Associations between Long-Term Dietary Coenzyme Q10 Intake and New-Onset Hypertension in Adults: Insights from a Nationwide Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Nutrient Intake
2.3. Assessment of Covariates
2.4. Study Outcome
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Association between Dietary CoQ10 Intake and New-Onset Hypertension
3.3. Subgroup Analyses by Potential Effect Modifiers
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schutte, A.E.; Srinivasapura Venkateshmurthy, N.; Mohan, S.; Prabhakaran, D. Hypertension in Low- and Middle-Income Countries. Circ. Res. 2021, 128, 808–826. [Google Scholar] [CrossRef] [PubMed]
- Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [CrossRef] [PubMed]
- Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020, 16, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Kotchen, T.A.; Kotchen, J.M.; Boegehold, M.A. Nutrition and hypertension prevention. Hypertension 1991, 18 (Suppl. S3), I115–I120. [Google Scholar] [CrossRef] [PubMed]
- Srinath Reddy, K.; Katan, M.B. Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr. 2004, 7, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Pallotti, F.; Bergamini, C.; Lamperti, C.; Fato, R. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions. Int. J. Mol. Sci. 2021, 23, 128. [Google Scholar] [CrossRef] [PubMed]
- Mantle, D.; Lopez-Lluch, G.; Hargreaves, I.P. Coenzyme Q10 Metabolism: A Review of Unresolved Issues. Int. J. Mol. Sci. 2023, 24, 2585. [Google Scholar] [CrossRef] [PubMed]
- Vidyashankar, S.; Nandakumar, K.S.; Patki, P.S. Alcohol depletes coenzyme-Q(10) associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells. Toxicology 2012, 302, 34–39. [Google Scholar] [CrossRef]
- Zhao, D.; Liang, Y.; Dai, S.; Hou, S.; Liu, Z.; Liu, M.; Dong, X.; Zhan, Y.; Tian, Z.; Yang, Y. Dose-response Effect of Coenzyme Q10 Supplementation On Blood Pressure Among Patients with Cardiometabolic Disorders: A GRADE-assessed Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 2180–2194. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. S1), 2–7. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.; Guo, X.; Popkin, B.M.; Ma, L.; Wang, Q.; Shuigao, W.Y.; Jin; Ge, K. Evaluation of the 24-Hour Individual Recall Method in China. Food Nutr. Bull. 1996, 17, 1–7. [Google Scholar] [CrossRef]
- Institute for Nutrition and Food Hygiene of the Chinese Academy of Preventive Medicine. Food Composition Table; People’s Medical Publishing House: Beijing, China, 1991. [Google Scholar]
- Institute for Nutrition and Food Hygiene of the Chinese Academy of Preventive Medicine. Food Composition Table; People’s Medical Publishing House: Beijing, China, 2002. [Google Scholar]
- Institute for Nutrition and Food Hygiene of the Chinese Academy of Preventive Medicine. Food Composition Table; People’s Medical Publishing House: Beijing, China, 2005. [Google Scholar]
- Zhao, D.; Tian, Z.; Liang, Y.; Chen, H.; Fan, Z.; Liu, Z.; Dai, S.; Liu, M.; Kuang, H.; Yang, Y. J-Shaped Association of Tomato Intake with New-Onset Hypertension in General Adults: A Nationwide Prospective Cohort Study. Nutrients 2022, 14, 4813. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 April 2023).
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Ikematsu, H.; Nakamura, K.; Harashima, S.-I.; Fujii, K.; Fukutomi, N. Safety assessment of coenzyme Q10 (Kaneka Q10) in healthy subjects: A double-blind, randomized, placebo-controlled trial. Regul. Toxicol. Pharmacol. 2006, 44, 212–218. [Google Scholar]
- Nukui, K.; Matsuoka, Y.; Yamagishi, T.; Miyawaki, H.; Sato, K. Safety assessment of PureSorb-Q40 in healthy subjects and serum coenzyme Q10 level in excessive dosing. J. Nutr. Sci. Vitaminol. 2007, 53, 198–206. [Google Scholar] [CrossRef]
- Weber, C.; Bysted, A.; Hølmer, G. Coenzyme Q10 in the diet--daily intake and relative bioavailability. Mol. Aspects Med. 1997, 18 (Suppl. S1), S251–S254. [Google Scholar] [CrossRef]
- Mattila, P.; Kumpulainen, J. Coenzymes Q9 and Q10: Contents in foods and dietary intake. J. Food Compos. Anal. 2001, 14, 409–417. [Google Scholar] [CrossRef]
- Kubo, H.; Fujii, K.; Kawabe, T.; Matsumoto, S.; Kishida, H.; Hosoe, K. Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet. J. Food Compos. Anal. 2008, 21, 199–210. [Google Scholar] [CrossRef]
- Weber, C.; Bysted, A.; Hłlmer, G. The coenzyme Q10 content of the average Danish diet. Int. J. Vitam. Nutr. Res. 1997, 67, 123–129. [Google Scholar]
- Dai, S.; Tian, Z.; Zhao, D.; Liang, Y.; Zhong, Z.; Xu, Y.; Hou, S.; Yang, Y. The Association between the Diversity of Coenzyme Q10 Intake from Dietary Sources and the Risk of New-Onset Hypertension: A Nationwide Cohort Study. Nutrients 2024, 16, 1017. [Google Scholar] [CrossRef]
- Yannakoulia, M.; Scarmeas, N. Diets. N. Engl. J. Med. 2024, 390, 2098–2106. [Google Scholar] [CrossRef] [PubMed]
- Tomé-Carneiro, J.; Visioli, F. Plant-Based Diets Reduce Blood Pressure: A Systematic Review of Recent Evidence. Curr. Hypertens. Rep. 2023, 25, 127–150. [Google Scholar] [CrossRef]
- Du, H.; Guo, Y.; Bennett, D.A.; Bragg, F.; Bian, Z.; Chadni, M.; Yu, C.; Chen, Y.; Tan, Y.; Millwood, I.Y.; et al. Red meat, poultry and fish consumption and risk of diabetes: A 9 year prospective cohort study of the China Kadoorie Biobank. Diabetologia 2020, 63, 767–779. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef]
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of hypertension: A systematic review and dose-response meta-analysis of prospective studies. Adv. Nutr. 2018, 9, 163–164. [Google Scholar] [CrossRef]
- Jennings, A.; Berendsen, A.M.; de Groot, L.C.P.G.M.; Feskens, E.J.M.; Brzozowska, A.; Sicinska, E.; Pietruszka, B.; Meunier, N.; Caumon, E.; Malpuech-Brugère, C.; et al. Mediterranean-Style Diet Improves Systolic Blood Pressure and Arterial Stiffness in Older Adults. Hypertension 2019, 73, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.; Thomopoulos, C.; Konstantinidis, D.; Siafi, E.; Tatakis, F.; Manta, E.; Drogkaris, S.; Polyzos, D.; Kyriazopoulos, K.; Grigoriou, K.; et al. DASH vs. Mediterranean diet on a salt restriction background in adults with high normal blood pressure or grade 1 hypertension: A randomized controlled trial. Clin. Nutr. 2023, 42, 1807–1816. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Menezes-Garcia, Z.; Henriques, M.C.; Soriani, F.M.; Pinho, V.; Faria, A.M.; Santiago, A.F.; Cara, D.C.; Souza, D.G.; Teixeira, M.M.; et al. Acute and sustained inflammation and metabolic dysfunction induced by high refined carbohydrate-containing diet in mice. Obesity (Silver Spring) 2013, 21, E396–E406. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Feng, L.; Zeng, G.; Zhu, H.; Sun, J.; Gao, P.; Yuan, J.; Lan, X.; Li, S.; et al. Effects of Cuisine-Based Chinese Heart-Healthy Diet in Lowering Blood Pressure Among Adults in China: Multicenter, Single-Blind, Randomized, Parallel Controlled Feeding Trial. Circulation 2022, 146, 303–315. [Google Scholar] [CrossRef]
- Dai, S.; Tian, Z.; Zhao, D.; Liang, Y.; Liu, M.; Liu, Z.; Hou, S.; Yang, Y. Effects of Coenzyme Q10 Supplementation on Biomarkers of Oxidative Stress in Adults: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Antioxidants 2022, 11, 1360. [Google Scholar] [CrossRef] [PubMed]
- Flowers, N.; Hartley, L.; Todkill, D.; Stranges, S.; Rees, K. Co-enzyme Q10 supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2014, 2014, Cd010405. [Google Scholar] [CrossRef]
- Langsjoen, P.; Willis, R.; Folkers, K. Treatment of essential hypertension with coenzyme Q10. Mol. Aspects Med. 1994, 15, S265–S272. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Piscopo, S.; Peana, M. Coenzyme Q(10) in aging and disease. Crit. Rev. Food. Sci. Nutr. 2022, 64, 3907–3919. [Google Scholar] [CrossRef]
- Fan, L.; Feng, Y.; Chen, G.-C.; Qin, L.-Q.; Fu, C.-L.; Chen, L.-H. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2017, 119, 128–136. [Google Scholar] [CrossRef]
- Sohet, F.M.; Neyrinck, A.M.; Pachikian, B.D.; de Backer, F.C.; Bindels, L.B.; Niklowitz, P.; Menke, T.; Cani, P.D.; Delzenne, N.M. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem. Pharmacol. 2009, 78, 1391–1400. [Google Scholar] [CrossRef]
- Zhao, M.; Tian, Z.; Zhao, D.; Liang, Y.; Dai, S.; Xu, Y.; Hou, S.; Yang, Y. L-shaped association between dietary coenzyme Q10 intake and high-sensitivity C-reactive protein in Chinese adults: A national cross-sectional study. Food Funct. 2023, 14, 9815–9824. [Google Scholar] [CrossRef] [PubMed]
- Roerecke, M.; Kaczorowski, J.; Tobe, S.W.; Gmel, G.; Hasan, O.S.M.; Rehm, J. The effect of a reduction in alcohol consumption on blood pressure: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e108–e120. [Google Scholar] [CrossRef] [PubMed]
- Loop, R.; Anthony, M.; Willis, R.; Folkers, K. Effects of ethanol, lovastatin and coenzyme Q10 treatment on antioxidants and TBA reactive material in liver of rats. Mol. Aspects Med. 1994, 15, s195–s206. [Google Scholar] [CrossRef] [PubMed]
- Suffee, N.; Baptista, E.; Piquereau, J.; Ponnaiah, M.; Doisne, N.; Ichou, F.; Lhomme, M.; Pichard, C.; Galand, V.; Mougenot, N.; et al. Impacts of a high-fat diet on the metabolic profile and the phenotype of atrial myocardium in mice. Cardiovasc. Res. 2022, 118, 3126–3139. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, B.; Cao, H. Effects of high-fat diet-induced gut microbiota dysbiosis: Far beyond the gut. Gut 2020, 69, 2259. [Google Scholar] [CrossRef] [PubMed]
- Wilde, D.W.; Massey, K.D.; Walker, G.K.; Vollmer, A.; Grekin, R.J. High-fat diet elevates blood pressure and cerebrovascular muscle Ca(2+) current. Hypertension 2000, 35, 832–837. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef]
Characteristics | Dietary CoQ10 Intake (mg/day) | p | ||||
---|---|---|---|---|---|---|
Total | Q1 (≤2.71) | Q2 (2.71 to ≤4.26) | Q3 (4.26 to ≤6.39) | Q4 (>6.39) | ||
Participants, n | 11428 | 2857 | 2857 | 2857 | 2857 | - |
Age, years | 41.7 (13.9) | 42.8 (14.9) | 41.9 (13.7) | 41.2 (13.5) | 40.9 (13.4) | <0.001 |
Man, (n %) | 5220 (45.7%) | 1204 (42.1%) | 1243 (43.5%) | 1371 (48.0%) | 1402 (49.1%) | <0.001 |
BMI, kg/m2 | 22.5 (3.2) | 22.4 (3.3) | 22.2 (3.1) | 22.4 (3.1) | 22.8 (3.2) | <0.001 |
SBP, mmHg | 114.1 (11.5) | 113.9 (11.6) | 113.7 (12.0) | 114.0 (11.4) | 114.8 (10.8) | 0.002 |
DBP, mmHg | 74.2 (7.8) | 73.8 (8.0) | 73.7 (8.1) | 74.2 (7.6) | 75.2 (7.5) | <0.001 |
Education level, (n %) | <0.001 | |||||
Middle school or below | 7912 (70.6%) | 2081 (74.7%) | 2008 (71.6%) | 1920 (68.3%) | 1903 (67.9%) | |
High school | 2452 (21.9%) | 507 (18.2%) | 612 (21.8%) | 662 (23.6%) | 671 (23.9%) | |
College or above | 838 (7.5%) | 197 (7.1%) | 183 (6.5%) | 228 (8.1%) | 230 (8.2%) | |
Former or current smoker, (n %) | 3363 (29.6%) | 773 (27.2%) | 790 (27.7%) | 875 (30.8%) | 925 (32.5%) | <0.001 |
Alcohol consumer, (n %) | 3918 (34.7%) | 876 (30.9%) | 951 (33.7%) | 1012 (36.0%) | 1079 (38.1%) | <0.001 |
Married, (n %) | 9544 (84.2%) | 2327 (82.3%) | 2414 (85.1%) | 2372 (83.8%) | 2431 (85.8%) | <0.001 |
Urban residence, (n %) | 4396 (38.5%) | 967 (33.8%) | 1071 (37.5%) | 1166 (40.8%) | 1192 (41.7%) | <0.001 |
Physical activity, METs-h/week, median [IQR] | 88.9 [18.0; 206.4] | 99.6 [18.6; 227.5] | 92.8 [18.1; 217.4] | 86.0 [17.7; 193.2] | 82.2 [17.1; 192.0] | <0.001 |
Energy, kcal/d | 2144.3 (564.0) | 1988.6 (568.8) | 2084.9 (518.0) | 2187.3 (528.8) | 2316.4 (584.9) | <0.001 |
Total fat, % of energy | 29.8 (10.5) | 24.7 (11.0) | 28.6 (9.3) | 31.2 (9.1) | 34.5 (9.8) | <0.001 |
Total carbohydrate, % of energy | 56.8 (11.3) | 62.3 (12.0) | 57.9 (10.2) | 55.1 (9.8) | 51.9 (10.3) | <0.001 |
Total protein, % of energy | 12.7 (2.7) | 12.4 (2.8) | 12.8 (2.6) | 13.0 (2.6) | 12.8 (2.9) | <0.001 |
Vegetable intake, g/day | 301.1 (136.3) | 279.9 (141.5) | 303.0 (127.3) | 313.6 (133.4) | 307.9 (140.1) | <0.001 |
Fruit intake, g/day | 0.0 [0.0; 50.0] | 0.0 [0.0; 25.0] | 0.0 [0.0; 41.7] | 0.0 [0.0; 57.5] | 0.0 [0.0; 83.3] | <0.001 |
CoQ10 Intake, mg/Day | No. of Cases (Person-Years) | Crude Model | Adjusted Model 1 | ||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
Total | |||||
Q1 (≤2.71) | 1023 (21,004) | Ref | - | Ref | - |
Q2 (2.71 to ≤4.26) | 969 (25,012) | 0.79 (0.72, 0.86) | <0.001 | 0.83 (0.76, 0.91) | <0.001 |
Q3 (4.26 to ≤6.39) | 982 (24,568) | 0.82 (0.75, 0.89) | <0.001 | 0.86 (0.78, 0.94) | 0.001 |
Q4 (>6.39) | 1032 (21,504) | 0.99 (0.91, 1.08) | 0.800 | 1.01 (0.92, 1.11) | 0.800 |
Plant-derived | |||||
Q1 (≤0.67) | 915 (19,698) | Ref | - | Ref | |
Q2 (0.67 to ≤1.69) | 949 (26,948) | 0.75 (0.68, 0.82) | <0.001 | 0.80 (0.73, 0.88) | <0.001 |
Q3 (1.69 to ≤2.81) | 1046 (23,334) | 0.97 (0.88, 1.06) | 0.500 | 1.00 (0.91, 1.09) | >0.900 |
Q4 (>2.81) | 1096 (22,107) | 1.07 (0.98, 1.17) | 0.130 | 1.10 (1.00, 1.20) | 0.057 |
Animal-derived | |||||
Q1 (≤0.94) | 1229 (20,904) | Ref | - | Ref | |
Q2 (0.94 to ≤2.07) | 961 (24,248) | 0.67 (0.61, 0.73) | <0.001 | 0.65 (0.59, 0.71) | <0.001 |
Q3 (2.07 to ≤3.93) | 880 (24,675) | 0.60 (0.55, 0.65) | <0.001 | 0.58 (0.53, 0.64) | <0.001 |
Q4 (>3.93) | 936 (22,259) | 0.71 (0.65, 0.77) | <0.001 | 0.68 (0.62, 0.75) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Tian, Z.; Kuang, H.; Xu, Y.; Zheng, Y.; Zhong, Z.; Liang, L.; Yang, Y. Associations between Long-Term Dietary Coenzyme Q10 Intake and New-Onset Hypertension in Adults: Insights from a Nationwide Prospective Cohort Study. Nutrients 2024, 16, 2478. https://doi.org/10.3390/nu16152478
Zhao D, Tian Z, Kuang H, Xu Y, Zheng Y, Zhong Z, Liang L, Yang Y. Associations between Long-Term Dietary Coenzyme Q10 Intake and New-Onset Hypertension in Adults: Insights from a Nationwide Prospective Cohort Study. Nutrients. 2024; 16(15):2478. https://doi.org/10.3390/nu16152478
Chicago/Turabian StyleZhao, Dan, Zezhong Tian, Huiying Kuang, Yixuan Xu, Yiqi Zheng, Zepei Zhong, Lihan Liang, and Yan Yang. 2024. "Associations between Long-Term Dietary Coenzyme Q10 Intake and New-Onset Hypertension in Adults: Insights from a Nationwide Prospective Cohort Study" Nutrients 16, no. 15: 2478. https://doi.org/10.3390/nu16152478
APA StyleZhao, D., Tian, Z., Kuang, H., Xu, Y., Zheng, Y., Zhong, Z., Liang, L., & Yang, Y. (2024). Associations between Long-Term Dietary Coenzyme Q10 Intake and New-Onset Hypertension in Adults: Insights from a Nationwide Prospective Cohort Study. Nutrients, 16(15), 2478. https://doi.org/10.3390/nu16152478