Hydrogel-Based Finger Foods: Enhancing Nutritional Intake and Swallowing Safety in Older Persons with Dysphagia
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Agar-CMC Hydrogels
2.2. Texture Profile Analysis (TPA)
2.3. Rheological Properties
2.4. NDD and IDDSI Test
2.5. Determination of Vitamins
2.6. Vitamins Release During In Vitro Digestion
2.7. Sensory Evaluation
2.8. Fiberoptic Endoscopic Evaluation of Swallowing (FEES)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Appearance of Agar-CMC Hydrogels
3.2. Rheological Characterization of Agar-CMC Hydrogels
3.3. Suitability of Hydrogel for Vitamin Delivery and Controlled Release
3.4. Sensory Acceptability and Swallowing Safety
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Thiyagalingam, S.; Kulinski, A.E.; Thorsteindottir, B.; Schindelar, K.L.; Takahashi, P.Y. Dysphagia in older adults. Mayo Clin. Proc. 2021, 96, 488–497. [Google Scholar] [CrossRef]
- Viñas, P.; Bolívar-Prados, M.; Tomsen, N.; Costa, A.; Marin, S.; Barcons, N.; Clavé, P. Prevalence of dehydration among adult patients with Oropharyngeal Dysphagia: A systematic and scoping review. Clin. Nutr. ESPEN 2023, 54, 566–580. [Google Scholar] [CrossRef]
- O’Keeffe, S.T. Use of modified diets to prevent aspiration in oropharyngeal dysphagia: Is current practice justified? BMC Geriatr. 2018, 18, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Newman, R.; Vilardell, N.; Clavé, P.; Speyer, R. Effect of Bolus Viscosity on the Safety and Efficacy of Swallowing and the Kinematics of the Swallow Response in Patients with Oropharyngeal Dysphagia: White Paper by the European Society for Swallowing Disorders (ESSD). Dysphagia 2016, 31, 232–249. [Google Scholar] [CrossRef]
- Vivanti, A.P.; Campbell, K.L.; Suter, M.S.; Hannan-Jones, M.T.; Hulcombe, J.A. Contribution of thickened drinks, food and enteral and parenteral fluids to fluid intake in hospitalised patients with dysphagia. J. Hum. Nutr. Diet. 2009, 22, 148–155. [Google Scholar] [CrossRef]
- Pouyet, V.; Giboreau, A.; Benattar, L.; Cuvelier, G. Attractiveness and consumption of finger foods in elderly Alzheimer’s disease patients. Food Qual. Prefer. 2014, 34, 62–69. [Google Scholar] [CrossRef]
- Forsberg, S.; Nyberg, M.; Olsson, V.; Rothenberg, E.; Bredie, W.L.P.; Wendin, K.; Westergren, A. Finger Food Meals as a Means of Improving Mealtimes for People with Motoric Eating Difficulties: A Pilot Study. J. Nutr. Gerontol. Geriatr. 2024, 43, 95–115. [Google Scholar] [CrossRef]
- Murphy, J.L.; Holmes, J.; Brooks, C. Nutrition and dementia care: Developing an evidence-based model for nutritional care in nursing homes. BMC Geriatr. 2017, 17, 55. [Google Scholar] [CrossRef]
- Romito, L.M. Introduction to nutrition and oral health. Dent. Clin. N. Am. 2003, 47, 187–207. [Google Scholar] [CrossRef]
- DiMaria-Ghalili, R.A. Integrating Nutrition in the Comprehensive Geriatric Assessment. Nutr. Clin. Pract. 2014, 29, 420–427. [Google Scholar] [CrossRef]
- ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.; Luiking, Y.C.; de Groot, L.C. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J. Crohn’s Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bhende, M.; Goel, A. A review: Polysaccharide-based hydrogels and their biomedical applications. Polym. Bull. 2024, 81, 8573–8594. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Alvi, T.; Biswas, A.; Shityakov, S.; Gusinskaia, T.; Lavrentev, F.; Dutta, K.; Khan, M.K.I.; Stephen, J.; Radhakrishna, M. Food gels: Principles, interaction mechanisms and its microstructure. Crit. Rev. Food Sci. Nutr. 2022, 63, 12530–12551. [Google Scholar] [CrossRef]
- Mikula, K.; Izydorczyk, G.; Mironiuk, M.; Szopa, D.; Chojnacka, K.; Witek-Krowiak, A. Selection of matrix material for hydrogel carriers of plant micronutrients. J. Mater. Sci. 2024, 59, 3031–3048. [Google Scholar] [CrossRef]
- Boughriba, S.; Souissi, N.; Nasri, R.; Nasri, M.; Li, S. pH sensitive composite hydrogels based on gelatin and reinforced with cellulose microcrystals: In depth physicochemical and microstructural analyses for controlled release of vitamin B2. Mater. Today Commun. 2021, 27, 102334. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr. Polym. 2020, 234, 115920. [Google Scholar] [CrossRef]
- Yang, Z.; McClements, D.J.; Li, C.; Sang, S.; Chen, L.; Long, J.; Qiu, C.; Jin, Z. Targeted delivery of hydrogels in human gastrointestinal tract: A review. Food Hydrocoll. 2023, 134, 108013. [Google Scholar] [CrossRef]
- American Dietetic Association. National Dysphagia Diet: Standardization for Optimal Care, 1st ed.; American Dietetic Association: Chicago, IL, USA, 2002. [Google Scholar]
- IDDSI, Framework Testing Methods 2.0. Available online: https://www.iddsi.org/images/Publications-Resources/DetailedDefnTestMethods/English/V2TestingMethodsEnglish31july2019.pdf (accessed on 7 March 2025).
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Menard, O.; Lesmes, U.; Shani-Levi, C.S.; Araiza Calahorra, A.; Lavoisier, A.; Morzel, M.; Rieder, A.; Feron, G.; Nebbia, S.; Mashiah, L.; et al. Static in vitro digestion model adapted to the general older adult population: An INFOGEST international consensus. Food Funct. 2023, 14, 4569–4582. [Google Scholar] [CrossRef]
- Langmore, S. Endoscopic Evaluation and Treatment of Swallowing Disorders, 2nd ed.; Thieme Publishing Group: New York, NY, USA, 2000. [Google Scholar]
- Rosenbek, J.C.; Robbins, J.A.; Roecker, E.B.; Coyle, J.L.; Wood, J.L. A Penetration-Aspiration Scale. Dysphagia 1996, 11, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, P.D.; Rademaker, A.W.; Leder, S.B. The Yale pharyngeal residue severity rating scale: An anatomically defined and imagebased tool. Dysphagia 2015, 30, 521–528. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, K.H.; Purdy, M.; Falk, J.; Gallo, L. The dysphagia outcome and severity scale. Dysphagia 1999, 14, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, V.; Khramova, D.; Chistiakova, E.; Zueva, N.; Vityazev, F.; Velskaya, I.; Popov, S. Texture Perception and Chewing of Agar Gel by People with Different Sensitivity to Hardness. Gels 2024, 11, 5. [Google Scholar] [CrossRef]
- Park, Y.S.; Hong, H.P.; Ryu, S.R.; Lee, S.; Shin, W.S. Effects of textured food masticatory performance in older people with different dental conditions. BMC Geriatr. 2022, 22, 384. [Google Scholar] [CrossRef]
- El-hefian, E.A.; Yahaya, A.H. Effects of temperature, shearing time and rate of shear on the viscosity of chitosan/agar-blend solutions. Maejo Int. J. Sci. Technol. 2010, 4, 261–267. [Google Scholar]
- Cuomo, F.; Cofelice, M.; Lopez, F. Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion. Polymers 2019, 11, 259. [Google Scholar] [CrossRef]
- Stojkov, G.; Niyazov, Z.; Picchioni, F.; Bose, R.K. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels 2021, 7, 255. [Google Scholar] [CrossRef]
- Cofelice, M.; Messia, M.C.; Marconi, E.; Cuomo, F.; Lopez, F. Effect of the xanthan gum on the rheological properties of alginate hydrogels. Food Hydrocoll. 2023, 142, 108768. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, H.; Liu, Y.; Shi, C.; Pan, L.; Zhang, X.; Zou, J. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants. Chin. J. Chem. Eng. 2023, 54, 240–247. [Google Scholar] [CrossRef]
- Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of Structures and Applications in Food Science. Food Rev. Int. 2021, 37, 313–372. [Google Scholar] [CrossRef]
- Giannakourou, M.C.; Taoukis, P.S. Effect of Alternative Preservation Steps and Storage on Vitamin C Stability in Fruit and Vegetable Products: Critical Review and Kinetic Modelling Approaches. Foods 2021, 10, 2630. [Google Scholar] [CrossRef]
- He, L.; Hu, S.; Zhang, G.; Wang, X.; Zhao, Y.; Wang, Q.; Liu, M.; Wang, Z.; Sangeeta, P.; Ding, Z. Influence of polysaccharide-based co-encapsulants on efficiency, stability, and release of vitamins B12 and D3 in multilayered microcapsules. J. Food Eng. 2024, 365, 111817. [Google Scholar] [CrossRef]
- Forsberg, S.; Olsson, V.; Bredie, W.L.P.; Wendin, K. Vegetable finger foods—Preferences among older adults with motoric eating difficulties. Int. J. Gastron. Food Sci. 2022, 28, 100528. [Google Scholar] [CrossRef]
Agar Content in Agar-CMC Hydrogels, % | Textural Properties * | Classification as Products Indicated for People with Dysphagia | |||
---|---|---|---|---|---|
Hardness, g | Adhesion, g.s | Cohesiveness | NDD ** Testing Results | IDDSI *** Testing Results | |
0.8 | 144.3 ± 10.13A | −13.01 ± 0.54A | 0.12 ± 0.01A | Level III (η50 = 1096.21 mPa∙s), honey-like | Level 6, soft, one bite size, views in Figure A2 (Appendix A) |
1.0. | 187.47 ± 31.48B | −11.79 ± 0.92A | 0.13 ± 0.01A | Level IV (η50 = 1949.85 mPa∙s), pudding-like | Level 6, soft, one bite size, views in Figure A3 (Appendix A) |
1.5 | 368.15 ± 59.05C | −10.61 ± 0.44B | 0.12 ± 0.01A | Level IV (η50 = 5538.25 mPa∙s), pudding-like | Level 6, soft, one bite size, views in Figure A4 (Appendix A) |
Question | Evaluation |
---|---|
Difficult to take by hand | 6.00 ± 1.34 |
Liking of the color | 6.03 ± 1.38 |
Liking of the mouth feeling | 5.50 ± 1.83 |
The intensity of the taste and aroma | 2.67 ± 1.83 |
Firmness | 5.08 ± 1.79 |
Juiciness | 4.28 ± 1.81 |
Swallowing difficulty | 6.23 ± 1.42 |
Afterfeel intensity | 3.93 ± 1.89 |
Mouth counting after-feel | 5.82 ± 1.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazickaitė, E.; Keršienė, M.; Eisinaitė, V.; Jasutienė, I.; Damulevičienė, G.; Leskauskaitė, D. Hydrogel-Based Finger Foods: Enhancing Nutritional Intake and Swallowing Safety in Older Persons with Dysphagia. Nutrients 2025, 17, 3289. https://doi.org/10.3390/nu17203289
Lazickaitė E, Keršienė M, Eisinaitė V, Jasutienė I, Damulevičienė G, Leskauskaitė D. Hydrogel-Based Finger Foods: Enhancing Nutritional Intake and Swallowing Safety in Older Persons with Dysphagia. Nutrients. 2025; 17(20):3289. https://doi.org/10.3390/nu17203289
Chicago/Turabian StyleLazickaitė, Enrika, Milda Keršienė, Viktorija Eisinaitė, Ina Jasutienė, Gytė Damulevičienė, and Daiva Leskauskaitė. 2025. "Hydrogel-Based Finger Foods: Enhancing Nutritional Intake and Swallowing Safety in Older Persons with Dysphagia" Nutrients 17, no. 20: 3289. https://doi.org/10.3390/nu17203289
APA StyleLazickaitė, E., Keršienė, M., Eisinaitė, V., Jasutienė, I., Damulevičienė, G., & Leskauskaitė, D. (2025). Hydrogel-Based Finger Foods: Enhancing Nutritional Intake and Swallowing Safety in Older Persons with Dysphagia. Nutrients, 17(20), 3289. https://doi.org/10.3390/nu17203289