 2010, 88, 881–892. [Google Scholar] [CrossRef]
- Kumar, R.V.; Ghoshal, A.K.; Pugazhenthi, G. Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. J. Membr. Sci. 2015, 490, 92–102. [Google Scholar] [CrossRef]
- Vasanth, D.; Pugazhenthi, G.; Uppaluri, R. Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination 2013, 320, 86–95. [Google Scholar] [CrossRef]
- Hermia, J. Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids. Chem. Eng. Res. 1982, 60, 183–187. [Google Scholar]
- Zhu, L.; Dong, X.; Xu, M.; Yang, F.; Guiver, M.; Dong, Y. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. J. Membr. Sci. 2019, 582, 140–150. [Google Scholar] [CrossRef]
- Abadikhah, H.; Zou, C.-N.; Hao, Y.; Wang, J.-W.; Lin, L.; Khan, S.A.; Xu, X.; Chen, C.-S.; Agathopoulos, S. Application of asymmetric Si3N4 hollow fiber membrane for cross-flow microfiltration of oily waste water. J. Eur. Ceram. Soc. 2018, 38, 4384–4394. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, Z.; Zhang, Z.; Chu, Y.; Yuan, B.; Wei, Z. Development of highly porous mullite whisker ceramic membranes for oil-in-water separation and resource utilization of coal gangue. Sep. Purif. Technol. 2020, 237, 116483. [Google Scholar] [CrossRef]
Fouling Model | Linearized Form | Model Coefficient | Equations |
---|---|---|---|
Cake filtration | J−2 = J0−2 + kc·t | kc | (3) |
Intermediate pore blocking | J−1 = J0−1 + ki·t | ki | (4) |
Standard pore blocking | J−0.5 = J0−0.5 + ks·t | ks | (5) |
Complete pore blocking | ln (J−1) = ln (J0−1) + kb·t | kb | (6) |
Membrane | Configuration | Separation Layer | Water Permeance (L·m–2·h–1·bar–1) | Rejection (%) | Refs. |
---|---|---|---|---|---|
Zirconia | Plate | Zirconia | 250 | - | [27] |
ZrO2/SiC | tubular | ZrO2 | 360 | 99.91 | [30] |
TiO2-Mullite | Hollow fiber | TiO2 | 150 | 97.0 | [35] |
Si3N4 | Hollow fiber | - | 196 | 89.0 | [36] |
Mullite | Plate | - | 129 | 82.7 | [37] |
ACMs | Plate | Al2O3 | 539.89 | 97.6 | This work |
Oil Concentration (mg·L−1) | Cake Filtration | Intermediate Pore Blocking | Standard Pore Blocking | Complete Pore Blocking | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | kc (s·m−2) | J0−2× 10−5 | R2 | ki (m−1) | J0−1× 10−3 | R2 | ks (s0.5·m0.5) | J00.5× 10−1 | R2 | kb (s−1) | ln(J0−1) | |
30 | 0.950 | 0.977 | 2.11 | 0.990 | 0.996 | 0.34 | 0.995 | 0.998 | 0.08 | 0.989 | −0.994 | 0.01 |
40 | 0.986 | 0.994 | 2.25 | 0.994 | 0.997 | 0.46 | 0.976 | 0.989 | 0.62 | 0.942 | −0.973 | 0.10 |
50 | 0.989 | 0.995 | 2.19 | 0.968 | 0.986 | 2.4 | 0.946 | 0.975 | 1.32 | 0.916 | −0.961 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Lv, Q.; Meng, Q.; Liu, X.; Xiao, X.; Li, X.; Liu, Y.; Zhang, X.; Gao, P. Study on Treatment of Low Concentration Oily Wastewater Using Alumina Ceramic Membranes. Crystals 2022, 12, 127. https://doi.org/10.3390/cryst12020127
Chen J, Lv Q, Meng Q, Liu X, Xiao X, Li X, Liu Y, Zhang X, Gao P. Study on Treatment of Low Concentration Oily Wastewater Using Alumina Ceramic Membranes. Crystals. 2022; 12(2):127. https://doi.org/10.3390/cryst12020127
Chicago/Turabian StyleChen, Junliang, Qingxin Lv, Qingmei Meng, Xinpeng Liu, Xiaolong Xiao, Xiao Li, Yiyi Liu, Xue Zhang, and Peiling Gao. 2022. "Study on Treatment of Low Concentration Oily Wastewater Using Alumina Ceramic Membranes" Crystals 12, no. 2: 127. https://doi.org/10.3390/cryst12020127
APA StyleChen, J., Lv, Q., Meng, Q., Liu, X., Xiao, X., Li, X., Liu, Y., Zhang, X., & Gao, P. (2022). Study on Treatment of Low Concentration Oily Wastewater Using Alumina Ceramic Membranes. Crystals, 12(2), 127. https://doi.org/10.3390/cryst12020127