The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Procedures
Anthropometric and Body Composition Assessments
Running-Based Anaerobic Sprint Test (RAST)
Vertical Jump and Anaerobic Power Test
Illinois Agility Test
Ball Speed Test
Leg Strength Test
Handgrip Strength Test
Functional Performance Tests
Supplementation Protocol
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WADA | World Anti-Doping Agency |
CNS | Central nervous system |
CMJ | Countermovement jump |
RAST | Running-based anaerobic sprint test |
COD | Change of direction |
RPE | Rating of perceived exertion |
References
- Tallis, J.; Clarke, N.; Morris, R.; Richardson, D.; Ellis, M.; Eyre, E.; Duncan, M.; Noon, M. The prevalence and practices of caffeine use as an ergogenic aid in English professional soccer. Biol. Sport 2021, 38, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Nielsen, J.J.; Bangsbo, J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J. Appl. Physiol. 2011, 111, 1372–1379. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The effect of acute caffeine ingestion on endurance performance: A systematic review and meta–analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Hodgson, A.B.; Randell, R.K.; Jeukendrup, A.E. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE 2013, 8, e59561. [Google Scholar] [CrossRef]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef]
- Ellis, M.; Noon, M.; Myers, T.; Clarke, N. Low doses of caffeine: Enhancement of physical performance in elite adolescent male soccer players. Int. J. Sports Physiol. Perform. 2019, 14, 569–575. [Google Scholar] [CrossRef]
- Grgic, J.; Del Coso, J. Ergogenic effects of acute caffeine intake on muscular endurance and muscular strength in women: A meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 5773. [Google Scholar] [CrossRef]
- Pontifex, K.; Wallman, K.; Dawson, B.; Goodman, C. Effects of caffeine on repeated sprint ability, reactive agility time, sleep and next day performance. J. Sports Med. Phys. Fit. 2010, 50, 455–464. [Google Scholar]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef]
- Tucker, M.A.; Hargreaves, J.M.; Clarke, J.C.; Dale, D.L.; Blackwell, G.J. The effect of caffeine on maximal oxygen uptake and vertical jump performance in male basketball players. J. Strength Cond. Res. 2013, 27, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.L.; Ziegler, A.M. Gender differences in subjective and physiological responses to caffeine and the role of steroid hormones. J. Caffeine Res. 2011, 1, 41–48. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Marin-Puyalto, J.; Muniz-Pardos, B.; Matute-Llorente, A.; Del Coso, J.; Gomez-Cabello, A.; Vicente-Rodriguez, G.; Casajus, J.A.; Lozano-Berges, G. Does acute caffeine supplementation improve physical performance in female team-sport athletes? Evidence from a systematic review and meta-analysis. Nutrients 2021, 13, 3663. [Google Scholar] [CrossRef]
- Mahdavi, R.; Daneghian, S.; Jafari, A.; Homayouni, A. Effect of acute caffeine supplementation on anaerobic power and blood lactate levels in female athletes. J. Caffeine Res. 2015, 5, 83–87. [Google Scholar] [CrossRef]
- Sabblah, S.; Dixon, D.; Bottoms, L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp. Exerc. Physiol. 2015, 11, 89–94. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of caffeine supplementation on sports performance based on differences between sexes: A systematic review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef]
- Arazi, H.; Hoseinihaji, M.; Eghbali, E. The effects of different doses of caffeine on performance, rating of perceived exertion and pain perception in teenagers female karate athletes. Braz. J. Pharm. Sci. 2016, 52, 685–692. [Google Scholar] [CrossRef]
- Ali, A.; O’Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J. Int. Soc. Sports Nutr. 2016, 13, 46. [Google Scholar] [CrossRef]
- Bougrine, H.; Ammar, A.; Salem, A.; Trabelsi, K.; Zmijewski, P.; Jahrami, H.; Chtourou, H.; Souissi, N. Effects of Different Caffeine Dosages on Maximal Physical Performance and Potential Side Effects in Low-Consumer Female Athletes: Morning vs. Evening Administration. Nutrients 2024, 16, 2223. [Google Scholar] [CrossRef] [PubMed]
- Siquier-Coll, J.; Delgado-Garcia, G.; Soto-Mendez, F.; Linan-Gonzalez, A.; Garcia, R.; Gonzalez-Fernandez, F.T. The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week. Nutrients 2024, 16, 29. [Google Scholar] [CrossRef]
- Bougrine, H.; Paillard, T.; Jebabli, N.; Ceylan, H.I.; Maitre, J.; Dergaa, I.; Stefanica, V.; Abderrahman, A.B. Ergogenic Effects of Combined Caffeine Supplementation and Motivational Music on Anaerobic Performance in Female Handball Players: A Randomized Double-Blind Controlled Trial. Nutrients 2025, 17, 1613. [Google Scholar] [CrossRef]
- Bougrine, H.; Ammar, A.; Salem, A.; Trabelsi, K.; Jahrami, H.; Chtourou, H.; Souissi, N. Optimizing Short-Term Maximal Exercise Performance: The Superior Efficacy of a 6 mg/kg Caffeine Dose over 3 or 9 mg/kg in Young Female Team-Sports Athletes. Nutrients 2024, 16, 640. [Google Scholar] [CrossRef] [PubMed]
- Miranda, R.; Antunes, H.; Pauli, J.R.; Puggina, E.F.; Da Silva, A. Effects of 10-week soccer training program on anthropometric, psychological, technical skills and specific performance parameters in youth soccer players. Sci. Sports 2013, 28, 81–87. [Google Scholar] [CrossRef]
- Rađa, A.; Kuvačić, G.; De Giorgio, A.; Sellami, M.; Ardigò, L.P.; Bragazzi, N.L.; Padulo, J. The ball kicking speed: A new, efficient performance indicator in youth soccer. PLoS ONE 2019, 14, e0217101. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Moreno-Pérez, V.; Travassos, B.; Del Coso, J. Effects of acute caffeine ingestion on futsal performance in sub-elite players. Eur. J. Nutr. 2021, 60, 4531–4540. [Google Scholar] [CrossRef]
- Mor, A.; Acar, K.; Alexe, D.I.; Mor, H.; Abdioğlu, M.; Man, M.C.; Karakaș, F.; Waer, F.B.; Yılmaz, A.K.; Alexe, C.I. Moderate-dose caffeine enhances anaerobic performance without altering hydration status. Front. Nutr. 2024, 11, 1359999. [Google Scholar] [CrossRef]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umsch. 2014, 61, 58–63. [Google Scholar] [CrossRef]
- Ruiz-Moreno, C.; Gutiérrez-Hellín, J.; Lara, B.; Del Coso, J. Effect of caffeine on muscle oxygen saturation during short-term all-out exercise: A double-blind randomized crossover study. Eur. J. Nutr. 2022, 61, 3109–3117. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Erkmen, N.; Taşkın, H.; Sanioğlu, A.; Kaplan, T.; Baştürk, D. Relationships between balance and functional performance in football players. J. Hum. Kinet. 2010, 26, 21–29. [Google Scholar] [CrossRef]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N.; Yusof, A. Effects of the 11+ and Harmoknee warm-up programs on physical performance measures in professional soccer players. J. Sports Sci. Med. 2013, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Coldwells, A.; Atkinson, G.; Reilly, T. Sources of variation in back and leg dynamometry. Ergonomics 1994, 37, 79–86. [Google Scholar] [CrossRef]
- Cronin, J.; Lawton, T.; Harris, N.; Kilding, A.; McMaster, D.T. A brief review of handgrip strength and sport performance. J. Strength Cond. Res. 2017, 31, 3187–3217. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and horizontal asymmetries are related to slower sprinting and jump performance in elite youth female soccer players. J. Strength Cond. Res. 2021, 35, 56–63. [Google Scholar] [CrossRef]
- Dingenen, B.; Truijen, J.; Bellemans, J.; Gokeler, A. Test–retest reliability and discriminative ability of forward, medial and rotational single-leg hop tests. Knee 2019, 26, 978–987. [Google Scholar] [CrossRef]
- Cohen, S. Effect size estimation and confidence intervals. Handb. Psychol. Res. Methods Psychol. 2012, 2, 142. [Google Scholar]
- Fernández-Campos, C.; Dengo, A.L.; Moncada-Jiménez, J. Acute consumption of an energy drink does not improve physical performance of female volleyball players. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 271–277. [Google Scholar] [CrossRef]
- Kaçoğlu, C. Adölesan Kız Hentbolcularda, Düşük Doz Kahve Tüketiminin Anaerobik Performansa Akut Etkileri. Turk. Klin. J. Sports Sci. 2019, 11, 97–107. [Google Scholar] [CrossRef]
- Jodra, P.; Lago-Rodríguez, A.; Sánchez-Oliver, A.J.; López-Samanes, A.; Pérez-López, A.; Veiga-Herreros, P.; San Juan, A.; Domínguez, R. Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. J. Int. Soc. Sports Nutr. 2020, 17, 2. [Google Scholar] [CrossRef]
- Lara, B.; Gonzalez-Millán, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Muñoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- de Souza, J.G.; Del Coso, J.; Fonseca, F.d.S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.L.; Díaz-Lara, J.; Pareja-Galeano, H.; Del Coso, J. Caffeinated drinks and physical performance in sport: A systematic review. Nutrients 2021, 13, 2944. [Google Scholar] [CrossRef]
- Clarke, N.D.; Kirwan, N.A.; Richardson, D.L. Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients 2019, 11, 2575. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Karayigit, R.; Naderi, A.; Saunders, B.; Forbes, S.C.; Coso, J.D.; Berjisian, E.; Yildirim, U.C.; Suzuki, K. Combined but not isolated ingestion of caffeine and taurine improves Wingate Sprint Performance in female team-sport athletes habituated to caffeine. Sports 2021, 9, 162. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: No influence of habitual caffeine intake. Eur. J. Sport Sci. 2021, 21, 1165–1175. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; Leon-Guereno, P.; Fernandez-Lazaro, D. Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review. Nutrients 2019, 11, 440. [Google Scholar] [CrossRef]
- Davis, J.-K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Jordan, J.B.; Korgaokar, A.; Farley, R.S.; Coons, J.M.; Caputo, J.L. Caffeine supplementation and reactive agility in elite youth soccer players. Pediatr. Exerc. Sci. 2014, 26, 168–176. [Google Scholar] [CrossRef]
- Santos-Mariano, A.C.; Cristina-Souza, G.; Santos, P.S.; Domingos, P.R.; De-Oliveira, P.; Bertuzzi, R.; Rodacki, C.; Lima-Silva, A.E. Caffeine intake increases countermovement jump performance in well-trained high jumpers. PharmaNutrition 2022, 21, 100305. [Google Scholar] [CrossRef]
- Burke, B.I.; Travis, S.K.; Gentles, J.A.; Sato, K.; Lang, H.M.; Bazyler, C.D. The effects of caffeine on jumping performance and maximal strength in female collegiate athletes. Nutrients 2021, 13, 2496. [Google Scholar] [CrossRef] [PubMed]
- Norum, M.; Risvang, L.C.; Bjørnsen, T.; Dimitriou, L.; Rønning, P.O.; Bjørgen, M.; Raastad, T. Caffeine increases strength and power performance in resistance-trained females during early follicular phase. Scand. J. Med. Sci. Sports 2020, 30, 2116–2129. [Google Scholar] [CrossRef] [PubMed]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Merino Fernández, M.; Ruiz-Moreno, C.; Giráldez-Costas, V.; Gonzalez-Millán, C.; Matos-Duarte, M.; Gutiérrez-Hellín, J.; González-García, J. Caffeine doses of 3 mg/kg increase unilateral and bilateral vertical jump outcomes in elite traditional Jiu-Jitsu athletes. Nutrients 2021, 13, 1705. [Google Scholar] [CrossRef]
- Perez-Lopez, A.; Salinero, J.J.; Abian-Vicen, J.; Valades, D.; Lara, B.; Hernandez, C.; Areces, F.; Gonzalez, C.; Del Coso, J. Caffeinated energy drinks improve volleyball performance in elite female players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef]
- Jones, L.; Johnstone, I.; Day, C.; Le Marquer, S.; Hulton, A.T. The dose-effects of caffeine on lower body maximal strength, muscular endurance, and rating of perceived exertion in strength-trained females. Nutrients 2021, 13, 3342. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Lulińska, E.; Tufano, J.J.; Zajac, A.; Stastny, P.; Del Coso, J. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J. Int. Soc. Sports Nutr. 2021, 18, 25. [Google Scholar] [CrossRef]
- Bougrine, H.; Cherif, M.; Chtourou, H.; Souissi, N. Can caffeine supplementation reverse the impact of time of day on cognitive and short-term high intensity performances in young female handball players? Chronobiol. Int. 2022, 39, 1144–1155. [Google Scholar] [CrossRef]
- Salgueiro, D.; Balikian, P.; Andrade, V.; Júnior, O. Caffeine improves swimming speed, decreases the rate of perceived exertion and lactate concentration during a high intensity intermittent aerobic training session for male swimmers. Sci. Sports 2022, 37, 762–765. [Google Scholar] [CrossRef]
Variables | X | SD |
---|---|---|
Age (yr) | 21.08 | 1.11 |
Height (cm) | 161.69 | 6.30 |
Weight (kg) | 59.69 | 10.52 |
BMI (kg/m2) | 22.77 | 3.50 |
Training age (yr) | 7.77 | 1.16 |
Habitual consumption of CAF (mg/day−1) | 319 | 160 |
Groups | ||||
---|---|---|---|---|
Variables | PLA | CAF | d | p |
X ± SD | X ± SD | |||
VJ (cm) | 44.54 ± 7.54 | 43.69 ± 5.87 | 0.12 | 0.540 |
VJ (WATT) | 879.33 ± 168.89 | 873.90 ± 173.70 | 0.03 | 0.728 |
Maximum power (W) | 291.00 ± 61.06 | 309.32 ± 77.64 | 0.26 | 0.076 |
Minimum power (W) | 156.97 ± 60.15 | 179.32 ± 67.32 | 0.35 | 0.011 * |
Average power (W) | 221.30 ± 64.15 | 241.55 ± 73.84 | 0.29 | 0.007 * |
Fatigue index (W/s) | 3.15 ± 0.61 | 3.16 ± 0.88 | 0.01 | 0.959 |
COD (s) | 18.43 ± 0.76 | 18.48 ± 0.85 | 0.06 | 0.724 |
Ball Speed (km/s) | 66.47 ± 9.11 | 67.84 ± 8.12 | 0.16 | 0.341 |
Groups | ||||
---|---|---|---|---|
Variables | PLA | CAF | d | p |
X ± SD | X ± SD | |||
HSR (kg) | 28.52 ± 4.28 | 27.57 ± 4.11 | 0.22 | 0.176 |
HSL (kg) | 25.75 ± 5.01 | 25.15 ± 4.66 | 0.12 | 0.403 |
LS (kg) | 72.61 ± 21.96 | 72.35 ± 22.10 | 0.11 | 0.901 |
SHR (cm) | 124.80 ± 15.72 | 132.39 ± 18.06 | 0.44 | 0.045 * |
SHL (cm) | 125.30 ± 14.40 | 129.02 ± 20.31 | 0.21 | 0.234 |
MRHR (cm) | 110.99 ± 14.56 | 118.48 ± 16.38 | 0.48 | 0.062 |
MRHL (cm) | 108.26 ± 12.74 | 113.09 ± 17.09 | 0.32 | 0.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mor, H.; Mor, A.; Abdioğlu, M.; Tohănean, D.I.; Savu, C.V.; Acar, G.C.; Moraru, C.E.; Alexe, D.I. The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players. Nutrients 2025, 17, 2156. https://doi.org/10.3390/nu17132156
Mor H, Mor A, Abdioğlu M, Tohănean DI, Savu CV, Acar GC, Moraru CE, Alexe DI. The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players. Nutrients. 2025; 17(13):2156. https://doi.org/10.3390/nu17132156
Chicago/Turabian StyleMor, Hakkı, Ahmet Mor, Mekki Abdioğlu, Dragoș Ioan Tohănean, Cătălin Vasile Savu, Gizem Ceylan Acar, Cristina Elena Moraru, and Dan Iulian Alexe. 2025. "The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players" Nutrients 17, no. 13: 2156. https://doi.org/10.3390/nu17132156
APA StyleMor, H., Mor, A., Abdioğlu, M., Tohănean, D. I., Savu, C. V., Acar, G. C., Moraru, C. E., & Alexe, D. I. (2025). The Acute Effects of Caffeine Supplementation on Anaerobic Performance and Functional Strength in Female Soccer Players. Nutrients, 17(13), 2156. https://doi.org/10.3390/nu17132156