Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions
Abstract
:1. Introduction
2. Methods
3. Glutathione Biochemistry
4. NRF2 Pathway
4.1. Glutathione in NRF2 Signaling and Neurological Disorders
4.2. Electron Transport Chain
- Complex II: The succinate dehydrogenase pathway accepts electrons from succinate in the citric acid cycle but does not pump protons across the membrane;
- Complex III: Composed of cytochrome b, Rieske subunits, and cytochrome c proteins, it transfers electrons from coenzyme Q to cytochrome c in a two-step process called the Q cycle;
- Complex IV: Known as cytochrome c oxidase, it transfers electrons from cytochrome c to oxygen, producing water and contributing to the proton gradient;
- ATP synthase (Complex V): Utilizes the proton gradient generated by the ETC to produce ATP by rotating F0 and F1 subunits.
4.3. Glutathione Support of Mitochondrial Function
4.4. Apoptotic Pathways, Mitochondrial Dysfunction, and Oxidative Stress
4.5. Clinical Applications of Nebulized Glutathione in Neurodegenerative Conditions
4.6. Author’s Note
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meister, A. On the Discovery of Glutathione. Trends Biochem. Sci. 1988, 13, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Bachhawat, A.K.; Yadav, S. The Glutathione Cycle: Glutathione Metabolism beyond the Γ-glutamyl Cycle. IUBMB Life 2018, 70, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res. 2020, 45, 1461–1480. [Google Scholar] [CrossRef] [PubMed]
- Scirè, A.; Cianfruglia, L.; Minnelli, C.; Bartolini, D.; Torquato, P.; Principato, G.; Galli, F.; Armeni, T. Glutathione Compartmentalization and Its Role in Glutathionylation and Other Regulatory Processes of Cellular Pathways. BioFactors 2019, 45, 152–168. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-Related Enzymes and Proteins: A Review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Aoyama, K. Glutathione in the Brain. Int. J. Mol. Sci. 2021, 22, 5010. [Google Scholar] [CrossRef]
- Iskusnykh, I.Y.; Zakharova, A.A.; Pathak, D. Glutathione in Brain Disorders and Aging. Molecules 2022, 27, 324. [Google Scholar] [CrossRef]
- Hassan, W.; Noreen, H.; Rehman, S.; Kamal, M.A.; Da Rocha, J.B.T. Association of Oxidative Stress with Neurological Disorders. Curr. Neuropharmacol. 2022, 20, 1046–1072. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, F.; Scarfò, G.; Guidotti, S.; Fusi, J.; Asomov, M.; Pruneti, C. Oxidative Stress and Cognitive Decline: The Neuroprotective Role of Natural Antioxidants. Front. Neurosci. 2021, 15, 729757. [Google Scholar] [CrossRef]
- Jobbagy, S.; Vitturi, D.A.; Salvatore, S.R.; Turell, L.; Pires, M.F.; Kansanen, E.; Batthyany, C.; Lancaster, J.R.; Freeman, B.A.; Schopfer, F.J. Electrophiles Modulate Glutathione Reductase Activity via Alkylation and Upregulation of Glutathione Biosynthesis. Redox Biol. 2019, 21, 101050. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wang, H.-C.; Chang, C.-J.; Lee, S.-Y. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int. J. Mol. Sci. 2024, 25, 1314. [Google Scholar] [CrossRef]
- Ribas, V.; Garcà a-Ruiz, C.; Fernández-Checa, J.C. Glutathione and Mitochondria. Front. Pharmacol. 2014, 5, 151. [Google Scholar] [CrossRef]
- Lu, S.C. Glutathione Synthesis. Biochim. Et Biophys. Acta (BBA)-General. Subj. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid. Redox Signal. 2017, 27, 989–1010. [Google Scholar] [CrossRef]
- Harvey, C.J.; Thimmulappa, R.K.; Singh, A.; Blake, D.J.; Ling, G.; Wakabayashi, N.; Fujii, J.; Myers, A.; Biswal, S. Nrf2-Regulated Glutathione Recycling Independent of Biosynthesis Is Critical for Cell Survival during Oxidative Stress. Free Radic. Biol. Med. 2009, 46, 443–453. [Google Scholar] [CrossRef]
- Boas, S.M.; Joyce, K.L.; Cowell, R.M. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants 2021, 11, 8. [Google Scholar] [CrossRef]
- Chew, L.Y.; Zhang, H.; He, J.; Yu, F. The Nrf2-Keap1 Pathway Is Activated by Steroid Hormone Signaling to Govern Neuronal Remodeling. Cell Rep. 2021, 36, 109466. [Google Scholar] [CrossRef]
- Kim, J.; Keum, Y.-S. NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. Oxidative Med. Cell. Longev. 2016, 2016, 2746457. [Google Scholar] [CrossRef]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Matsumaru, D.; Motohashi, H. The KEAP1-NRF2 System in Healthy Aging and Longevity. Antioxidants 2021, 10, 1929. [Google Scholar] [CrossRef]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef]
- Carvalho, A.N.; Marques, C.; Guedes, R.C.; Castro-Caldas, M.; Rodrigues, E.; Van Horssen, J.; Gama, M.J. S-Glutathionylation of Keap1: A New Role for Glutathione S-transferase Pi in Neuronal Protection. FEBS Lett. 2016, 590, 1455–1466. [Google Scholar] [CrossRef]
- Banjac, A.; Perisic, T.; Sato, H.; Seiler, A.; Bannai, S.; Weiss, N.; Daniel, P.; Conrad, M.; Bornkamm, G. The Cystine/Cysteine Cycle: A Redox Cycle Regulating Susceptibility versus Resistance to Cell Death. Oncogene 2008, 27, 1618–1628. [Google Scholar] [CrossRef]
- Yu, C.; Xiao, J.-H. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. Oxidative Med. Cell. Longev. 2021, 2021, 6635460. [Google Scholar] [CrossRef]
- Diaz-Del Cerro, E.; Martinez De Toda, I.; Félix, J.; Baca, A.; De La Fuente, M. Components of the Glutathione Cycle as Markers of Biological Age: An Approach to Clinical Application in Aging. Antioxidants 2023, 12, 1529. [Google Scholar] [CrossRef]
- Asanuma, M.; Miyazaki, I. Glutathione and Related Molecules in Parkinsonism. Int. J. Mol. Sci. 2021, 22, 8689. [Google Scholar] [CrossRef]
- Chen, J.J.; Thiyagarajah, M.; Song, J.; Chen, C.; Herrmann, N.; Gallagher, D.; Rapoport, M.J.; Black, S.E.; Ramirez, J.; Andreazza, A.C.; et al. Altered Central and Blood Glutathione in Alzheimer’s Disease and Mild Cognitive Impairment: A Meta-Analysis. Alz Res. Ther. 2022, 14, 23. [Google Scholar] [CrossRef]
- Bono, S.; Feligioni, M.; Corbo, M. Impaired Antioxidant KEAP1-NRF2 System in Amyotrophic Lateral Sclerosis: NRF2 Activation as a Potential Therapeutic Strategy. Mol. Neurodegener. 2021, 16, 71. [Google Scholar] [CrossRef]
- Petrillo, S.; Schirinzi, T.; Di Lazzaro, G.; D’Amico, J.; Colona, V.L.; Bertini, E.; Pierantozzi, M.; Mari, L.; Mercuri, N.B.; Piemonte, F.; et al. Systemic Activation of Nrf2 Pathway in Parkinson’s Disease. Mov. Disord. 2020, 35, 180–184. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, Y.; Chen, H.; Li, Q.; Gao, Y.; Lu, G.; Luo, C. Ferroptosis Mediated by Lipid Reactive Oxygen Species: A Possible Causal Link of Neuroinflammation to Neurological Disorders. Oxidative Med. Cell. Longev. 2021, 2021, 5005136. [Google Scholar] [CrossRef]
- Di Pietro, V.; Yakoub, K.M.; Caruso, G.; Lazzarino, G.; Signoretti, S.; Barbey, A.K.; Tavazzi, B.; Lazzarino, G.; Belli, A.; Amorini, A.M. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants 2020, 9, 260. [Google Scholar] [CrossRef]
- Koza, L.; Linseman, D. Glutathione Precursors Shield the Brain from Trauma. Neural Regen. Res. 2019, 14, 1701. [Google Scholar] [CrossRef]
- Lamade, A.M.; Anthonymuthu, T.S.; Hier, Z.E.; Gao, Y.; Kagan, V.E.; Bayır, H. Mitochondrial Damage & Lipid Signaling in Traumatic Brain Injury. Exp. Neurol. 2020, 329, 113307. [Google Scholar] [CrossRef]
- Bjørklund, G.; Doşa, M.D.; Maes, M.; Dadar, M.; Frye, R.E.; Peana, M.; Chirumbolo, S. The Impact of Glutathione Metabolism in Autism Spectrum Disorder. Pharmacol. Res. 2021, 166, 105437. [Google Scholar] [CrossRef]
- Rae, C.D.; Williams, S.R. Glutathione in the Human Brain: Review of Its Roles and Measurement by Magnetic Resonance Spectroscopy. Anal. Biochem. 2017, 529, 127–143. [Google Scholar] [CrossRef]
- Detcheverry, F.; Senthil, S.; Narayanan, S.; Badhwar, A. Changes in Levels of the Antioxidant Glutathione in Brain and Blood across the Age Span of Healthy Adults: A Systematic Review. NeuroImage Clin. 2023, 40, 103503. [Google Scholar] [CrossRef]
- Huang, S.-F.; Othman, A.; Koshkin, A.; Fischer, S.; Fischer, D.; Zamboni, N.; Ono, K.; Sawa, T.; Ogunshola, O.O. Astrocyte Glutathione Maintains Endothelial Barrier Stability. Redox Biol. 2020, 34, 101576. [Google Scholar] [CrossRef]
- Pérez-Sala, D.; Pajares, M.A. Appraising the Role of Astrocytes as Suppliers of Neuronal Glutathione Precursors. Int. J. Mol. Sci. 2023, 24, 8059. [Google Scholar] [CrossRef]
- Ishii, T.; Warabi, E.; Mann, G.E. Circadian Control of BDNF-Mediated Nrf2 Activation in Astrocytes Protects Dopaminergic Neurons from Ferroptosis. Free Radic. Biol. Med. 2019, 133, 169–178. [Google Scholar] [CrossRef]
- Park, M.K.; Choi, B.Y.; Kho, A.R.; Lee, S.H.; Hong, D.K.; Kang, B.S.; Lee, S.H.; Suh, S.W. The Protective Role of Glutathione on Zinc-Induced Neuron Death after Brain Injuries. Int. J. Mol. Sci. 2023, 24, 2950. [Google Scholar] [CrossRef]
- Marí, M.; De Gregorio, E.; De Dios, C.; Roca-Agujetas, V.; Cucarull, B.; Tutusaus, A.; Morales, A.; Colell, A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants 2020, 9, 909. [Google Scholar] [CrossRef]
- Circu, M.L.; Aw, T.Y. Glutathione and Modulation of Cell Apoptosis. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2012, 1823, 1767–1777. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial Electron Transport Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of Measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef]
- Zhao, R.; Jiang, S.; Zhang, L.; Yu, Z. Mitochondrial Electron Transport Chain, ROS Generation and Uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Ahmad, M.; Wolberg, A.; Kahwaji, C.I. Biochemistry, Electron Transport Chain. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sedaghat, A.; Samadi, M.; Shirvani, H.; Sepandi, M.; Tahmasebi, W. Coenzyme Q10 Supplementation and Oxidative Stress Parameters: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Asian J. Sports Med. 2022, 13, e131308. [Google Scholar] [CrossRef]
- Sousa, J.S.; D’Imprima, E.; Vonck, J. Mitochondrial Respiratory Chain Complexes. In Membrane Protein Complexes: Structure and Function; Harris, J.R., Boekema, E.J., Eds.; Subcellular Biochemistry; Springer: Singapore, 2018; Volume 87, pp. 167–227. ISBN 978-981-10-7756-2. [Google Scholar]
- Castro, C.B.; Ferreira, M.P.; Marques Netto, C.G.C. Metalloenzyme Mechanisms Correlated to Their Turnover Number and Metal Lability. Curr. Res. Chem. Biol. 2021, 1, 100004. [Google Scholar] [CrossRef]
- Thomas, C.; Mackey, M.M.; Diaz, A.A.; Cox, D.P. Hydroxyl Radical Is Produced via the Fenton Reaction in Submitochondrial Particles under Oxidative Stress: Implications for Diseases Associated with Iron Accumulation. Redox Report. 2009, 14, 102–108. [Google Scholar] [CrossRef]
- Zhao, Z. Iron and Oxidizing Species in Oxidative Stress and Alzheimer’s Disease. Aging Med. 2019, 2, 82–87. [Google Scholar] [CrossRef]
- Winterbourn, C.C. The Biological Chemistry of Hydrogen Peroxide. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 528, pp. 3–25. ISBN 978-0-12-405881-1. [Google Scholar]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Sastre, J.; Pallardó, F.V.; Viña, J. Mitochondrial Oxidative Stress Plays a Key Role in Aging and Apoptosis. IUBMB Life 2000, 49, 427–435. [Google Scholar] [CrossRef]
- Kahl, R.; Kampkötter, A.; Wätjen, W.; Chovolou, Y. Antioxidant Enzymes and Apoptosis. Drug Metab. Rev. 2004, 36, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Poh Loh, K.; Hong Huang, S.; De Silva, R.; Tan, B.H.; Zhun Zhu, Y. Oxidative Stress: Apoptosis in Neuronal Injury. Curr. Alzheimer Res. 2006, 3, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Jain, S.K. Oxidative Stress and Apoptosis. Pathophysiology 2000, 7, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Mei, X.-L.; Zhao, Y.-N. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches. Neurotox. Res. 2021, 39, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xia, S.; Xu, S.; Liu, P.; Gu, Y.; Bao, X.; Xu, Y.; Cao, X. γ-Glutamylcysteine Alleviates Ischemic Stroke-Induced Neuronal Apoptosis by Inhibiting ROS-Mediated Endoplasmic Reticulum Stress. Oxidative Med. Cell. Longev. 2021, 2021, 2961079. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, M.; Tominaga, T.; Chan, P.H. Neuroprotective Effect of an Antioxidant in Ischemic Brain Injury: Involvement of Neuronal Apoptosis. Neurocritical Care 2005, 2, 059–066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hong, J.; Zhang, H.; Zheng, W.; Yang, Y. Astrocyte-Derived Exosomes Protect Hippocampal Neurons after Traumatic Brain Injury by Suppressing Mitochondrial Oxidative Stress and Apoptosis. Aging 2021, 13, 21642–21658. [Google Scholar] [CrossRef]
- Kanti Das, T.; Wati, M.R.; Fatima-Shad, K. Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association with Alzheimer’s Disease. Arch. Neurosci. 2014, 2, e60038. [Google Scholar] [CrossRef]
- Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J. Alzheimer’s Dis. 2021, 82, S109–S126. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Coelho-Junior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants 2020, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.-Y.; Kim, H.-S. Oxidative Stress and the Antioxidant Enzyme System in the Developing Brain. Korean J. Pediatr. 2013, 56, 107. [Google Scholar] [CrossRef] [PubMed]
- Mischley, L.K.; Vespignani, M.F.; Finnell, J.S. Safety Survey of Intranasal Glutathione. J. Altern. Complement. Med. 2013, 19, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Mischley, L.K.; Conley, K.E.; Shankland, E.G.; Kavanagh, T.J.; Rosenfeld, M.E.; Duda, J.E.; White, C.C.; Wilbur, T.K.; De La Torre, P.U.; Padowski, J.M. Central Nervous System Uptake of Intranasal Glutathione in Parkinson’s Disease. NPJ Park. Dis. 2016, 2, 16002. [Google Scholar] [CrossRef] [PubMed]
- Mischley, L.K.; Leverenz, J.B.; Lau, R.C.; Polissar, N.L.; Neradilek, M.B.; Samii, A.; Standish, L.J. A Randomized, Double-Blind Phase I/IIa Study of Intranasal Glutathione in Parkinson’s Disease. Mov. Disord. 2015, 30, 1696–1701. [Google Scholar] [CrossRef]
- Ivey, F.M.; Katzel, L.I.; Sorkin, J.D.; Macko, R.F.; Shulman, L.M. The Unified Parkinson’s Disease Rating Scale as a Predictor of Peak Aerobic Capacity and Ambulatory Function. J. Rehabil. Res. Dev. 2012, 49, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Luo, S.; Wang, L.; Tilley, B.C.; LaPelle, N.R.; Stebbins, G.T. Handling Missing Values in the MDS-UPDRS. Mov. Disord. 2015, 30, 1632–1638. [Google Scholar] [CrossRef]
- Cunha, S.; Forbes, B.; Sousa Lobo, J.M.; Silva, A.C. Improving Drug Delivery for Alzheimer’s Disease through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in Situ Hydrogels. Int. J. Nanomed. 2021, 16, 4373–4390. [Google Scholar] [CrossRef]
Biochemical Property | Description | Significance |
---|---|---|
Composition | Tripeptide consisting of cysteine, glycine, and glutamate | Sulfhydryl group (-SH) from cysteine contributes to its antioxidant properties |
Synthesis | Occurs in two ATP-dependent steps involving glutamate-cysteine ligase (GCL) and GSH synthase (GS) | Rate-limited by the availability of cysteine; occurs primarily in the cytosol and distributed to various organelles |
GSH-GSSG Cycle | Involves the reduction of GSSG to GSH by glutathione reductase (GR) and oxidation of GSH to GSSG by glutathione peroxidase (GPx) | Essential for detoxification of hydrogen peroxide (H2O2) and lipid peroxides, protecting cells from oxidative damage |
Cellular Distribution | Found in the cytosol, mitochondria, endoplasmic reticulum, and nucleus | Indicates its universal role in cellular defense mechanisms and in regulating cellular events such as apoptosis, autophagy, and mitochondrial function |
Role in Neuroprotection | Especially crucial in the brain due to its vulnerability to oxidative stress | Protects neurons by maintaining mitochondrial function, regulating neurotransmitter release, and modulating the inflammatory response |
Component | Function in NRF2 Pathway | Impact on Antioxidant Defense |
---|---|---|
NRF2 | Transcription factor that activates the antioxidant response | Increases expression of antioxidant enzymes including GPx and GST |
Keap1 | Sensor protein that binds NRF2 in the cytoplasm, targeting it for degradation | Oxidative stress modifies Keap1, releasing NRF2 to enter the nucleus |
ARE (Antioxidant Response Element) | DNA sequence in the promoter region of antioxidant genes | Binding site for NRF2, initiating transcription of antioxidant genes |
Glutathione S-transferases (GSTs) | Enzymes that catalyze the conjugation of GSH to electrophilic compounds | Protect cells from oxidative damage and support detoxification processes |
Glutaredoxins (Grx) | Small redox proteins involved in reversible protein glutathionylation | Contribute to redox regulation and signal transduction under oxidative stress |
Pathological Feature | Parkinson’s Disease (PD) | Alzheimer’s Disease (AD) | Role of Glutathione (GSH) |
---|---|---|---|
Oxidative Stress | High levels of reactive oxygen species (ROS) | Elevated oxidative stress markers | GSH neutralizes ROS, reducing oxidative damage |
Mitochondrial Dysfunction | Impaired mitochondrial function, decreased ATP production | Mitochondrial abnormalities, disrupted energy metabolism | GSH supports mitochondrial function and energy production |
Neuroinflammation | Chronic inflammation in the substantia nigra | Neuroinflammatory processes in the cortex and hippocampus | GSH reduces inflammation by modulating the NRF2 pathway |
Protein Aggregation | Accumulation of alpha-synuclein | Accumulation of amyloid-beta plaques | GSH aids in the degradation of misfolded proteins and aggregates |
Neuronal Loss | Loss of dopaminergic neurons in the substantia nigra | Loss of cholinergic neurons in the cortex and hippocampus | GSH protects neurons by mitigating apoptosis and autophagy |
Impaired Neurotransmission | Dopamine deficiency leading to motor symptoms | Acetylcholine deficiency leading to cognitive decline | GSH helps maintain neurotransmitter balance by protecting neuronal health |
Mitochondrial Aspect | Function of Glutathione | Importance |
---|---|---|
Electron Transport Chain (ETC) | GSH protects components of the ETC, particularly complex I and II | Ensures efficient ATP production by minimizing oxidative damage to ETC proteins |
ROS Neutralization | Directly neutralizes ROS, reducing oxidative stress | Prevents damage to mitochondrial DNA, lipids, and proteins |
GSH Cycle in Mitochondria | Facilitates the reduction of GSSG back to GSH within mitochondria | Maintains a high GSH:GSSG ratio, critical for redox balance and cellular health |
Detoxification | GSH acts as a cofactor for detoxification enzymes in mitochondria | Supports the metabolism and elimination of toxins and xenobiotics |
Protection of mtDNA | GSH may help preserve the integrity and function of mitochondrial DNA | Essential for preventing mutations and ensuring the continuity of mitochondrial function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lana, J.V.; Rios, A.; Takeyama, R.; Santos, N.; Pires, L.; Santos, G.S.; Rodrigues, I.J.; Jeyaraman, M.; Purita, J.; Lana, J.F. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients 2024, 16, 2476. https://doi.org/10.3390/nu16152476
Lana JV, Rios A, Takeyama R, Santos N, Pires L, Santos GS, Rodrigues IJ, Jeyaraman M, Purita J, Lana JF. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients. 2024; 16(15):2476. https://doi.org/10.3390/nu16152476
Chicago/Turabian StyleLana, João Vitor, Alexandre Rios, Renata Takeyama, Napoliane Santos, Luyddy Pires, Gabriel Silva Santos, Izair Jefthé Rodrigues, Madhan Jeyaraman, Joseph Purita, and Jose Fábio Lana. 2024. "Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions" Nutrients 16, no. 15: 2476. https://doi.org/10.3390/nu16152476
APA StyleLana, J. V., Rios, A., Takeyama, R., Santos, N., Pires, L., Santos, G. S., Rodrigues, I. J., Jeyaraman, M., Purita, J., & Lana, J. F. (2024). Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients, 16(15), 2476. https://doi.org/10.3390/nu16152476