Effects of Coenzyme Q10 Supplementation on Physical Function Adaptations to High-Intensity Interval Training in Older Adults
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Body Composition
2.3. Study Design
2.4. Intervention
2.4.1. HIIT Protocol
2.4.2. CoQ10 Supplementation
2.5. Outcome Measures
2.5.1. Physical Function Tests
2.5.2. 5-Repetition Chair Stand Test (5XSST)
2.5.3. Thirty-Second Chair Stand Test (30CST)
2.5.4. Handgrip Test
2.5.5. Timed Up and Go Test (TUG)
2.5.6. 25-Foot Walk Test (25FW)
2.5.7. Single-Leg Stand Test (SLS)
2.5.8. Six Minute Walk Test (6MWT)
2.5.9. Dietary Intake and Physical Activity Evaluation
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Adherence and Fidelity
3.3. Physical Function
3.4. Dietary Assessments
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxidative Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef]
- Rizzoli, R.; Reginster, J.-Y.; Arnal, J.-F.; Bautmans, I.; Beaudart, C.; Bischoff-Ferrari, H.; Biver, E.; Boonen, S.; Brandi, M.-L.; Chines, A.; et al. Quality of Life in Sarcopenia and Frailty. Calcif. Tissue Int. 2013, 93, 101–120. [Google Scholar] [CrossRef]
- Tchkonia, T.; Morbeck, D.E.; Von Zglinicki, T.; Van Deursen, J.; Lustgarten, J.; Scrable, H.; Khosla, S.; Jensen, M.D.; Kirkland, J.L. Fat tissue, aging, and cellular senescence. Aging Cell 2010, 9, 667–684. [Google Scholar] [CrossRef]
- Baumgartner, R.N. Body Composition in Healthy Aging. Ann. N. Y. Acad. Sci. 2000, 904, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. J. Nutr. 2021, 13, 2493. [Google Scholar] [CrossRef]
- Li, C.-w.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2020, 10, 861. [Google Scholar] [CrossRef]
- Steenman, M.; Lande, G. Cardiac aging and heart disease in humans. Biophys. Rev. 2017, 9, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 2022, 18, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.; O’ Sullivan, R.; Caserotti, P.; Tully, M.A. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 2020, 30, 816–827. [Google Scholar] [CrossRef]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef]
- Bliss, E.S.; Wong, R.H.X.; Howe, P.R.C.; Mills, D.E. Benefits of exercise training on cerebrovascular and cognitive function in ageing. J. Cereb. Blood Flow Metab. 2020, 41, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Sun, Y.; Zhang, T.; Zou, L.; Wu, X.; Wang, D.; Chen, Z. Exercise Programs for Muscle Mass, Muscle Strength and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Aging Dis. 2020, 11, 863–873. [Google Scholar] [CrossRef]
- Moreira, J.B.N.; Wohlwend, M.; Wisløff, U. Exercise and cardiac health: Physiological and molecular insights. Nat. Metab. 2020, 2, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Casuso, R.A.; Huertas, J.R. The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res. Rev. 2020, 58, 101025. [Google Scholar] [CrossRef]
- Radaelli, R.; Taaffe, D.R.; Newton, R.U.; Galvão, D.A.; Lopez, P. Exercise effects on muscle quality in older adults: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 21085. [Google Scholar] [CrossRef]
- Papalia, G.F.; Papalia, R.; Diaz Balzani, L.A.; Torre, G.; Zampogna, B.; Vasta, S.; Fossati, C.; Alifano, A.M.; Denaro, V. The Effects of Physical Exercise on Balance and Prevention of Falls in Older People: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2595. [Google Scholar] [CrossRef]
- Scoubeau, C.; Carpentier, J.; Baudry, S.; Faoro, V.; Klass, M. Body composition, cardiorespiratory fitness, and neuromuscular adaptations induced by a home-based whole-body high intensity interval training. J. Exerc. Sci. Fit. 2023, 21, 226–236. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Cheng, Y.; Zhang, M.; Zhao, Y.; Zhang, T.; Dong, J.; Xing, J.; Zhen, Y.; Wang, C. High intensity interval training vs. moderate intensity continuous training on aerobic capacity and functional capacity in patients with heart failure: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024, 11, 1302109. [Google Scholar] [CrossRef]
- Khodadadi, F.; Bagheri, R.; Negaresh, R.; Moradi, S.; Nordvall, M.; Camera, D.M.; Wong, A.; Suzuki, K. The Effect of High-Intensity Interval Training Type on Body Fat Percentage, Fat and Fat-Free Mass: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Med. 2023, 12, 2291. [Google Scholar] [CrossRef]
- Alzar-Teruel, M.; Aibar-Almazán, A.; Hita-Contreras, F.; Carcelén-Fraile, M.d.C.; Martínez-Amat, A.; Jiménez-García, J.D.; Fábrega-Cuadros, R.; Castellote-Caballero, Y. High-intensity interval training among middle-aged and older adults for body composition and muscle strength: A systematic review. Front. Public Health 2022, 10, 992706. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Atakan, M.M.; Kuang, J.; Hu, Y.; Bishop, D.J.; Yan, X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants 2020, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Belzunce, M.A.; Henckel, J.; Laura, A.D.; Horga, L.M.; Hart, A.J. Mid-life cyclists preserve muscle mass and composition: A 3D MRI study. BMC Musculoskelet. Disord. 2023, 24, 209. [Google Scholar] [CrossRef]
- Bouaziz, W.; Schmitt, E.; Kaltenbach, G.; Geny, B.; Vogel, T. Health benefits of cycle ergometer training for older adults over 70: A review. Eur. Rev. Aging Phys. Act. 2015, 12, 8. [Google Scholar] [CrossRef]
- Lovell, D.I.; Cuneo, R.; Gass, G.C. Can aerobic training improve muscle strength and power in older men? J. Aging Phys. Act. 2010, 18, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I. The Sarcopenia Guidelines Development Group of the Belgian Society of Gerontology and Geriatrics (BSGG). Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Nutr. Rev. 2021, 79, 121–147. [Google Scholar] [CrossRef]
- Wirth, J.; Hillesheim, E.; Brennan, L. The Role of Protein Intake and its Timing on Body Composition and Muscle Function in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. J. 2020, 150, 1443–1460. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Huang, K.-S.; Chen, K.-M.; Chou, C.-P.; Tu, Y.-K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef]
- Fantacone, M.L.; Lowry, M.B.; Uesugi, S.L.; Michels, A.J.; Choi, J.; Leonard, S.W.; Gombart, S.K.; Gombart, J.S.; Bobe, G.; Gombart, A.F. The Effect of a Multivitamin and Mineral Supplement on Immune Function in Healthy Older Adults: A Double-Blind, Randomized, Controlled Trial. J. Nutr. 2020, 12, 2447. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Lazaretti-Castro, M.; Lips, P.; Marcocci, C.; Bilezikian, J.P. Vitamin D in the older population: A consensus statement. Endocr. J. 2023, 79, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Cornish, S.M.; Cordingley, D.M.; Shaw, K.A.; Forbes, S.C.; Leonhardt, T.; Bristol, A.; Candow, D.G.; Chilibeck, P.D. Effects of Omega-3 Supplementation Alone and Combined with Resistance Exercise on Skeletal Muscle in Older Adults: A Systematic Review and Meta-Analysis. J. Nutr. 2022, 14, 2221. [Google Scholar] [CrossRef]
- Testai, L.; Martelli, A.; Flori, L.; Cicero, A.F.G.; Colletti, A. Coenzyme Q10: Clinical Applications beyond Cardiovascular Diseases. J. Nutr. 2021, 13, 1697. [Google Scholar] [CrossRef]
- de la Bella-Garzón, R.; Fernández-Portero, C.; Alarcón, D.; Amián, J.G.; López-Lluch, G. Levels of Plasma Coenzyme Q10 Are Associated with Physical Capacity and Cardiovascular Risk in the Elderly. Antioxidants 2022, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Drobnic, F.; Lizarraga, M.A.; Caballero-García, A.; Cordova, A. Coenzyme Q(10) Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? J. Nutr. 2022, 14, 1811. [Google Scholar] [CrossRef]
- Martelli, A.; Testai, L.; Colletti, A.; Cicero, A.F.G. Coenzyme Q(10): Clinical Applications in Cardiovascular Diseases. Antioxidants 2020, 9, 341. [Google Scholar] [CrossRef]
- Lu, Y.; Wiltshire, H.D.; Baker, J.S.; Wang, Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. J. Biol. 2021, 10, 1272. [Google Scholar] [CrossRef]
- Malm, C.; Svensson, M.; Ekblom, B.; Sjödin, B. Effects of ubiquinone-10 supplementation and high intensity training on physical performance in humans. Acta Physiol. Scand. 1997, 161, 379–384. [Google Scholar] [CrossRef]
- Braun, B.; Clarkson, P.M.; Freedson, P.S.; Kohl, R.L. Effects of Coenzyme Q10 Supplementation on Exercise Performance, VO2max, and Lipid Peroxidation in Trained Cyclists. Int. J. Sport Nutr. 1991, 1, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, R.; Muçaj, A.; Lacalaprice, F.; Solenghi, M.; Seddaiu, G.; Principi, F.; Tiano, L.; Littarru, G.P. Coenzyme Q10 and exercise training in chronic heart failure. Eur. Heart J. 2006, 27, 2675–2681. [Google Scholar] [CrossRef] [PubMed]
- Belviranlı, M.; Okudan, N. Effect of coenzyme Q10 alone and in combination with exercise training on oxidative stress biomarkers in rats. Int. J. Vitam. Nutr. Res. 2019, 88, 126–136. [Google Scholar] [CrossRef]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 supplementation in aging and disease. Front. Physiol. 2018, 9, 316577. [Google Scholar] [CrossRef] [PubMed]
- Reljic, D.; Wittmann, F.; Fischer, J.E. Effects of low-volume high-intensity interval training in a community setting: A pilot study. Eur. J. Appl. Physiol. 2018, 118, 1153–1167. [Google Scholar] [CrossRef]
- Liang, W.; Wang, X.; Cheng, S.; Jiao, J.; Zhu, X.; Duan, Y. Effects of High-Intensity Interval Training on the Parameters Related to Physical Fitness and Health of Older Adults: A Systematic Review and Meta-Analysis. Sports Med. Open 2024, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Men, J.; Zhao, C.; Xiang, C.; Zhu, G.; Yu, Z.; Wang, P.; Wu, S.; Zhang, Y.; Li, Y.; Wang, L.; et al. Effects of high-intensity interval training on physical morphology, cardiopulmonary function, and metabolic indicators in older adults: A systematic review and meta-analysis. Front. Endocrinol. 2025, 16, 1526991. [Google Scholar] [CrossRef]
- Abdali, D.; Samson, S.E.; Grover, A.K. How Effective Are Antioxidant Supplements in Obesity and Diabetes? Med. Princ. Pract. 2015, 24, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Talebi, S.; Pourgharib Shahi, M.H.; Zeraattalab-Motlagh, S.; Asoudeh, F.; Ranjbar, M.; Hemmati, A.; Talebi, A.; Wong, A.; Mohammadi, H. The effects of coenzyme Q10 supplementation on biomarkers of exercise-induced muscle damage, physical performance, and oxidative stress: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2024, 60, 122–134. [Google Scholar] [CrossRef]
- Tapanya, W.; Sangkarit, N.; Amput, P.; Konsanit, S. Lower extremity muscle strength equation of older adults assessed by Five Time Sit to Stand Test (FTSST). Hong Kong Physiother. J. 2023, 44, 1–10. [Google Scholar] [CrossRef]
- Mahato, N.K.; Davis, A.; Simon, J.E.; Clark, B.C. Assessing muscular power in older adults: Evaluating the predictive capacity of the 30-second chair rise test. Front. Aging Neurosci. 2024, 5, 1302574. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Tappen, R.M.; Roach, K.E.; Buchner, D.; Barry, C.; Edelstein, J. Reliability of physical performance measures in nursing home residents with Alzheimer’s disease. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1997, 52, M52–M55. [Google Scholar] [CrossRef]
- Vellas, B.J.; Wayne, S.J.; Romero, L.; Baumgartner, R.N.; Rubenstein, L.Z.; Garry, P.J. One-leg balance is an important predictor of injurious falls in older persons. J. Am. Geriatr. Soc. 1997, 45, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Sullivan, M.J.; Thompson, P.J.; Fallen, E.L.; Pugsley, S.O.; Taylor, D.W.; Berman, L.B. The 6-minute walk: A new measure of exercise capacity in patients with chronic heart failure. Can. Med. Assoc. J. 1985, 132, 919. [Google Scholar] [PubMed]
- Craig, C.; Marshall, A.; Sjostrom, M.; Bauman, A.; Lee, P.; Macfarlane, D.; Lam, T.; Stewart, S. International physical activity questionnaire-short form. J. Am. Coll. Health 2017, 65, 492–501. [Google Scholar]
- Ochiai, A.; Itagaki, S.; Kurokawa, T.; Kobayashi, M.; Hirano, T.; Iseki, K. Improvement in intestinal coenzyme q10 absorption by food intake. Yakugaku Zasshi 2007, 127, 1251–1254. [Google Scholar] [CrossRef]
- Li, Z.; Kopec, R.E. CoQ10 bioaccessibility and Caco-2 cell uptake improved with novel medium chain triglyceride encapsulation. Food Funct. 2024, 15, 10981–10986. [Google Scholar] [CrossRef]
- Estevez, M.B.; Casaux, M.L.; Fraga, M.; Faccio, R.; Alborés, S. Biogenic Silver Nanoparticles as a Strategy in the Fight Against Multi-Resistant Salmonella enterica Isolated From Dairy Calves. Front. Bioeng. Biotechnol. 2021, 9, 644014. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol. Lett. 2009, 30, 470–476. [Google Scholar]
- Cooke, M.; Iosia, M.; Buford, T.; Shelmadine, B.; Hudson, G.; Kerksick, C.; Rasmussen, C.; Greenwood, M.; Leutholtz, B.; Willoughby, D.; et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J. Int. Soc. Sports Nutr. 2008, 5, 8. [Google Scholar] [CrossRef]
- Chen, H.-C.; Huang, C.-C.; Lin, T.-J.; Hsu, M.-C.; Hsu, Y.-J. Ubiquinol Supplementation Alters Exercise Induced Fatigue by Increasing Lipid Utilization in Mice. Nutrients 2019, 11, 2550. [Google Scholar] [CrossRef]
- Grevendonk, L.; Connell, N.J.; McCrum, C.; Fealy, C.E.; Bilet, L.; Bruls, Y.M.H.; Mevenkamp, J.; Schrauwen-Hinderling, V.B.; Jörgensen, J.A.; Moonen-Kornips, E.; et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 2021, 12, 4773. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Deng, S.; Lian, Z.; Yu, K. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy. Front. Cell Dev. Biol. 2022, 10, 964130. [Google Scholar] [CrossRef]
- Pala, R.; Orhan, C.; Tuzcu, M.; Sahin, N.; Ali, S.; Cinar, V.; Atalay, M.; Sahin, K. Coenzyme Q10 Supplementation Modulates NFκB and Nrf2 Pathways in Exercise Training. J. Sports Sci. Med. 2016, 15, 196–203. [Google Scholar] [PubMed]
- Sangsefidi, Z.S.; Yaghoubi, F.; Hajiahmadi, S.; Hosseinzadeh, M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci. Nutr. 2020, 8, 1766–1776. [Google Scholar] [CrossRef]
- Supruniuk, E.; Górski, J.; Chabowski, A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants 2023, 12, 501. [Google Scholar] [CrossRef]
- Powers, S.K.; Goldstein, E.; Schrager, M.; Ji, L.L. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants 2023, 12, 39. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, X.; Zhu, A.; Xiong, S.; Xie, J.; Bai, Z. Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Front. Physiol. 2023, 14, 1196426. [Google Scholar] [CrossRef]
- Andreani, C.; Bartolacci, C.; Guescini, M.; Battistelli, M.; Stocchi, V.; Orlando, F.; Provinciali, M.; Amici, A.; Marchini, C.; Tiano, L.; et al. Combination of Coenzyme Q10 Intake and Moderate Physical Activity Counteracts Mitochondrial Dysfunctions in a SAMP8 Mouse Model. Oxidative Med. Cell. Longev. 2018, 2018, 8936251. [Google Scholar] [CrossRef] [PubMed]
- Betz, M.W.; Hendriks, F.K.; Houben, A.J.H.M.; van den Eynde, M.D.G.; Verdijk, L.B.; van Loon, L.J.C.; Snijders, T. Type II Muscle Fiber Capillarization Is an Important Determinant of Post-Exercise Microvascular Perfusion in Older Adults. Gerontology 2023, 70, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-H.; Su, C.-H.; Wang, D. The Role of High-Intensity Interval Training (HIIT) in Neuromuscular Adaptations: Implications for Strength and Power Development—A Review. Life 2025, 15, 657. [Google Scholar] [CrossRef]
- Wiens, L.; Losciale, J.M.; Fliss, M.D.; Abercrombie, M.J.; Darabi, D.; Li, J.; Barclay, R.; Mitchell, C.J. Does High-Intensity Interval Training Increase Muscle Strength, Muscle Mass, and Muscle Endurance? A Systematic Review and Meta-Analysis. Sports 2025, 13, 293. [Google Scholar] [CrossRef]
- Wu, Z.-J.; Wang, Z.-Y.; Gao, H.-E.; Zhou, X.-F.; Li, F.-H. Impact of high-intensity interval training on cardiorespiratory fitness, body composition, physical fitness, and metabolic parameters in older adults: A meta-analysis of randomized controlled trials. Exp. Gerontol. 2021, 150, 111345. [Google Scholar] [CrossRef]
- Amaro-Gahete, F.J.; De-la-O, A.; Jurado-Fasoli, L.; Ruiz, J.R.; Castillo, M.J.; Gutiérrez, Á. Effects of different exercise training programs on body composition: A randomized control trial. Scand. J. Med. Sci. Sports 2019, 29, 968–979. [Google Scholar] [CrossRef]
- Lira, V.A.; Benton, C.R.; Yan, Z.; Bonen, A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E145–E161. [Google Scholar] [CrossRef]
- Gökbel, H.; Gül, I.; Belviranl, M.; Okudan, N. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. J. Strength Cond. Res. 2010, 24, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, F.; Giovannini, M.; Tocci, G.; Imbalzano, E.; Borghi, C.; Cicero, A.F.G. Effect of Coenzyme Q(10) on Physical Performance in Older Adults with Statin-Associated Asthenia: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. J. Clin. Med. 2024, 13, 3741. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.S.S.; Fidelis, D.; Aidar, F.J.; Badicu, G.; Greco, G.; Cataldi, S.; Santos, G.C.J.; de Souza, R.F.; Ardigò, L.P. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023, 15, 3990. [Google Scholar] [CrossRef] [PubMed]




| Variable | HIIT + Q10 | HIIT + Placebo |
|---|---|---|
| Anthropometry and body composition | ||
| Age (years) | 69 ± 4 | 70 ± 4 |
| Sex (n) | 11 Males, 8 Females | 11 Males, 8 Females |
| Body mass (kg) | 70.6 ± 8.8 | 70.8 ± 9.1 |
| Height (cm) | 162.7 ± 10.2 | 161.9 ± 8 |
| BMI (kg·m−2) | 26.9 ± 4.9 | 27.2 ± 4.1 |
| SMM (kg) | 24.6 ± 4.25 | 24.5 ± 4.40 |
| BF (kg) | 25.3 ± 9.23 | 25.8 ± 7.85 |
| Physical function | ||
| 5XSST (s) | 13.8 ± 3.2 | 14.3 ± 2.9 |
| 30CST (r) | 12.1 ± 1.5 | 12.05 ± 1.9 |
| HG (R;Ib) | 26.8 ± 6.7 | 26.2 ± 6.4 |
| HG (L;Ib) | 27.1 ± 5.8 | 24.6 ± 5.1 |
| TUG (s) | 9.2 ± 1.5 | 9.3 ± 1.8 |
| 25FW (s) | 6.3 ± 1.3 | 6.9 ± 1.2 |
| SLS (s) | 11.4 ± 7.6 | 12.2 ± 6.9 |
| 6MWT (m) | 470.7 ± 60.5 | 455.3 ± 38.3 |
| Outcome Measure | HIIT + CoQ10 | HIIT + Placebo | p-Value |
|---|---|---|---|
| Supplement Adherence Rate (%) | 98.11 ± 1.74 | 97.73 ± 2.05 | 0.549 |
| Variable | HIIT + CoQ10 Mean (Confidence Interval 95%) | HIIT + P Mean (Confidence Interval 95%) | p-Value |
|---|---|---|---|
| 5XSST | −4.26 s (−5.73 to −2.79) | −1.40 s (−2.19 to −0.60) | 0.020 |
| 30CST | 4.31 rep (3.46 to 5.16) | 1.63 rep (1.17 to 2.09) | 0.014 |
| HG(R) | 3.26 Ib (1.27 to 5.24) | 3.42 Ib (0.78 to 6.05) | 0.812 |
| HG(L) | 3.52 Ib (0.89 to 6.15) | 2.57 Ib (0.48 to 4.67) | 0.463 |
| TUG | −2.37 s (−3.00 to −1.74) | −1.20 s (−1.79 to −0.60) | 0.134 |
| 25FW | −1.45 s (−1.95 to −0.94) | −1.26 s (−1.87 to −0.66) | 0.056 |
| SLS | 12.92 s (5.78 to 20.06) | 18.93 s (10.61 to 27.25) | 0.337 |
| 6MWT | 51.26 m (39.62 to 62.89) | 30.31 m (18.92 to 41.70) | 0.132 |
| HIIT + CoQ10 | HIIT + Placebo | |||
|---|---|---|---|---|
| Pre | Post | Pre | Post | |
| Energy (Cal/d) | 2057.3 ± 129.8 | 2056 ± 124.5 | 2071.3 ± 187.4 | 2071.8 ± 176.5 |
| Carbohydrate (g/d) | 209.6 ± 26.2 | 206.7 ± 19.3 | 208 ± 23.9 | 205.4 ± 20.2 |
| Protein (g/d) | 55.4 ± 4.1 | 56 ± 4.4 | 55.97 ± 6.33 | 56.6 ± 5.7 |
| Fat (g/d) | 45.3 ± 4.5 | 45.1 ± 5.1 | 44.8 ± 5.2 | 44.9 ± 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagheri, N.; Kargarfard, M.; Bagheri, R.; Dutheil, F. Effects of Coenzyme Q10 Supplementation on Physical Function Adaptations to High-Intensity Interval Training in Older Adults. Nutrients 2025, 17, 3959. https://doi.org/10.3390/nu17243959
Bagheri N, Kargarfard M, Bagheri R, Dutheil F. Effects of Coenzyme Q10 Supplementation on Physical Function Adaptations to High-Intensity Interval Training in Older Adults. Nutrients. 2025; 17(24):3959. https://doi.org/10.3390/nu17243959
Chicago/Turabian StyleBagheri, Navid, Mehdi Kargarfard, Reza Bagheri, and Frédéric Dutheil. 2025. "Effects of Coenzyme Q10 Supplementation on Physical Function Adaptations to High-Intensity Interval Training in Older Adults" Nutrients 17, no. 24: 3959. https://doi.org/10.3390/nu17243959
APA StyleBagheri, N., Kargarfard, M., Bagheri, R., & Dutheil, F. (2025). Effects of Coenzyme Q10 Supplementation on Physical Function Adaptations to High-Intensity Interval Training in Older Adults. Nutrients, 17(24), 3959. https://doi.org/10.3390/nu17243959

