The Design and Fabrication of a MEMS Electronic Calibration Chip
Abstract
:1. Introduction
2. Structural Design of Calibration Sheet
3. Device Fabrication Process Flow
4. Device Performance Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebeiz, G.M.; Muldavin, J.B. RF MEMS switches and switch circuits. IEEE Microw. Mag. 2001, 2, 59–71. [Google Scholar] [CrossRef]
- Rumiantsev, A.; Ridler, N. VNA calibration. IEEE Microw. Mag. 2008, 9, 86–99. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, Y.; Deng, K.; Lai, C.; Zhou, J. Novel High Isolation and High Capacitance Ratio RF MEMS Switch: Design, Analysis and Performance Verification. Micromachines 2022, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Viera, J.A.; Pelletier, M.G. Low-Cost Electronic Microwave Calibration for Rapid On-Line Moisture Sensing of Seedcotton. Sensors 2010, 10, 11088–11099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Y.; Zhong, B.; Kan, J.; Wang, W.; Zhang, J. Research on development and calibration technology of solt calibration chip on 40GHz ceramic substrate. J. Microw. Power 2014, 30, 80–83. [Google Scholar]
- Yin, Y.; Zhang, X.; Gao, M. Development of S-parameter standard sample of coplanar waveguide on GaAs substrate. J. Microw. Power 2017, 33, 6. [Google Scholar]
- Wang, S.; Wu, Q.; Gao, Y.; Yu, J.G.; Cao, Q.L.; Han, L.L.; Li, M.W. A novel multifunctional electronic calibration kit integrated by MEMS SPDT switches. Chin. Phys. B 2021, 30, 118501. [Google Scholar] [CrossRef]
- Yang, Y.H.; Chen, D.J.; Wu, F.B. Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power. Surf. Coat. Technol. 2016, 303, 32–40. [Google Scholar] [CrossRef]
- Purroy, F.; Pradell, L. New theoretical analysis of the LRRM calibration technique for vector network analyzers. IEEE Trans. Instrum. Meas 2001, 50, 1307–1314. [Google Scholar] [CrossRef]
- Ridler, N.M.; Nazoa, N. Using simple calibration load models to improve accuracy of Vector Network Analyzer measurements. In Proceedings of the 2006 67th ARFTG Conference, San Francisco, CA, USA, 16 June 2006. [Google Scholar]
- Haddadi, K.; Lasri, T. Forward V-band vector network analyzer based on a modified six-port technique. In Proceedings of the 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), San Diego, CA, USA, 25–28 January 2015. [Google Scholar]
- Adamian, V. Simplified Vector Network Analyzer Design Using an Electronic Calibrator. In Proceedings of the 45th ARFTG Conference Digest, Orlando, FL, USA, 19–19 May 1995. [Google Scholar]
- Zhao, W.; Zhao, Y.J.; Yuan, C.H.; Qin, H.B.; Qiang, L. A calibration procedure for two-port vector network analyzer based on 10-term error model. Acta Electron. Sin. 2011, 39, 2469. [Google Scholar]
- Wojnowski, M.; Issakov, V.; Sommer, G.; Weigel, R. Multimode TRL Calibration Technique for Characterization of Differential Devices. IEEE Trans. Microw. Theory Tech. 2012, 60, 2220–2247. [Google Scholar] [CrossRef]
- Papantonis, S.; Ridler, N.M.; Lucyszyn, S. A new technique for vector network analyzer calibration verification using a single reconfigurable device. In Proceedings of the 82nd ARFTG Microwave Measurement Conference, Columbus, OH, USA, 18–21 November 2013. [Google Scholar]
- Han, L.; Wang, Y.; Wu, Q.; Zhang, S.; Wang, S.; Li, M. A novel low-loss four-bit bandpass filter using RF MEMS switches. Chin. Phys. B 2022, 31, 1–6. [Google Scholar] [CrossRef]
S.no | Design Parameter | Values/μm |
---|---|---|
1 | CPW (G-S-G) | 75-120-75 |
2 | Bridge length (W1) | 250 |
3 | Bridge width (L1) | 100 |
4 | Signal line gap (G0) | 3 |
5 | Anchor length (L2) | 80 |
6 | Anchor width (W2) | 20 |
State | S1 | S2 | S3 | S4 |
---|---|---|---|---|
thru | 0 | 1 | 0 | 1 |
open | 0 | 0 | 0 | 0 |
short | 1 | 0 | 0 | 0 |
load | 0 | 1 | 1 | 0 |
State of Calibration | Simulation Result | Test Result |
---|---|---|
Open | S11 < 1.0 dB | S11 < 0.7 dB |
Short | S11 < 3.5 dB | S11 < 3.5 dB |
Load | S11 < 20 dB | S11 < 25 dB |
Thru | S21 < 0.20 dB | S21 < 1.0 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Chen, Y.; Cao, Q.; Zhao, J.; Wang, S.; Wang, J.; Li, M. The Design and Fabrication of a MEMS Electronic Calibration Chip. Micromachines 2022, 13, 2139. https://doi.org/10.3390/mi13122139
Wu Q, Chen Y, Cao Q, Zhao J, Wang S, Wang J, Li M. The Design and Fabrication of a MEMS Electronic Calibration Chip. Micromachines. 2022; 13(12):2139. https://doi.org/10.3390/mi13122139
Chicago/Turabian StyleWu, Qiannan, Yu Chen, Qianlong Cao, Jingchao Zhao, Shanshan Wang, Junqiang Wang, and Mengwei Li. 2022. "The Design and Fabrication of a MEMS Electronic Calibration Chip" Micromachines 13, no. 12: 2139. https://doi.org/10.3390/mi13122139
APA StyleWu, Q., Chen, Y., Cao, Q., Zhao, J., Wang, S., Wang, J., & Li, M. (2022). The Design and Fabrication of a MEMS Electronic Calibration Chip. Micromachines, 13(12), 2139. https://doi.org/10.3390/mi13122139