Nutritional Intervention and Musculoskeletal Health in Chronic Kidney Disease
Abstract
:1. Introduction
1.1. CKD—Epidemiology
1.2. Bone and Muscle Health
1.3. Nutrition and CKD
2. Musculoskeletal Involvement in CKD—Pathogeny
2.1. Chronic Kidney Disease—Mineral and Bone Disorders (CKD-MBD)
2.2. Osteoporosis
2.3. Sarcopenia
3. Impact of Musculoskeletal Disorders on Outcome in CKD Patients
3.1. Clinical Impact of CKD-MBD
3.2. Clinical Impact of Osteoporosis in CKD
3.3. Clinical Impact of Sarcopenia in CKD
4. Management of Musculoskeletal Disorders in CKD
4.1. CKD-MBD Treatment
4.2. Osteoporosis Treatment
4.3. The Key Therapeutic Options for Sarcopenia
5. Impact of Nutrition on Bone Disorders and Sarcopenia in CKD Patients
5.1. Proteins
5.2. Phosphorus, Vitamin D, Calcium and Magnesium
5.3. Plant-Based Diets and Microbiota
5.3.1. Plant-Based Diets and Plant-Dominant Diets (PLADO)
5.3.2. Uremic Toxins and Microbiota
5.4. Energy-Dense Foods
5.4.1. Energy-Dense Diets
5.4.2. Omega-3 Fatty Acids
5.4.3. Olive Oil
5.4.4. Nuts
5.5. Antioxidant and Anti-Inflammatory Foods
5.5.1. Diets Rich in Berries
5.5.2. Resveratrol Is a Polyphenol
5.5.3. Sulforaphane
5.5.4. Lycopene
5.5.5. Brazil Nuts
5.5.6. Glutathione
Study | Design | Results |
---|---|---|
Moorthi 2015 [49] | Thirteen subjects with CKD 3–4 received an omnivorous diet containing 70% protein from plants for 4 weeks. | Over the 4-week period, urine phosphorus and titratable acid significantly decreased on the diet. No significant changes in serum FGF23, P or PTH were noted. Hand grip strength and fat-free mass did not change. A 70% plant protein diet is safe and efficacious in lowering urine phosphorus. |
Lee 2020 [9] | Based on the NHANES data, BMD of different femoral areas was evaluated according to different protein diets. 12,812 subjects were assigned to: (a) <0.8 g/kg/day, (b) 0.8–1.0 g/kg/day, (c) 1.0–1.2 g/kg/day, and (d) ≥1.2 g/kg/day. | Higher-protein diets led to higher femoral BMD only in subjects without CKD. Those with low-protein diet did not reduce their femoral BMD. CKD was a risk factor for reduced BMD over the intertrochanteric bone region. |
Biruete 2016 [51] | A post hoc analysis of the IHOPE trial. 138 HD patients were randomized for 12 months to placebo, protein supplementation, or protein + exercise training. | Patients ≥ 60 years old on protein supplementation maintained hip-BMD. Hip-BMD decreased in placebo group. Similar trend was observed for the femoral neck BMD. There was a lack of effect on patients < 60 years old. There was no effect of protein supplementation on body composition or blood markers of bone metabolism (Ca, P, and PTH) in either age group. In conclusion, the intradialytic protein supplementation attenuated the decrease in hip-BMD, a predictor of fractures, in older HD patients. |
Umakanthan 2021 [52] | Australian single-center cohort of 39 maintenance HD patients. Muscle mass, strength and function were evaluated using bioimpedance spectroscopy, hand grip dynamometer and the timed up and go test, respectively. | The prevalence of sarcopenia was 18%. Sarcopenia was associated with low serum albumin and low phosphate levels. Low serum albumin and phosphate, as markers of protein malnutrition, resulted as significant risk factors for muscle wasting. |
Marini 2024 [56] | An exploratory 1-year, balanced, double-blind study on 40 HD patients assessed the effect of creatine supplementation on body composition, and malnutrition–inflammation score was evaluated. The follow-up period was 1-year. | Creatine supplementation in HD patients for 1 year increased fat-free mass and skeletal muscle mass, associated with an increase in intracellular water, and it did not attenuate the malnutrition–inflammation score. |
Gutierrez 2015 [63] | 10 individuals were fed a diet providing 1000 mg of phosphorus daily using low-additive diet for 1 week, followed by a diet containing identical food items but additive-enhanced. Parallel studies were conducted in animals fed low- and high-phosphorus diets for 5 or 15 weeks. The impact of phosphorus-rich additives on bone was tested. | After an additive-enhanced diet, healthy individuals, but also mice had modified bone biomarkers, FGF23, osteopontin, and osteocalcin levels increased and sclerostin decreased. The BMD decreased in mice. |
Sakaguchi 2018 [70] | The study was conducted on a nationwide database with 113,683 patients undergoing HD in Japan with no history of hip fracture. The influence of serum magnesium (Mg) on the incidence of hip fractures was evaluated on 2-year follow-up. | 2% new hip fractures The incidence rate was higher among patients in the lower quartiles of serum Mg. Lower serum Mg levels were significantly associated with an increased risk of hip fracture. The risk of hip fracture was not elevated in HD patients with mild hypermagnesemia. The population-attributable fraction of serum Mg level for incident hip fractures was 13.7% which was much higher than that of serum Ca, P, and PTH levels. |
Sharma 2022 [79] | The osteoprotective effect of diosmin, a citrus-derived bioflavonoid, was tested in CKD rats. | FGF23 and PTH were increased in CKD and diosmin suppressed both. CKD reduced bone mass and deteriorated the microarchitecture of trabecular bones, and diosmin maintained both at control levels. Bone formation and strength were impaired in CKD and diosmin maintained these levels at control levels. |
Ryu 2021 [80] | Cross-sectional study, 68 participants with ADPKD. Muscle strength was assessed based on handgrip strength. The relationship between DASH diet and muscle strength was tested. | 27.9% had low handgrip strength. Higher adherence to DASH diet was associated with low risk of reduced handgrip strength. The DASH diet can be considered as a nutritional strategy to maintain muscle strength and prevent sarcopenia in ADPKD patients |
Barreto 2014 [86] | A post hoc analysis of a study on bone biopsy findings tested the relationship between indoxyl sulfate levels and bone formation rate in a group of 49 predialysis CKD patients. | The study found positive correlation between indoxyl sulfate levels and bone formation rate, osteoblast surface area, osteoid volume, and bone fibrosis volume. |
Da Cruz 2024 [96] | Male Wistar rats were assigned to the following groups: sham, Nx, nephrectomized rats, and NxBN, nephrectomized rats and an enriched diet with 5% Brazil nut. Body composition parameters were obtained by DXA. | The NxBN group exhibited a significantly higher total body BMD than the Nx group. Brazil nut-enriched diet modulated BMD in CKD experimental model. |
Molinari 2024 [97] | A cross-sectionally study evaluated the associations between frailty, malnutrition–inflammation syndrome and circulating inflammatory cytokines in 115 older individuals with advanced CKD. | Protein energy wasting was associated with frailty, as a manifestation of sarcopenia. |
Murillo Ortiz 2019 [114] | A randomized, double-blind, placebo-controlled trial on 40 HD patients with iron overload which received combined supplementation with curcumin and resveratrol for 12 weeks | The treated group recovered bone and muscle mass. |
Marrone 2024 [115] | 40 CKD patients received functional foods (food bars from grape seed, grape pomace and olive leaf powders) and adapted physical activity training for 12 weeks. The progression of CKD-related comorbidities was evaluated. | This combination can help counteract uremic sarcopenia as well as arterial hypertension, dyslipidemia and improve the CKD patients’ quality of life. |
Mansouri 2024 [82] | Cross-sectional study evaluated the association between pro-vegetarian dietary pattern and the risk of protein-energy wasting (assessed by low protein intake, low body and muscle mass, low albumin levels) and sarcopenia (low muscle mass, strength and function) in 109 CKD patients. | Greater adherence to pro-vegetarian diets was negatively associated with the odds of protein-energy wasting, but no association was shown between these diets and the odds of sarcopenia. |
Carluccio 2016 [118] | In octogenarians, nonagenarians and centenarians with predialysis CKD, vitamin D deficiency and abnormal ALP, PTH blood values, the effects of daily lycopene supplementation on blood oxysterols as markers of oxidative stress were evaluated. The effects of calcifediol administration together with daily lycopene supplementation on PTH and ALP blood concentrations were also investigated. | Tomato-derived lycopene decreased cholesterol oxidation products. Calcifediol and lycopene were associated with normalization of ALP and PTH, suggesting preventive effects on bone disorders. |
Huang 2022 [121] | The study was cross-sectional on 2569 CKD participants from NHANES. The dietary inflammatory potential was calculated by the dietary inflammation index score based on dietary recall interviews. Sarcopenia was assessed by low skeletal muscle mass measured by DXA. | The prevalence of sarcopenia was 19.11% of patients with CKD. The dietary inflammatory potential was positively associated with sarcopenia in patients with CKD. |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Owolabi, M.O. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A Single Number for Advocacy and Communication-Worldwide, More Than 850 million Individuals Have Kidney Diseases. Nephrol. Dial. Transplant. 2019, 34, 1803–1805. [Google Scholar] [CrossRef] [PubMed]
- Chesnaye, N.C.; Ortiz, A.; Zoccali, C.; Stel, V.S.; Jager, K.J. The Impact of Population Ageing on The Burden of Chronic Kidney Disease. Nat. Rev. Nephrol. 2024, 20, 569–585. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic Kidney Disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.K.; Cheng, Y.J.; Yu, H.K.; Chou, K.T.; Pang, C.Y.; Hu, G.C. Malnutrition and Frailty Are Associated with a Higher Risk of Prolonged Hospitalization and Mortality in Hospitalized Older Adults. Nutrients 2025, 17, 221. [Google Scholar] [CrossRef] [PubMed]
- Mafra, D.; Borges, N.A.; Lindholm, B.; Shiels, P.G.; Evenepoel, P.; Stenvinkel, P. Food as Medicine: Targeting the Uraemic Phenotype in Chronic Kidney Disease. Nat. Rev. Nephrol. 2021, 17, 153–171. [Google Scholar] [CrossRef]
- Malluche, H.H.; Monier-Faugere, M.C.; Blomquist, G.; Davenport, D.L. Two-year cortical and trabecular bone loss in CKD-5D: Biochemical and clinical predictors. Osteoporos. Int. 2018, 29, 125–134. [Google Scholar] [CrossRef]
- Lee, C.L.; Tsai, S.F. The Impact of Protein Diet on Bone Density in People With/Without Chronic Kidney Disease: An Analysis of The National Health and Nutrition Examination Survey Database. Clin. Nutr. 2020, 39, 3497–3503. [Google Scholar] [CrossRef]
- KDIGO Clinical Practice Guideline for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD–MBD). Kidney Int. 2009, 76, S1–S13.
- KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [CrossRef] [PubMed]
- Lafage-Proust, M.H. Bone and Chronic Kidney Disease. Semin. Musculoskelet. Radiol. 2023, 27, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Cannata-Andía, J.B.; Martín-Carro, B.; Martín-Vírgala, J.; Rodríguez-Carrio, J.; Bande-Fernández, J.J.; Alonso-Montes, C.; Carrillo-López, N. Chronic Kidney Disease—Mineral and Bone Disorders: Pathogenesis and Management. Calcif. Tissue Int. 2021, 108, 410–422. [Google Scholar] [CrossRef]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive Summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.-T.; Lin, S.-H. Uremic Toxins and Frailty in Patients with Chronic Kidney Disease: A Molecular Insight. Int. J. Mol. Sci. 2021, 22, 6270. [Google Scholar] [CrossRef]
- Khairallah, P.; Isakova, T.; Asplin, J.; Hamm, L.; Dobre, M.; Rahman, M.; Sharma, K.; Leonard, M.; Miller, E.; Jaar, B.; et al. Acid Load And Phosphorus Homeostasis in CKD. Am. J. Kidney Dis. 2017, 70, 541–550. [Google Scholar] [CrossRef]
- Yamada, S.; Tsuruya, K.; Kitazono, T.; Nakano, T. Emerging Cross-Talks Between Chronic Kidney Disease–Mineral and Bone Disorder (CKD–MBD) and Malnutrition–Inflammation Complex Syndrome (MICS) in Patients Receiving Dialysis. Clin. Experiment. Nephrol. 2022, 26, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Curtis, E.M.; Cooper, C.; Harvey, N.C. State of the Art in Osteoporosis Risk Assessment and Treatment. J. Endocrinol. Invest. 2019, 42, 1149–1164. [Google Scholar] [CrossRef]
- Khairallah, P.; Nickolas, T.L. Management of Osteoporosis in CKD. Clin. J. Am. Soc. Nephrol. 2018, 13, 962–969. [Google Scholar] [CrossRef]
- Abdalbary, M.; Sobh, M.; Elnagar, S.; Elhadedy, M.; Elshabrawy, N.; Abdelsalam, M.; Asadipooya, K.; Sabry, A.; Halawa, A.; El-Husseini, A. Management of Osteoporosis in Patients with Chronic Kidney Disease. Osteoporos. Int. 2022, 33, 2259–2274. [Google Scholar] [CrossRef]
- Pereira, C.D.; Guimarães, C.; Ribeiro, V.S.; Vaz, D.C.; Martins, M.J. Low-Protein Diets, Malnutrition, and Bone Metabolism in Chronic Kidney Disease. Nutrients 2024, 16, 3098. [Google Scholar] [CrossRef] [PubMed]
- Karava, V.; Dotis, J.; Christoforidis, A.; Kondou, A.; Printza, N. Muscle-Bone Axis in Children with Chronic Kidney Disease: Current Knowledge and Future Perspectives. Pediatr. Nephrol. 2021, 36, 3813–3827. [Google Scholar] [CrossRef]
- Nishi, H.; Takemura, K.; Higashihara, T.; Inagi, R. Uremic Sarcopenia: Clinical Evidence and Basic Experimental Approach. Nutrients 2020, 12, 1814. [Google Scholar] [CrossRef]
- Ito, K.; Ookawara, S.; Hibino, Y.; Imai, S.; Fueki, M.; Bandai, Y.; Morishita, Y. Skeletal Muscle Mass Index is Positively Associated with Bone Mineral Density in Hemodialysis Patients. Front. Med. 2020, 7, 187. [Google Scholar] [CrossRef]
- Ito, K.; Ookawara, S.; Sanayama, H.; Kakuda, H.; Kanai, C.; Iguchi, K.; Shindo, M.; Tanno, K.; Ishibashi, S.; Kakei, M.; et al. Association Between Psoas Muscle Mass Index and Bone Mineral Density in Patients Undergoing Hemodialysis. Sci. Rep. 2025, 15, 544. [Google Scholar] [CrossRef]
- Cook, W.L.; Tomlinson, G.; Donaldson, M.; Markowitz, S.N.; Naglie, G.; Sobolev, B.; Jassal, S.V. Falls and fall-related injuries in older dialysis patients. Clin. J. Am. Soc. Nephrol. 2006, 1, 1197–1204. [Google Scholar] [CrossRef]
- Shirai, N.; Inoue, T.; Ogawa, M.; Okamura, M.; Morishita, S.; Suguru, Y.; Tsubaki, A. Relationship Between Nutrition-Related Problems and Falls in Hemodialysis Patients: A Narrative Review. Nutrients 2022, 14, 3225. [Google Scholar] [CrossRef] [PubMed]
- Koufaki, P. Assessment of Function Limitations in People with Chronic Kidney Disease for Implementation in Clinical Practice. Kidney Dial. 2022, 2, 234–244. [Google Scholar] [CrossRef]
- Moldovan, D.; Rusu, C.; Potra, A.; Bondor, C.; Ticala, M.; Tirinescu, D.; Coman, A.; Orasan, O.; Moldovan, I.; Orasan, R.; et al. Arterial Calcifications and Osteoprotegerin in Chronic Hemodialysis Patients: Impact On 6-Year Survival. Int. Urol. Nephrol. 2022, 54, 1135–1143. [Google Scholar] [CrossRef]
- Morishita, S.; Tsubaki, A.; Shirai, N. Physical Function Was Related to Mortality in Patients with Chronic Kidney Disease and Dialysis. Hemodial. Int. 2017, 21, 483–489. [Google Scholar] [CrossRef]
- Wakasugi, M.; Kazama, J.J.; Wada, A.; Hamano, T.; Masakane, I.; Narita, I. Long-term excess mortality after hip fracture in hemodialysis patients: A nationwide cohort study in Japan. J. Bone Miner. Metab. 2020, 38, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Dufour, A.; Kurtz, K.A.; Vachey, C.; Mac-Way, F. Association Between Frailty and Bone Health in Early-Stage Chronic Kidney Disease: A Study from the Population-Based CARTaGENE Cohort. Clin. Kidney J. 2025, 18, sfaf015. [Google Scholar] [CrossRef]
- Kim, J.E.; Yi, J.; Kim, J.H.; Kim, K.; Song, J.H.; Lee, S.W.; Hwang, S.D. The Role of Lean Body Mass in Predicting Mortality in Hemodialysis Patients Across Different Age Groups. Sci. Rep. 2025, 15, 2150. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes, C.K.D.W.G. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. Available online: https://kdigo.org/guidelines/ckd-evaluation-and-management/ (accessed on 10 February 2025).
- Bonnet, N.; Bourgoin, L.; Biver, E.; Douni, E.; Ferrari, S. RANKL Inhibition Improves Muscle Strength and Insulin Sensitivity and Restores Bone Mass. J. Clin. Investig. 2019, 129, 3214–3223. [Google Scholar] [CrossRef]
- Sabaghian, T.; Delkash, P.; Rahmannia, M.; Shahidi Bonjar, A.H.; Centis, R.; D’Ambrosio, L.; Sotgiu, G.; Nasiri, M.J.; Migliori, G.B. Efficacy and Safety of Anti-Osteoporotic Agents across CKD Stages: A Meta-Analysis of Randomized Clinical Trials. Kidney Blood Press. Res. 2024, 49, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Noor, H.; Reid, J.; Slee, A. Resistance Exercise and Nutritional Interventions for Augmenting Sarcopenia Outcomes in Chronic Kidney Disease: A Narrative Review. J. Cachexia Sarcopenia Muscle 2021, 12, 1621–1640. [Google Scholar] [CrossRef]
- Meade, A.; McLaren, C.; Bennett, P.N. Combining Exercise and Nutrition in Chronic Kidney Disease and Dialysis: Can We Learn from the Performance Nutrition of Athletes? Semin. Dial. 2024, 37, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Notaras, S.; Lambert, K.; Perz, J.; Makris, A. Diet in the Management of Non-Dialysis Dependent Chronic Kidney Disease: Perceptions and Practices of Health Professionals. BMC Nephrol. 2022, 23, 158. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organ: Geneva, Switzerland, 2013. [Google Scholar]
- Reid, I.R. A broader strategy for osteoporosis interventions. Nat. Rev. Endocrinol. 2020, 16, 333–339. [Google Scholar] [CrossRef]
- Bargagli, M.; Arena, M.; Naticchia, A.; Gambaro, G.; Mazzaferro, S.; Fuster, D.; Ferraro, P.M. The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients 2021, 13, 2328. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, D.; Rusu, C.; Potra, A.; Tirinescu, D.; Ticala, M.; Kacso, I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024, 16, 617. [Google Scholar] [CrossRef] [PubMed]
- Mayes, J.; Young, H.M.L.; Blacklock, R.M.; Lightfoot, C.J.; Chilcot, J.; Nixon, A.C. Targeted Non-Pharmacological Interventions for People Living with Frailty and Chronic Kidney Disease. Kidney Dial. 2022, 2, 245–261. [Google Scholar] [CrossRef]
- Agarwal, S.K. Lifestyles and Their Effect on Chronic Kidney Diseases. East Afr. Sch. J. Med. Sci. 2021, 4, 183–193. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Angéloco, L.R.N.; de Souza, G.C.A.; Romão, E.A.; Chiarello, P.G. Alkaline Diet and Metabolic Acidosis: Practical Approaches to the Nutritional Management of Chronic Kidney Disease. J. Ren. Nutr. 2018, 28, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Moorthi, R.N.; Armstrong, C.L.; Janda, K.; Ponsler-Sipes, K.; Asplin, J.R.; Moe, S.M. The Effect of a Diet Containing 70% Protein from Plants on Mineral Metabolism and Musculoskeletal Health in Chronic Kidney Disease. Am. J. Nephrol. 2014, 40, 582–591. [Google Scholar] [CrossRef]
- Sahathevan, S.; Khor, B.H.; Ng, H.M.; Gafor, A.H.A.; Daud, Z.A.M.; Mafra, D.; Karupaiah, T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef]
- Biruete, A.; Fitschen, P.; Jeong, J.; Wu, P.-T.; Tomayko, E.; Wilund, K. TH-OR067 Intradialytic Protein Supplementation Increases Protein Intake in Older, but Not. Younger, Hemodialysis Patients and is Associated with Improved Hip Bone Mineral Density. J. Am. Soc. Nephrol. 2016, 27, 17A. [Google Scholar]
- Umakanthan, M.; Li, J.W.; Sud, K.; Duque, G.; Guilfoyle, D.; Cho, K.; Brown, C.; Boersma, D.; Gangadharan Komala, M. Prevalence and Factors Associated with Sarcopenia in Patients on Maintenance Dialysis in Australia—A Single Centre, Cross-Sectional Study. Nutrients 2021, 13, 3284. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Tsikas, D.; Bakker, S.J.L. Creatine is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients 2019, 11, 1044. [Google Scholar] [CrossRef] [PubMed]
- Gualano, B.; Ugrinowitsch, C.; Novaes, R.B.; Artioli, G.G.; Shimizu, M.H.; Seguro, A.C.; Harris, R.C.; Lancha, A.H. Effects of Creatine Supplementation on Renal Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Eur. J. Appl. Physiol. 2008, 103, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lugaresi, R.; Leme, M.; de Salles Painelli, V.; Murai, I.H.; Roschel, H.; Sapienza, M.T.; Lancha, A.H., Jr.; Gualano, B. Does long-term creatine supplementation impair kidney function in resistance-trained individuals consuming a high-protein diet? J. Int. Soc. Sports Nutr. 2013, 10, 26. [Google Scholar] [CrossRef]
- Marini, A.C.B.; Schincaglia, R.M.; Candow, D.G.; Pimentel, G.D. Effect of Creatine Supplementation on Body Composition and Malnutrition-Inflammation Score in Hemodialysis Patients: An Exploratory 1-Year, Balanced, Double-Blind Design. Nutrients 2024, 16, 615. [Google Scholar] [CrossRef]
- Kim, J.W.; Yang, S.J. Dietary Patterns, Kidney Function, and Sarcopenia in Chronic Kidney Disease. Nutrients 2025, 17, 404. [Google Scholar] [CrossRef]
- St-Jules, D.E.; Rozga, M.R.; Handu, D.; Carrero, J.J. Effect of Phosphate-Specific Diet Therapy on Phosphate Levels in Adults Undergoing Maintenance Hemodialysis. A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2021, 16, 107–120. [Google Scholar] [CrossRef]
- Shah, A. Phosphorus and other aspects of CKD-MBD in the conservative management of chronic kidney disease. Panminerva Med. 2017, 59, 124–132. [Google Scholar] [CrossRef]
- Asan, N.B.; Kun, D.W.W.; Ooi, Y.B.H.; Khor, B.H. A Survey on nutrition labeling for sodium, potassium, and phosphorus of packaged food and beverages. J. Ren. Nutr. 2025, 35, 229–233. [Google Scholar] [CrossRef]
- Sherman, R.A.; Mehta, O. Phosphorus and Potassium Content of Enhanced Meat and Poultry Products: Implications for Patients Who Receive Dialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 1370–1373. [Google Scholar] [CrossRef]
- Salera, D.; Bellasi, A.; Del Vecchio, L.; Locatelli, F. Update on current and emerging treatment paradigms for hyperphosphatemia in chronic kidney disease. Expert Opin. Pharmacother. 2025, 26, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Luzuriaga-McPherson, A.; Lin, Y.; Gilbert, L.C.; Ha, S.W.; Beck, G.R., Jr. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism. J. Clin. Endocrinol. Metab. 2015, 100, 4264–4271. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Rokicki, R.; Gluba-Brzózka, A. The Influence of Dietary Interventions on Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Nutrients 2021, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.J.; Malik, A.; Lambert, K. Role of Dietary Phosphate Restriction in Chronic Kidney Disease. Nephrology 2018, 23, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.T.; Klug, A.; Andrade, J.M. Phosphorus Knowledge and Dietary Intake of Phosphorus of US Adults Undergoing Dialysis. Nutrients 2024, 16, 2034. [Google Scholar] [CrossRef]
- Molina, P.; Chauveau, P.; Mazzaferro, S.; Torres, P.U.; Bover, J.; Carrero, J.J. Vitamin D, a Modulator of Musculoskeletal Health in Chronic Kidney Disease. J. Cachexia Sarcopenia Muscle 2017, 8, 686–701. [Google Scholar] [CrossRef]
- Matias, P.J.; Jorge, C.; Ferreira, C.; Borges, M.; Aires, I.; Amaral, T.; Gil, C.; Cortez, J.; Ferreira, A. Cholecalciferol Supplementation in Hemodialysis Patients: Effects on Mineral Metabolism, Inflammation, and Cardiac Dimension Parameters. Clin. J. Am. Soc. Nephrol. 2010, 5, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, H.S.; Vervloet, M.; Cavalier, E.; Bacchetta, J.; de Borst, M.H.; Bover, J.; Evenepoel, P.; Cozzolino, M.; Ferreira, A.C.; Hansen, D.; et al. The Role of Nutritional Vitamin D in CKD-MBD in Children and Adults with CKD, on Dialysis and After Kidney Transplantation—A European Consensus Statement. Nephrol. Dial. Transplant. 2025, gfae293. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Hamano, T.; Wada, A.; Hoshino, J.; Masakane, I. Magnesium and Risk of Hip Fracture among Patients Undergoing Hemodialysis. J. Am. Soc. Nephrol. 2018, 29, 991–999. [Google Scholar] [CrossRef]
- Sakaguchi, Y. The emerging role of magnesium in CKD. Clin. Experiment. Nephrol. 2022, 26, 379–384. [Google Scholar] [CrossRef]
- Palmer, S.C.; Maggo, J.K.; Campbell, K.L.; Craig, J.C.; Johnson, D.W.; Sutanto, B.; Ruospo, M.; Tong, A.; Strippoli, G.F. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2017, 2017, CD011998. [Google Scholar] [CrossRef] [PubMed]
- Jhee, J.H.; Kee, Y.K.; Park, J.T.; Chang, T.I.; Kang, E.W.; Yoo, T.H.; Kang, S.W.; Han, S.H. A Diet Rich in Vegetables and Fruit and Incident CKD: A Community-Based Prospective Cohort Study. Am. J. Kidney Dis. 2019, 74, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wei, G.; Jalili, T.; Metos, J.; Giri, A.; Cho, M.E.; Boucher, R.; Greene, T.; Beddhu, S. The Associations of Plant Protein Intake with All-Cause Mortality in CKD. Am. J. Kidney Dis. 2016, 67, 423–430. [Google Scholar] [CrossRef]
- Carrero, J.J.; González-Ortiz, A.; Avesani, C.M.; Bakker, S.J.L.; Bellizzi, V.; Chauveau, P.; Clase, C.M.; Cupisti, A.; Espinosa-Cuevas, A.; Molina, P.; et al. Plant-based Diets to Manage the Risks and Complications of Chronic Kidney Disease. Nat. Rev. Nephrol. 2020, 16, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. Treatment of Metabolic Acidosis in Patients with Stage 3 Chronic Kidney Disease with Fruits and Vegetables or Oral Bicarbonate Reduces Urine Angiotensinogen and Preserves Glomerular Filtration Rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Yu, D.; Liu, M. Plant or Animal-based or PLADO diets: Which Should Chronic Kidney Disease Patients Choose? J. Ren. Nutr. 2022, 33, 228–235. [Google Scholar] [CrossRef]
- Granchi, D.; Baldini, N.; Ulivieri, F.M.; Caudarella, R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019, 11, 2576. [Google Scholar] [CrossRef]
- Sharma, S.; Porwal, K.; Kulkarni, C.; Pal, S.; Sihota, P.; Kumar, S.; Chattopadhyay, N.; Tiwari, M.C.; Katekar, R.; Kumar, A.; et al. Diosmin, a citrus fruit-derived phlebotonic bioflavonoid protects rats from chronic kidney disease-induced loss of bone mass and strength without deteriorating the renal function. Food Funct. 2022, 13, 2184–2199. [Google Scholar] [CrossRef]
- Ryu, H.; Yang, Y.J.; Kang, E.; Ahn, C.; Yang, S.J.; Oh, K.H. Greater Adherence to the Dietary Approaches to Stop Hypertension Dietary Pattern is Associated with Preserved Muscle Strength in Patients with Autosomal Dominant Polycystic Kidney Disease: A Single-Center Cross-Sectional Study. Nutr. Res. 2021, 93, 99–110. [Google Scholar] [CrossRef]
- Massini, G.; Caldiroli, L.; Molinari, P.; Carminati, F.M.I.; Castellano, G.; Vettoretti, S. Nutritional Strategies to Prevent Muscle Loss and Sarcopenia in Chronic Kidney Disease: What Do We Currently Know? Nutrients 2023, 15, 3107. [Google Scholar] [CrossRef]
- Mansouri, F.; Shateri, Z.; Jahromi, S.E.; Mahmudi-Zadeh, M.; Nouri, M.; Babajafari, S. Association Between Pro-Vegetarian Dietary Pattern and the Risk of Protein-Energy Wasting and Sarcopenia in Patients with Chronic Kidney Disease. J. Health Popul. Nutr. 2024, 43, 110. [Google Scholar] [CrossRef] [PubMed]
- Narasaki, Y.; Okuda, Y.; Kalantar, S.S.; You, A.S.; Novoa, A.; Nguyen, T.; Streja, E.; Nakata, T.; Colman, S.; Kalantar-Zadeh, K.; et al. Dietary Potassium Intake and Mortality in a Prospective Hemodialysis Cohort. J. Ren. Nutr. 2021, 31, 411–420. [Google Scholar] [CrossRef]
- Hung, K.-C.; Yao, W.-C.; Liu, Y.-L.; Yang, H.-J.; Liao, M.-T.; Chong, K.; Peng, C.-H.; Lu, K.-C. The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease. Biomedicines 2023, 11, 2076. [Google Scholar] [CrossRef] [PubMed]
- Yiang, G.T.; Su, W.L.; Zheng, C.M.; Liao, M.T.; Cheng, T.H.; Lu, C.L.; Lu, K.C. The Influence of Uremic Toxins on Low Bone Turnover Disease in Chronic Kidney Disease. Tzu Chi Med. J. 2024, 36, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Barreto, F.C.; Barreto, D.V.; Canziani, M.E.; Tomiyama, C.; Higa, A.; Mozar, A.; Glorieux, G.; Vanholder, R.; Massy, Z.; de Carvalho, A.B. Association Between Indoxyl Sulfate and Bone Histomorphometry in Pre-Dialysis Chronic Kidney Disease Patients. J. Bras. Nefrol. 2014, 36, 289–296. [Google Scholar] [CrossRef]
- Leong, S.C.; Sirich, T.L. Indoxyl Sulfate—Review of Toxicity and Therapeutic Strategies. Toxins 2016, 8, 358. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.G.; Ormanji, M.S.; Heilberg, I.P.; Bakker, S.J.L.; de Borst, M.H. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur. J. Clin. Investig. 2021, 51, e13588. [Google Scholar] [CrossRef]
- Lobel, L.; Cao, Y.G.; Fenn, K.; Glickman, J.N.; Garrett, W.S. Diet Posttranslationally Modifies the Mouse Gut Microbial Proteome to Modulate Renal Function. Science 2020, 369, 1518–1524. [Google Scholar] [CrossRef]
- Meijers, B.; Evenepoel, P.; Anders, H.J. Intestinal Microbiome and Fitness in Kidney Disease. Nat. Rev. Nephrol. 2019, 15, 531–545. [Google Scholar] [CrossRef]
- Du, J.; Zhao, X.; Ding, X.; Han, Q.; Duan, Y.; Ren, Q.; Zhu, H.; Wang, H.; Song, C.; Wang, X.; et al. The Role of the Gut Microbiota in Complications among Hemodialysis Patients. Microorganisms 2024, 12, 1878. [Google Scholar] [CrossRef]
- Winkelman, D.; Gallant, K.H.; Moe, S.; St-Jules, D.E. Seeing the Whole Picture: Evaluating the Contribution of Whole Grains to Phosphorus Exposure in People with Kidney Failure Undergoing Dialysis Treatment. Semin. Dial. 2024, 37, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Joshi, S.; Schlueter, R.; Cooke, J.; Brown-Tortorici, A.; Donnelly, M.; Schulman, S.; Lau, W.-L.; Rhee, C.M.; Streja, E.; et al. Plant-Dominant Low-Protein Diet for Conservative Management of Chronic Kidney Disease. Nutrients 2020, 12, 1931. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.P.; Da Cruz, B.O.; Thomasi, B.; Menezes, A.C.; Brito, M.L.; da Costa, N.S.; Almeida Ito, R.V.; Degani, V.A.N.; Daleprane, J.B.; D’Angelo, C.M.; et al. Brazil Nut-Enriched Diet Modulates Enteric Glial Cells and Gut Microbiota in an Experimental Model of Chronic Kidney Disease. J. Am. Nutr. Assoc. 2023, 43, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, B.O.; Almeida, P.P.; Silva-Costa, N.; Brito, M.L.; Degani, V.A.N.; da Silva, E.M.; Magliano, D.C.; Mebarek, S.; Brizuela, L.; Cardozo, L.F.; et al. Brazil Nut–Enriched Diet Modulates Bone Mineral Density and Body Composition in An Experimental Model of Chronic Kidney Disease. Nutrition 2024, 125, 112482. [Google Scholar] [CrossRef]
- Molinari, P.; Caldiroli, L.; Abinti, M.; Nardelli, L.; Armelloni, S.; Cesari, M.; Castellano, G.; Vettoretti, S. Frailty Is Associated with Malnutrition–Inflammation Syndrome in Older CKD Patients. Nutrients 2024, 16, 2626. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Robinson-Cohen, C.; Ellis, C.; Headley, S.A.E.; Tuttle, K.; Wood, R.J.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; et al. Metabolic Effects of Diet and Exercise in Patients with Moderate to Severe CKD: A Randomized Clinical Trial. J. Am. Soc. Nephrol. 2018, 29, 250–259. [Google Scholar] [CrossRef]
- Li, W.L.; Zhang, N.H.; Ge, S.W.; Xu, G. Dietary Omega-3 Fatty Acid Intake and Mortality in CKD Population: A 1999–2014 NHANES Analysis. Am. J. Nephrol. 2022, 52, 909–918. [Google Scholar] [CrossRef]
- Sharma, T.; Mandal, C.C. Omega-3 Fatty Acids in Pathological Calcification and Bone Health. J. Food Biochem. 2020, 44, e13333. [Google Scholar] [CrossRef]
- Tao, S.S.; Wang, P.; Wang, X.Y.; Yin, K.J.; Yang, X.K.; Wang, Z.X.; Wang, D.-G.; Pan, H.F. Causal Effect of Polyunsaturated Fatty Acids on Bone Mineral Density and Fracture. Front. Nutr. 2022, 9, 1014847. [Google Scholar] [CrossRef]
- Lalia, A.Z.; Dasari, S.; Robinson, M.M.; Abid, H.; Morse, D.M.; Klaus, K.A.; Lanza, I.R. Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Metabolism and Mitochondrial Bioenergetics in Older Adults. Aging 2017, 9, 1096–1129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cai, S.; Chen, Y.; Peng, Z.; Jian, H.; Zhang, Z.; Huang, H. The Association Between Dietary Omega-3 Intake and Osteoporosis: A NHANES Cross-Sectional Study. Front. Nutr. 2025, 11, 1467559. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, K.; Goto, T.; Araki, M.; Miyazaki, H.; Hagiwara, H. Olive Polyphenol Hydroxytyrosol Prevents Bone Loss. Eur. J. Pharmacol. 2011, 662, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qian, D.; Hu, Y.; Cheng, Y.; Ge, S.; Yao, Y. Nut Consumption and Effects on Chronic Kidney Disease and Mortality in the United States. Am. J. Nephrol. 2022, 53, 503–512. [Google Scholar] [CrossRef]
- Simões, E.; Silva, A.C.; Cheung, W.W.; Oliveira, E.A.; Mak, R.H. Redox Signaling in Chronic Kidney Disease-Associated Cachexia. Antioxidants 2023, 12, 945. [Google Scholar] [CrossRef]
- Basu, S.; Michaelsson, K.; Olofsson, H.; Johansson, S.; Melhus, H. Association Between Oxidative Stress and Bone Mineral Density. Biochem. Biophys Res.Common. 2001, 288, 275–279. [Google Scholar] [CrossRef]
- Lee, O.Y.A.; Wong, A.N.N.; Ho, C.Y.; Tse, K.W.; Chan, A.Z.; Leung, G.P.-H.; Kwan, Y.W.; Yeung, M.H.Y. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants 2024, 13, 751. [Google Scholar] [CrossRef]
- Moriwaki, S.; Suzuki, K.; Muramatsu, M.; Nomura, A.; Inoue, F.; Into, T.; Yoshiko, Y.; Niida, S. Delphinidin, One of The Major Anthocyanidins, Prevents Bone Loss Through the Inhibition of Excessive Osteoclastogenesis in Osteoporosis Model Mice. PLoS ONE 2014, 9, e97177. [Google Scholar] [CrossRef]
- Domazetovic, V.; Marcucci, G.; Pierucci, F.; Bruno, G.; Di Cesare, M.L.; Ghelardini, C.; Brandi, M.L.; Iantomasi, T.; Meacci, E.; Vincenzini, M.T. Blueberry Juice Protects Osteocytes and Bone Precursor Cells Against Oxidative Stress partly through SIRT1. FEBS Open Bio 2019, 9, 1082–1096. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Melo, M.F.; Mota, J.C.; Mafra, D.; Guimarães, J.T.; Stockler-Pinto, M.B. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: Target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr. Rev. 2024, 82, 248–261. [Google Scholar] [CrossRef]
- Zhu, J.; Du, C. Could Grape-Based Food Supplements Prevent the Development of Chronic Kidney Disease? Crit. Rev. Food Sci. Nutr. 2019, 60, 3054–3062. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.K.; Kim, B.G.; Lee, A.R.; Choe, Y.I.; Khan, I.; Moon, K.M.; Jeon, R.H.; Byun, J.H.; Hwang, S.C.; Woo, D.K. Resveratrol Can Enhance Osteogenic Differentiation And Mitochondrial Biogenesis From Human Periosteum-Derived Mesenchymal Stem Cells. J. Orthop. Surg. Res. 2020, 15, 203. [Google Scholar] [CrossRef]
- Murillo Ortiz, B.O.; Fuentes Preciado, A.R.; Ramírez Emiliano, J.; Martínez Garza, S.; Ramos Rodríguez, E.; de Alba Macías, L.A. Recovery of Bone and Muscle Mass in Patients with Chronic Kidney Disease and Iron Overload on Hemodialysis and Taking Combined Supplementation with Curcumin and Resveratrol. Clin. Interv. Aging 2019, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Marrone, G.; Murri, A.; Urciuoli, S.; Di Lauro, M.; Grazioli, E.; Vignolini, P.; Noce, A. Functional Foods and Adapted Physical Activity as New Adjuvant Therapy for Chronic Kidney Disease Patients. Nutrients 2024, 16, 2325. [Google Scholar] [CrossRef]
- Cardozo, L.F.; Alvarenga, L.A.; Ribeiro, M.; Dai, L.; Shiels, P.G.; Stenvinkel, P.; Lindholm, B.; Mafra, D. Cruciferous Vegetables: Rationale for Exploring Potential Salutary Effects of Sulforaphane-Rich Foods in Patients with Chronic Kidney Disease. Nutr. Rev. 2021, 79, 1204–1224. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Hannan, M.T.; Blumberg, J.; Cupples, L.A.; Kiel, D.P.; Tucker, L.K. Inverse Association of Carotenoid Intakes With 4-Y Change in Bone Mineral Density in Elderly Men and Women: The Framingham Osteoporosis Study. Am. J. Clin. Nutr. 2009, 89, 416–424. [Google Scholar] [CrossRef]
- Carluccio, F.; Lenucci, M.; Piro, G.; Siems, W.; Luño, J. Integrated Medicine with Vegetable Derived Antioxidant and Vitamin D: Effects on Oxidative Stress and Bone Mineral Metabolism of Aged Patients with Renal Disease. Funct. Foods Health Dis. 2016, 6, 379–387. [Google Scholar] [CrossRef]
- Supriyadi, R.; Koswara, M.I.A.; Soelaeman, M.A.; Huang, I. The Effect of Antioxidants Supplementation on Oxidative Stress and Proinflammatory Biomarkers in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1413–1426. [Google Scholar] [CrossRef]
- Rapa, S.F.; Marzocco, S.; Di Iorio, B.R.; Heidland, A.; Campiglia, P. Inflammation and Oxidative Stress in Chronic Kidney Disease—Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2019, 21, 263. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, M.; Zhang, L.; Shi, J.; Yang, Y.; Liu, F.; Sun, L.; Xiao, L. Dietary Inflammatory Potential Is Associated with Sarcopenia Among Chronic Kidney Disease Population. Front. Nutr. 2022, 9, 856726. [Google Scholar] [CrossRef]
- Qi, Z.; Duan, A.; Ng, K. Selenoproteins in Health. Molecules 2024, 29, 136. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, N.; He, H.; Yang, Z.; Wu, J.; Yang, T.; Wang, Y. The Association Between Selenium and Bone Health: A Meta-Analysis. Bone Joint Res. 2023, 12, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Evenepoel, P.; Holden, R.M.; Isakova, T.; Jørgensen, H.S.; Komaba, H.; Wong, J.; Nickolas, T.L.; Sinha, S.; Vervloet, M.G.; et al. Chronic kidney disease–mineral and bone disorder: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2025, 107, 405–423. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, D.; Rusu, C.C.; Potra, A.R.; Tirinescu, D.; Ticala, M.; Maslyennikov, Y.; Bărar, A.A.; Urs, A.; Kacso, I.M. Nutritional Intervention and Musculoskeletal Health in Chronic Kidney Disease. Nutrients 2025, 17, 896. https://doi.org/10.3390/nu17050896
Moldovan D, Rusu CC, Potra AR, Tirinescu D, Ticala M, Maslyennikov Y, Bărar AA, Urs A, Kacso IM. Nutritional Intervention and Musculoskeletal Health in Chronic Kidney Disease. Nutrients. 2025; 17(5):896. https://doi.org/10.3390/nu17050896
Chicago/Turabian StyleMoldovan, Diana, Crina Claudia Rusu, Alina Ramona Potra, Dacian Tirinescu, Maria Ticala, Yuriy Maslyennikov, Andrada Alina Bărar, Alexandra Urs, and Ina Maria Kacso. 2025. "Nutritional Intervention and Musculoskeletal Health in Chronic Kidney Disease" Nutrients 17, no. 5: 896. https://doi.org/10.3390/nu17050896
APA StyleMoldovan, D., Rusu, C. C., Potra, A. R., Tirinescu, D., Ticala, M., Maslyennikov, Y., Bărar, A. A., Urs, A., & Kacso, I. M. (2025). Nutritional Intervention and Musculoskeletal Health in Chronic Kidney Disease. Nutrients, 17(5), 896. https://doi.org/10.3390/nu17050896