Improving Oxidative Stress Through a Wheat Aleurone-Rich Diet: Are Short-Chain Fatty Acids Possible Mediators?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Laboratory Methods
2.3. Statistical Analysis
3. Results
Postprandial SCFA Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salamone, D.; Rivellese, A.A.; Vetrani, C. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: The possible role of dietary fibre. Acta Diabetol. 2021, 58, 1131–1138. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 20, 1105. [Google Scholar] [CrossRef] [PubMed]
- Costabile, G.; Vitale, M.; Testa, R.; Rivieccio, A.; Palmas, M.; Lopez-Sanchez, P.; Landberg, R.; Riccardi, G.; Giacco, R. Daily profiles of plasma short-chain fatty acids after the intake of three different cereal fibers: A randomized controlled study. Eur. J. Nutr. 2025, 64, 217. [Google Scholar] [CrossRef]
- Vetrani, C.; Costabile, G.; Luongo, D.; Naviglio, D.; Rivellese, A.A.; Riccardi, G.; Giacco, R. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition 2016, 32, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef]
- Costabile, G.; Vetrani, C.; Calabrese, I.; Vitale, M.; Cipriano, P.; Salamone, D.; Testa, R.; Paparo, L.; Russo, R.; Rivellese, A.A.; et al. High Amylose Wheat Bread at Breakfast Increases Plasma Propionate Concentrations and Reduces the Postprandial Insulin Response to the Following Meal in Overweight Adults. J. Nutr. 2023, 153, 131–137. [Google Scholar] [CrossRef]
- Yamashita, H. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats. Crit. Rev. Food. Sci. Nutr. 2016, 56 (Suppl. 1), S171–S175. [Google Scholar] [CrossRef]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Brouns, F.; Hemery, Y.; Price, R.; Anson, N.M. Wheat aleurone: Separation, composition, health aspects, and potential food use. Crit. Rev. Food Sci. Nutr. 2012, 52, 553–568. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef]
- Graham, S.F.; Hollis, J.H.; Migaud, M.; Browne, R.A. Analysis of betaine and choline contents of aleurone, bran, and flour fractions of wheat (Triticum aestivum L.) Using (1)H nuclear magnetic resonance (NMR) spectroscopy. J. Agric. Food Chem. 2009, 57, 1948–1951. [Google Scholar] [CrossRef]
- Fava, F.; Ulaszewska, M.M.; Scholz, M.; Stanstrup, J.; Nissen, L.; Mattivi, F.; Vermeiren, J.; Bosscher, D.; Pedrolli, C.; Tuohy, K.M. Impact of wheat aleurone on biomarkers of cardiovascular disease, gut microbiota and metabolites in adults with high body mass index: A double-blind, placebo-controlled, randomized clinical trial. Eur. J. Nutr. 2022, 61, 2651–2671. [Google Scholar] [CrossRef] [PubMed]
- Costabile, G.; Vitale, M.; Della Pepa, G.; Cipriano, P.; Vetrani, C.; Testa, R.; Mena, P.; Bresciani, L.; Tassotti, M.; Calani, L.; et al. A wheat aleurone-rich diet improves oxidative stress but does not influence glucose metabolism in overweight/obese individuals: Results from a randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 715–726. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Remesy, C.; Demigne, C. Determination of volatile fatty acids in plasma after ethanolic extraction. Biochem. J. 1974, 141, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Rahat-Rozenbloom, S.; Fernandes, J.; Cheng, J.; Gloor, G.; Wolever, T.M. The acute effects of inulin and resistant starch on postprandial serum short-chain fatty acids and second-meal glycemic response in lean and overweight humans. Eur. J. Clin. Nutr. 2017, 71, 227–233. [Google Scholar] [CrossRef]
- Hald, S.; Schioldan, A.G.; Moore, M.E.; Dige, A.; Lærke, H.N.; Agnholt, J.; Bach Knudsen, K.E.; Hermansen, K.; Marco, M.L.; Gregersen, S.; et al. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study. PLoS ONE 2016, 11, e0159223. [Google Scholar] [CrossRef]
- Thandapilly, S.J.; Ndou, S.P.; Wang, Y.; Nyachoti, C.M.; Ames, N.P. Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals. Food Funct. 2018, 9, 3092–3096. [Google Scholar] [CrossRef]
- Stein, K.; Borowicki, A.; Scharlau, D.; Glei, M. Fermented wheat aleurone induces enzymes involved in detoxification of carcinogens and in antioxidative defence in human colon cells. Br. J. Nutr. 2010, 104, 1101–1111. [Google Scholar] [CrossRef]
- Nordlund, E.; Aura, A.M.; Mattila, I.; Kössö, T.; Rouau, X.; Poutanen, K. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J. Agric. Food Chem. 2012, 60, 8134–8145. [Google Scholar] [CrossRef] [PubMed]
- Hamer, H.M.; Jonkers, D.M.; Bast, A.; Vanhoutvin, S.A.; Fischer, M.A.; Kodde, A.; Troost, F.J.; Venema, K.; Brummer, R.J. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin. Nutr. 2009, 28, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, Z.; Hadi, A.; Tutunchi, H.; Asghari-Jafarabadi, M.; Naeinie, F.; Roshanravan, N.; Ostadrahimi, A.; Fadel, A. The effects of butyrate supplementation on glycemic control, lipid profile, blood pressure, nitric oxide level and glutathione peroxidase activity in type 2 diabetic patients: A randomized triple -blind, placebo-controlled trial. Clin. Nutr. ESPEN 2022, 49, 79–85. [Google Scholar] [CrossRef]
- Roberts, L.J., 2nd; Milne, G.L. Isoprostanes. J. Lipid Res. 2009, 50, S219–S223. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, C.; Zhu, J.; Lin, Q.; Yu, M.; Wen, J.; Feng, J.; Hu, C. Sodium Butyrate Ameliorates Oxidative Stress-Induced Intestinal Epithelium Barrier Injury and Mitochondrial Damage through AMPK-Mitophagy Pathway. Oxid. Med. Cell Longev. 2022, 2022, 3745135. [Google Scholar] [CrossRef]
- Sauer, J.; Richter, K.K.; Pool-Zobel, B.L. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 2007, 18, 736–745. [Google Scholar] [CrossRef]
- Ebert, M.N.; Beyer-Sehlmeyer, G.; Liegibel, U.M.; Kautenburger, T.; Becker, T.W.; Pool-Zobel, B.L. Butyrate induces glutathione S-transferase in human colon cells and protects from genetic damage by 4-hydroxy-2-nonenal. Nutr. Cancer 2001, 41, 156–164. [Google Scholar] [CrossRef]
- Aguilar, E.C.; Santos, L.C.; Leonel, A.J.; de Oliveira, J.S.; Santos, E.A.; Navia-Pelaez, J.M.; da Silva, J.F.; Mendes, B.P.; Capettini, L.S.; Teixeira, L.G.; et al. Oral butyrate reduces sdown-regulation in endothelial cells. J. Nutr. Biochem. 2016, 34, 99–105. [Google Scholar] [CrossRef]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
- Mollica, M.P.; Mattace Raso, G.; Cavaliere, G.; Trinchese, G.; De Filippo, C.; Aceto, S.; Prisco, M.; Pirozzi, C.; Di Guida, F.; Lama, A.; et al. Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice. Diabetes 2017, 66, 1405–1418. [Google Scholar] [CrossRef]
- Bian, Z.; Zhang, Q.; Qin, Y.; Sun, X.; Liu, L.; Liu, H.; Mao, L.; Yan, Y.; Liao, W.; Zha, L.; et al. Sodium Butyrate Inhibits Oxidative Stress and NF-κB/NLRP3 Activation in Dextran Sulfate Sodium Salt-Induced Colitis in Mice with Involvement of the Nrf2 Signaling Pathway and Mitophagy. Dig. Dis. Sci. 2023, 68, 2981–2996. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Sun, Y.; Li, Y.; Ma, S.; Zhang, K.; Chen, A.; Lyu, Y.; Yu, R. Sodium butyrate protects against oxidative stress in high-fat-diet-induced obese rats by promoting GSK-3β/Nrf2 signaling pathway and mitochondrial function. J. Food Biochem. 2022, 46, e14334. [Google Scholar] [CrossRef]
- Vitale, M.; Giacco, R.; Laiola, M.; Della Pepa, G.; Luongo, D.; Mangione, A.; Salamone, D.; Vitaglione, P.; Ercolini, D.; Rivellese, A.A. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: Can SCFAs play a role? Clin. Nutr. 2021, 40, 428–437. [Google Scholar] [CrossRef]
- van der Beek, C.M.; Canfora, E.E.; Kip, A.M.; Gorissen, S.H.M.; Olde Damink, S.W.M.; van Eijk, H.M.; Holst, J.J.; Blaak, E.E.; Dejong, C.H.C.; Lenaerts, K. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 2018, 87, 25–35. [Google Scholar] [CrossRef]
- Hartvigsen, M.L.; Lærke, H.N.; Overgaard, A.; Holst, J.J.; Bach Knudsen, K.E.; Hermansen, K. Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: A randomised study. Eur. J. Clin. Nutr. 2014, 68, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Tarini, J.; Wolever, T.M. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl. Physiol. Nutr. Metab. 2010, 35, 9–16. [Google Scholar] [CrossRef] [PubMed]
Wheat Aleurone Pasta | Wheat Refined Pasta | Wheat Aleurone Biscuits | Wheat Refined Biscuits | Wheat Aleurone Bread | Wheat Refined Bread | |
---|---|---|---|---|---|---|
Energy (kcal/100 g) | 356 | 359 | 432 | 436 | 271 | 269 |
Proteins (g/100 g) | 14.76 | 12.01 | 8.84 | 7.93 | 10.72 | 10.73 |
Fats (g/100 g) | 2.76 | 2.03 | 12.33 | 12.00 | 5.37 | 5.40 |
SFA (g/100 g) | 0.52 | 0.50 | 3.15 | 3.15 | 0.9 | 0.9 |
MUFA (g/100 g) | 0.57 | 0.40 | 7.47 | 7.40 | 3.47 | 3.50 |
PUFA (g/100 g) | 1.66 | 1.10 | 1.72 | 1.50 | 1.00 | 1.00 |
Carbohydrates (g/100 g) | 64.45 | 71.70 | 68.65 | 72.03 | 41.81 | 41.04 |
Sugars (g/100 g) | 4.71 | 3.50 | 21.20 | 20.50 | 6.87 | 6.56 |
Total Fibers (g/100 g) | 6.92 | 3.00 | 5.59 | 4.20 | 6.08 | 6.86 |
Sodium (mg/100 g) | 4.7 | 5 | 183 | 187 | 538 | 535 |
Magnesium (mg/100 g) | 154 | 75.00 | 73.9 | 29.2 | 72.6 | 68.1 |
Phosphorus (mg/100 g) | 481 | 350 | 243 | 110 | 233 | 221 |
Iron (mg/100 g) | 5.00 | 1.40 | 2.7 | 1.25 | 2.61 | 2.42 |
Vitamin B1(mg/100 g) | 0.26 | 0.15 | 0.17 | 0.11 | 0.14 | 0.12 |
Vitamin B3 (mg/100 g) | 1.72 | 0.90 | 1.7 | 0.24 | 1.09 | 0.915 |
Ferulic Acids (mg/100 g) | 401 | 150 | 181 | 73 | 225 | 187 |
TEAC (mmol/100 g) | 1.51 | 1.50 | 1.65 | 1.51 | 1.52 | 1.42 |
Baseline (n = 23) | Wheat Aleurone Diet (n = 23) | Refined Wheat Diet (n = 23) | p Value (Between Diets) a | |
---|---|---|---|---|
Urinary isoprostane (ng × 24 h) | 1149 ± 636 | 874 ± 346 b | 1303 ± 874 | 0.035 |
Fasting Serum acetic acid (μmol/L) | 210.48 ± 75.23 | 216.44 ± 61.77 | 218.93 ± 79.85 | 0.962 |
Fasting Serum propionic acid (μmol/L) | 20.85 ± 5.57 | 20.45 ± 4.95 | 20.83 ± 6.79 | 0.821 |
Fasting Serum butyric acid (μmol/L) | 12.63 ± 2.92 | 11.96 ± 2.58 | 13.41 ± 3.85 | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, R.; Salamone, D.; Rivellese, A.A.; Riccardi, G.; Vitale, M.; Giacco, R.; Costabile, G. Improving Oxidative Stress Through a Wheat Aleurone-Rich Diet: Are Short-Chain Fatty Acids Possible Mediators? Nutrients 2025, 17, 3290. https://doi.org/10.3390/nu17203290
Testa R, Salamone D, Rivellese AA, Riccardi G, Vitale M, Giacco R, Costabile G. Improving Oxidative Stress Through a Wheat Aleurone-Rich Diet: Are Short-Chain Fatty Acids Possible Mediators? Nutrients. 2025; 17(20):3290. https://doi.org/10.3390/nu17203290
Chicago/Turabian StyleTesta, Roberta, Dominic Salamone, Angela A. Rivellese, Gabriele Riccardi, Marilena Vitale, Rosalba Giacco, and Giuseppina Costabile. 2025. "Improving Oxidative Stress Through a Wheat Aleurone-Rich Diet: Are Short-Chain Fatty Acids Possible Mediators?" Nutrients 17, no. 20: 3290. https://doi.org/10.3390/nu17203290
APA StyleTesta, R., Salamone, D., Rivellese, A. A., Riccardi, G., Vitale, M., Giacco, R., & Costabile, G. (2025). Improving Oxidative Stress Through a Wheat Aleurone-Rich Diet: Are Short-Chain Fatty Acids Possible Mediators? Nutrients, 17(20), 3290. https://doi.org/10.3390/nu17203290