Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8–18 Years: NHANES, 2005–2008
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Dietary Intake Assessment
2.3. Anthropometric Assessment
2.4. Statistical Analysis
3. Results
3.1. Energy and Nutrient Intake
Nutrient 2 | Non-Yogurt Consumer | Yogurt Consumer 3 |
---|---|---|
(n = 3506) | (n = 280) | |
Mean ± SE | Mean ± SE | |
Energy (kcal) | 2133 ± 23 | 2081 ± 58 |
Protein | ||
(g) | 75.2 ± 0.6 | 79.6 ± 1.5 ** |
(% energy) | 14.2 ± 0.1 | 15.1 ± 0.3 ** |
Total Fat | ||
(g) | 80.3 ± 0.7 | 76.8 ± 1.8 |
(% energy) | 33.5 ± 0.3 | 31.6 ± 0.7 * |
Saturated Fat | ||
(g) | 28.2 ± 0.3 | 26.4 ± 0.8 * |
(% energy) | 11.7 ± 0.1 | 10.9 ± 0.3 * |
Carbohydrate | ||
(g) | 280.8 ± 1.7 | 285.4 ± 4.4 |
(% energy) | 53.3 ± 0.3 | 54.4 ± 0.8 |
Total Sugars | ||
(g) | 138.4 ± 1.8 | 143.0 ± 4.7 |
(% energy) | 26.3 ± 0.3 | 27.3 ± 0.9 |
Added Sugars | ||
(g) | 94.7 ± 1.7 | 92.0 ± 4.3 |
(% energy) | 17.6 ± 0.3 | 17.3 ± 0.7 |
Micronutrients | ||
Calcium (mg) | 1001 ± 14 | 1105 ± 27 ** |
Vitamin D (μg) 4 | 4.97 ± 0.12 | 5.97 ± 0.33 ** |
Sodium (mg) | 3383 ± 43 | 3334 ± 87 |
Potassium (mg) | 2215 ± 27 | 2478 ± 63 ** |
Nutrient 3 | Low Dairy 2 | Middle Dairy | High Dairy |
---|---|---|---|
<1 Serving | 1 to <2 Servings | 2+ Servings | |
(n = 1239) | (n = 1098) | (n = 1449) | |
Mean ± SE | Mean ± SE | Mean ± SE | |
Energy (kcal) | 1747 ± 25 a | 2006 ± 33 b | 2496 ± 30 c |
Protein | |||
(g) | 69.4 ± 0.8 a | 75.3 ± 1.2 b | 80.3 ± 0.8 c |
(% energy) | 13.2 ± 0.2 a | 14.5 ± 0.2 b | 15.0 ± 0.2 b |
Total Fat | |||
(g) | 80.7 ± 1.1 | 79.8 ± 0.9 | 79.7 ± 0.8 |
(% energy) | 32.8 ± 0.4 | 33.1 ± 0.4 | 33.8 ± 0.3 |
Saturated Fat | |||
(g) | 25.2 ± 0.6 a | 27.1 ± 0.4 b | 30.8 ± 0.4 c |
(% energy) | 10.2 ± 0.2 a | 11.4 ± 0.1 b | 12.9 ± 0.1 c |
Carbohydrate | |||
(g) | 286.2 ± 2.7 a | 281.8 ± 2.3 a,b | 277.1 ± 1.9 b |
(% energy) | 55.1 ± 0.5 a | 53.4 ± 0.4 b | 52.1 ± 0.4 b |
Total Sugars | |||
(g) | 138.9 ± 2.9 | 136.0 ± 3.1 | 140.5 ± 2.1 |
(% energy) | 26.8 ± 0.5 | 25.8 ± 0.5 | 26.4 ± 0.4 |
Added Sugars | |||
(g) | 104.8 ± 3.0 a | 95.9 ± 2.7 a | 85.9 ± 2.5 b |
(% energy) | 19.7 ± 0.5 a | 17.3 ± 0.4 b | 16.2 ± 0.5 b |
Micronutrients | |||
Calcium (mg) | 635 ± 8 a | 874 ± 17 b | 1381 ± 17 c |
Vitamin D (μg) 4 | 2.11 ± 0.13 a | 4.13 ± 0.11 b | 7.88 ± 0.2 c |
Sodium (mg) | 3331 ± 34 | 3509 ± 96 | 3324 ± 49 |
Potassium (mg) | 2027 ± 36 a | 2175 ± 32 b | 2437 ± 45 c |
3.2. Anthropometric Variables
Indicator of Obesity or Adiposity 3 | Non-Yogurt Consumer | Yogurt Consumer 2 |
---|---|---|
(n = 3506) | (n = 280) | |
Mean ± SE | Mean ± SE | |
Anthropometric Indicators | ||
Weight (kg) | ||
Model 1 | 56.1 ± 0.6 | 54.2 ± 0.9 |
Model 2 | 56.1 ± 0.5 | 54.4 ± 0.9 |
Waist circumference (cm) | ||
Model 1 | 76.9 ± 0.5 | 74.5 ± 1.0 * |
Model 2 | 77.0 ± 0.5 | 74.5 ± 1.0 * |
Abdominal adiposity prevalence (%) | ||
Model 1 | 20.6 ± 1.6 | 15.3 ± 2.9 |
Model 2 | 20.6 ± 1.5 | 15.8 ± 3.3 |
Triceps skinfold (mm) | ||
Model 1 | 15.5 ± 0.3 | 14.4 ± 0.7 |
Model 2 | 15.5 ± 0.2 | 14.5 ± 0.7 |
Subscapular skinfold (mm) | ||
Model 1 | 12.9 ± 0.3 | 11.1 ± 0.5 * |
Model 2 | 12.9 ± 0.3 | 11.3 ± 0.6 * |
Calculated Indicators | ||
Body Mass Index (kg/m2) | ||
Model 1 | 22.0 ± 0.2 | 21.3 ± 0.3 * |
Model 2 | 22.0 ± 0.2 | 21.3 ± 0.3 * |
Percentile of BMI-for-age (%) | ||
Model 1 | 64.8 ± 1.2 | 60.4 ± 2.9 |
Model 2 | 64.7 ± 1.2 | 61.3 ± 2.7 |
Overweight/obesity prevalence (%) | ||
Model 1 | 36.2 ± 1.9 | 27.0 ± 4.0 * |
Model 2 | 35.7 ± 1.8 | 27.6 ± 4.6 |
Indicator of Obesity or Adiposity 3 | Low Dairy 2 | Middle Dairy | High Dairy |
---|---|---|---|
<1 Serving | 1 to <2 Servings | 2+ Servings | |
(n = 1239) | (n = 1098) | (n = 1449) | |
Mean ± SE | Mean ± SE | Mean ± SE | |
Anthropometric Indicators | |||
Weight (kg) | |||
Model 1 | 55.8 ± 0.8 | 56.1 ± 1.2 | 55.9 ± 0.8 |
Model 2 | 55.5 ± 0.8 | 56.5 ± 1.1 | 56.0 ± 0.8 |
Waist circumference (cm) | |||
Model 1 | 77.5 ± 0.6 | 76.8 ± 1.1 | 76.1 ± 0.6 |
Model 2 | 77.4 ± 0.7 | 76.9 ± 1.1 | 76.2 ± 0.6 |
Abdominal adiposity prevalence (%) | |||
Model 1 | 22.7 ± 2.1 | 19.2 ± 3.0 | 19.1 ± 1.8 |
Model 2 | 22.4 ± 2.2 | 19.3 ± 2.9 | 19.3 ± 1.7 |
Triceps skinfold (mm) | |||
Model 1 | 16.0 ± 0.4 | 15.3 ± 0.5 | 15.2 ± 0.3 |
Model 2 | 15.9 ± 0.4 | 15.3 ± 0.5 | 15.2 ± 0.3 |
Subscapular skinfold (mm) | |||
Model 1 | 13.6 ± 0.3 a | 12.6 ± 0.5 a,b | 12.1 ± 0.3 b |
Model 2 | 13.5 ± 0.3 a | 12.6 ± 0.5 a,b | 12.2 ± 0.3 b |
Calculated Indicators | |||
Body Mass Index (kg/m2) | |||
Model 1 | 22.2 ± 0.3 | 21.9 ± 0.4 | 21.8 ± 0.2 |
Model 2 | 22.1 ± 0.3 | 22.0 ± 0.4 | 21.9 ± 0.2 |
Percentile of BMI-for-age (%) | |||
Model 1 | 65.8 ± 1.7 | 62.6 ± 2.0 | 64.6 ± 1.3 |
Model 2 | 65.1 ± 1.8 | 63.0 ± 1.9 | 65.0 ± 1.3 |
Overweight/obesity prevalence (%) | |||
Model 1 | 39.1 ± 1.9 | 33.4 ± 3.5 | 34.0 ± 1.8 |
Model 2 | 37.7 ± 1.8 | 33.8 ± 3.4 | 33.9 ± 1.8 |
Indicator of Obesity or Adiposity 3 | Calcium Intake 2 Tertile Group | ||
---|---|---|---|
Low | Middle | High | |
(n = 1356) | (n = 1274) | (n = 1156) | |
Mean ± SE | Mean ± SE | Mean ± SE | |
Anthropometric Indicators | |||
Weight (kg) | |||
Model 1 | 55.8 ± 0.7 | 55.8 ± 1.2 | 56.2 ± 0.9 |
Model 2 | 55.9 ± 0.7 | 55.9 ± 1.1 | 56.2 ± 0.8 |
Waist circumference (cm) | |||
Model 1 | 77.5 ± 0.5 | 76.5 ± 1.0 | 76.1 ± 0.7 |
Model 2 | 77.5 ± 0.6 | 76.6 ± 1.0 | 76.2 ± 0.7 |
Abdominal adiposity prevalence (%) | |||
Model 1 | 22.0 ± 1.6 | 19.1 ± 2.6 | 19.6 ± 2.2 |
Model 2 | 21.7 ± 1.8 | 19.2 ± 2.6 | 19.8 ± 1.9 |
Triceps skinfold (mm) | |||
Model 1 | 15.9 ± 0.3 | 15.3 ± 0.5 | 15.1 ± 0.3 |
Model 2 | 15.8 ± 0.3 | 15.3 ± 0.4 | 15.2 ± 0.3 |
Subscapular skinfold (mm) | |||
Model 1 | 13.5 ± 0.3 a | 12.6 ± .5 a,b | 12.1 ± 0.3 b |
Model 2 | 13.4 ± 0.3 a | 12.6 ± 0.4 a,b | 12.2 ± 0.3 b |
Calculated Indicators | |||
Body Mass Index (kg/m2) | |||
Model 1 | 22.1 ± 0.2 | 21.9 ± 0.4 | 21.9 ± 0.3 |
Model 2 | 22.1 ± 0.2 | 21.9 ± 0.4 | 21.9 ± 0.3 |
Percentile of BMI-for-age (%) | |||
Model 1 | 65.0 ± 1.6 | 63.6 ± 1.9 | 64.7 ± 1.5 |
Model 2 | 64.7 ± 1.6 | 63.5 ± 1.8 | 65.1 ± 1.4 |
Overweight/obesity prevalence (%) | |||
Model 1 | 37.7 ± 1.8 | 34.6 ± 3.2 | 33.8 ± 2.2 |
Model 2 | 37.3 ± 1.8 | 34.3 ± 2.9 | 33.5 ± 2.3 |
Indicator of Obesity or Adiposity 3 | Vitamin D Intake 2 Tertile Group | ||
---|---|---|---|
Mean ± SE | Mean ± SE | Mean ± SE | |
Low | Middle | High | |
(n = 1370) | (n = 1246) | (n = 1170) | |
Anthropometric Indicators | |||
Weight (kg) | |||
Model 1 | 56.5 ± 1.2 | 55.2 ± 0.8 | 56.1 ± 0.8 |
Model 2 | 56.4 ± 1.2 | 55.5 ± 0.7 | 56.1 ± 0.8 |
Waist circumference (cm) | |||
Model 1 | 77.8 ± 0.9 | 76.5 ± 0.9 | 75.7 ± 0.7 |
Model 2 | 77.8 ± 0.9 | 76.7 ± 0.8 | 75.7 ± 0.7 |
Abdominal adiposity prevalence (%) | |||
Model 1 | 22.7 ± 2.4 | 20.1 ± 2.5 | 17.7 ± 1.7 |
Model 2 | 22.4 ± 2.3 | 20.4 ± 2.4 | 17.8 ± 1.4 |
Triceps skinfold (mm) | |||
Model 1 | 16.0 ± 0.3 | 15.4 ± 0.3 | 14.9 ± 0.3 |
Model 2 | 15.9 ± 0.3 | 15.4 ± 0.3 | 15.0 ± 0.3 |
Subscapular skinfold (mm) | |||
Model 1 | 13.5 ± 0.3 a | 12.6 ± 0.4 a,b | 12.1 ± 0.3 b |
Model 2 | 13.3 ± 0.3 a | 12.7 ± 0.4 a,b | 12.1 ± 0.3 b |
Calculated Indicators | |||
Body Mass Index (kg/m2) | |||
Model 1 | 22.3 ± 0.3 | 21.9 ± 0.3 | 21.7 ± 0.3 |
Model 2 | 22.2 ± 0.3 | 21.9 ± 0.3 | 21.7 ± 0.2 |
Percentile of BMI-for-age (%) | |||
Model 1 | 66.6 ± 1.6 | 63.9 ± 1.9 | 62.7 ± 1.7 |
Model 2 | 66.1 ± 1.5 | 64.2 ± 1.8 | 62.9 ± 1.6 |
Overweight/obesity prevalence (%) | |||
Model 1 | 40.9 ± 2.1 a | 32.8 ± 3.2 a,b | 32.4 ± 2.5 b |
Model 2 | 39.8 ± 1.9 a | 33.2 ± 3.2 a,b | 32.2 ± 2.5 b |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity and trends in body mass index among us children and adolescents, 1999–2010. JAMA 2012, 307, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Mei, Z.; Srinivasan, S.R.; Berenson, G.S.; Dietz, W.H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The bogalusa heart study. J. Pediatr. 2007, 150, 12–17.e12. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Dodd, K.W.; Goldman, J.A.; Gahche, J.J.; Dwyer, J.T.; Moshfegh, A.J.; Sempos, C.T.; Picciano, M.F. Estimation of total usual calcium and vitamin D intakes in the united states. J. Nutr. 2010, 140, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.M.; Jonnalagadda, S.S.; Albertson, A.M.; Joshi, N.A.; Weaver, C.M. Top food sources contributing to vitamin D intake and the association of ready-to-eat cereal and breakfast consumption habits to vitamin d intake in canadians and united states americans. J. Food Sci. 2012, 77, H170–H175. [Google Scholar] [CrossRef] [PubMed]
- Teegarden, D.; Proulx, W.R.; Martin, B.R.; Zhao, J.; McCabe, G.P.; Lyle, R.M.; Peacock, M.; Slemenda, C.; Johnston, C.C.; Weaver, C.M. Peak bone mass in young women. J. Bone Miner. Res. 1995, 10, 711–715. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 7th ed.U.S. Government Printing Office: Washington, DC, USA, 2010.
- Moshfegh, A.J.; Goldman, J.D.; Ahuja, J.K.; Rhodes, D.G.; Lacomb, R.P. What We Eat in America, Nhanes 2005–2006, Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. 2009. Available online: http://www.Ars.Usda.Gov/ba/bhnrc/fsrg (accessed on 4 December 2014). [Google Scholar]
- Krebs-Smith, S.M.; Guenther, P.M.; Subar, A.F.; Kirkpatrick, S.I.; Dodd, K.W. Americans do not meet federal dietary recommendations. J. Nutr. 2010, 140, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., III; Keast, D.R.; Auestad, N.; Quann, E.E. Nutrients from dairy foods are difficult to replace in diets of americans: Food pattern modeling and an analyses of the national health and nutrition examination survey 2003–2006. Nutr. Res. 2011, 31, 759–765. [Google Scholar] [CrossRef]
- Spence, L.A.; Cifelli, C.J.; Miller, G.D. The role of dairy products in healthy weight and body composition in children and adolescents. Curr. Nutr. Food Sci. 2011, 7, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Moore, L.L. Food group intake and central obesity among children and adolescents in the third national health and nutrition examination survey (NHANES III). Public Health Nutr. 2010, 13, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.L.; Singer, M.R.; Qureshi, M.M.; Bradlee, M.L. Dairy intake and anthropometric measures of body fat among children and adolescents in NHANES. J. Am. Coll. Nutr. 2008, 27, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Douglass, J.S.; Johnson, R.K.; Spence, L.A. Drinking flavored or plain milk is positively associated with nutrient intake and is not associated with adverse effects on weight status in us children and adolescents. J. Am. Diet. Assoc. 2008, 108, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Rockett, H.R.; Berkey, C.S.; Field, A.E.; Colditz, G.A. Cross-sectional measurement of nutrient intake among adolescents in 1996. Prev. Med. 2001, 33, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Wiley, A.S. Dairy and milk consumption and child growth: Is BMI involved? An analysis of NHANES 1999–2004. Am. J. Hum. Biol. 2010, 22, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Cadogan, J.; Eastell, R.; Jones, N.; Barker, M.E. Milk intake and bone mineral acquisition in adolescent girls: Randomised, controlled intervention trial. BMJ 1997, 315, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.M.; Hoffman, K.; McMurry, M. Effects of dairy products on bone and body composition in pubertal girls. J. Pediatr. 1995, 126, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ghayour-Mobarhan, M.; Sahebkar, A.; Vakili, R.; Safarian, M.; Nematy, M.; Lotfian, E.; Khorashadizadeh, M.; Tavallaie, S.; Dahri, M.; Ferns, G. Investigation of the effect of high dairy diet on body mass index and body fat in overweight and obese children. Indian J. Pediatr. 2009, 76, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Merrilees, M.J.; Smart, E.J.; Gilchrist, N.L.; Frampton, C.; Turner, J.G.; Hooke, E.; March, R.L.; Maguire, P. Effects of dairy food supplements on bone mineral density in teenage girls. Eur. J. Nutr. 2000, 39, 256–262. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Goree, L.L.; Gower, B. High-milk supplementation with healthy diet counseling does not affect weight loss but ameliorates insulin action compared with low-milk supplementation in overweight children. J. Nutr. 2009, 139, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Gomez, A.L.; Scheett, T.P.; Sharman, M.J.; French, D.N.; Rubin, M.R.; Ratamess, N.A.; McGuigan, M.M.; Kraemer, W.J. Increasing fluid milk favorably affects bone mineral density responses to resistance training in adolescent boys. J. Am. Diet. Assoc. 2003, 103, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Marette, A.; Picard-Deland, E. Yogurt consumption and impact on health: Focus on children and cardiometabolic risk. Am. J. Clin. Nutr. 2014, 99, 1243S–1247S. [Google Scholar] [CrossRef] [PubMed]
- Agricultural Research Service, USDA. National Nutrient Database for Standard Reference, Release 26. Available online: http://ndb.nal.usda.gov/ndb/search/list (accessed on 4 December 2014).
- Jacques, P.F.; Wang, H. Yogurt and weight management. Am. J. Clin. Nutr. 2014, 99, 1229S–1234S. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Livingston, K.A.; Fox, C.S.; Meigs, J.B.; Jacques, P.F. Yogurt consumption is associated with better diet quality and metabolic profile in american men and women. Nutr. Res. 2013, 33, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National Health and Nutrition Examination Survey: Analytical guidelines, 1999–2010; Vital Health Stat Series 2, Number 161; US Department of Health and Human Services, Centers of Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2013.
- National Center for Health Statistics; Centers for Disease Control and Prevention. Welcome NHANES Participants: Is My Information Confidential? Available online: http://www.cdc.gov/nchs/nhanes/participant.htm (accessed on 1 June 2014).
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [PubMed]
- National Health and Nutrition Examination Survey (NHANES). MEC In-Person Dietary Interviewers Procedures Manual. 2006. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/dietary_mec.pdf (accessed on 1 June 2014).
- USDA Food and Nutrient Database for Dietary Studies, 3.0; U.S. Department of Agriculture, Agricultural Research Service, Food Survey Research Group: Beltsville, MD, USA, 2008. Available online: http://www.ars.usda.gov/News/docs.htm?docid=12068 (accessed on 1 June 2014).
- USDA Food and Nutrient Database for Dietary Studies, 4.1; U.S. Department of Agriculture, Agricultural Research Service, Food Survey Research Group: Beltsville, MD, USA, 2010. Available online: http://www.ars.usda.gov/News/docs.htm?docid=12068 (accessed on 1 June 2014).
- Bowman, S.A.; Friday, J.E.; Moshfegh, A.J. MyPyramid Equivalents Database, 2.0 for USDA Survey Food Codes, 2003–2004: Documentation and User Guide; Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture: Beltsville, MD, USA, 2008. Available online: http://www.ars.usda.gov/services/docs.htm?docid=17565 (accessed on 1 June 2014).
- Koegel, K.L.; Kuczynski, K.J. Center for Nutrition Policy and Promotion Addendum to the MyPyramid Equivalents Database 2.0; USDA Center for Nutrition Policy and Promotion, Nutrition Guidance and Analysis Division: Alexandria, VA, USA, 2011. Available online: http://www.cnpp.usda.gov/publications/mped/cnpp-mpedaddendumdocumentation.pdf (accessed on 1 June 2014).
- National Center for Health Statistics. NHANES Anthropometry Procedures Manual. 2007. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_an.pdf (accessed on 1 June 2014). [Google Scholar]
- Li, C.; Ford, E.S.; Mokdad, A.H.; Cook, S. Recent trends in waist circumference and waist-height ratio among us children and adolescents. Pediatrics 2006, 118, e1390–e1398. [Google Scholar] [CrossRef] [PubMed]
- Bel-Serrat, S.; Mouratidou, T.; Jiménez-Pavón, D.; Huybrechts, I.; Cuenca-García, M.; Mistura, L.; Gottrand, F.; González-Gross, M.; Dallongeville, J.; Kafatos, A.; HELENA Study Group; et al. Is dairy consumption associated with low cardiovascular disease risk in European adolescents? Results from the HELENA Study. Pediatr. Obes. 2014, 9, 401–10. [Google Scholar]
- Zemel, M.B.; Richards, J.; Mathis, S.; Milstead, A.; Gebhardt, L.; Silva, E. Dairy augmentation of total and central fat loss in obese subjects. Int. J. Obes. (Lond.) 2005, 29, 391–397. [Google Scholar] [CrossRef]
- Soares, M.J.; Murhadi, L.L.; Kurpad, A.V.; Chan She Ping-Delfos, W.L.; Piers, L.S. Mechanistic roles for calcium and vitamin D in the regulation of body weight. Obes. Rev. 2012, 13, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Shi, H.; Greer, B.; Dirienzo, D.; Zemel, P.C. Regulation of adiposity by dietary calcium. FASEB J. 2000, 14, 1132–1138. [Google Scholar] [PubMed]
- Ping-Delfos, W.C.; Soares, M. Diet induced thermogenesis, fat oxidation and food intake following sequential meals: Influence of calcium and vitamin D. Clin. Nutr. 2011, 30, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Buchowski, M.S.; Aslam, M.; Dossett, C.; Dorminy, C.; Choi, L.; Acra, S. Effect of dairy and non-dairy calcium on fecal fat excretion in lactose digester and maldigester obese adults. Int. J. Obes. (Lond.) 2010, 34, 127–135. [Google Scholar] [CrossRef]
- Jacobsen, R.; Lorenzen, J.K.; Toubro, S.; Krog-Mikkelsen, I.; Astrup, A. Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int. J. Obes. (Lond.) 2005, 29, 292–301. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Joanisse, D.R.; Chaput, J.P.; Miegueu, P.; Cianflone, K.; Almeras, N.; Tremblay, A. Milk supplementation facilitates appetite control in obese women during weight loss: A randomised, single-blind, placebo-controlled trial. Br. J. Nutr. 2011, 105, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, J.K.; Nielsen, S.; Holst, J.J.; Tetens, I.; Rehfeld, J.F.; Astrup, A. Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am. J. Clin. Nutr. 2007, 85, 678–687. [Google Scholar] [PubMed]
- Weaver, C.M.; Campbell, W.W.; Teegarden, D.; Craig, B.A.; Martin, B.R.; Singh, R.; Braun, M.M.; Apolzan, J.W.; Hannon, T.S.; Schoeller, D.A.; et al. Calcium, dairy products, and energy balance in overweight adolescents: A controlled trial. Am. J. Clin. Nutr. 2011, 94, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Sergeev, I.N.; Song, Q. High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis. Mol. Nutr. Food Res. 2014, 58, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Vanlint, S. Vitamin D and obesity. Nutrients 2013, 5, 949–956. [CrossRef] [PubMed]
- Hiza, H.A.B.; Bente, L.; Fungwe, T. Nutrient Content of the U.S. Food Supply, 2005. Home Economics Research Report No. 58; U.S. Department of Agriculture, Center for Nutrition Policy and Promotion, March 2008. Available online: http://www.cnpp.usda.gov/sites/default/files/nutrient_content_of_the_us_food_supply/FoodSupply2005Report.pdf (accessed on 22 December 2014). [Google Scholar]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein—Its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Douglas, S.M.; Ornitau, L.C.; Hoertel, H.A.; Leidy, H.J. Low, moderate, or high protein yogurt snacks on appetite control and subsequent eating in healthy women. Appetite 2013, 60, 117–122. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keast, D.R.; Hill Gallant, K.M.; Albertson, A.M.; Gugger, C.K.; Holschuh, N.M. Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8–18 Years: NHANES, 2005–2008. Nutrients 2015, 7, 1577-1593. https://doi.org/10.3390/nu7031577
Keast DR, Hill Gallant KM, Albertson AM, Gugger CK, Holschuh NM. Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8–18 Years: NHANES, 2005–2008. Nutrients. 2015; 7(3):1577-1593. https://doi.org/10.3390/nu7031577
Chicago/Turabian StyleKeast, Debra R., Kathleen M. Hill Gallant, Ann M. Albertson, Carolyn K. Gugger, and Norton M. Holschuh. 2015. "Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8–18 Years: NHANES, 2005–2008" Nutrients 7, no. 3: 1577-1593. https://doi.org/10.3390/nu7031577
APA StyleKeast, D. R., Hill Gallant, K. M., Albertson, A. M., Gugger, C. K., & Holschuh, N. M. (2015). Associations between Yogurt, Dairy, Calcium, and Vitamin D Intake and Obesity among U.S. Children Aged 8–18 Years: NHANES, 2005–2008. Nutrients, 7(3), 1577-1593. https://doi.org/10.3390/nu7031577