Serum Saturated Fatty Acids including Very Long-Chain Saturated Fatty Acids and Colorectal Cancer Risk among Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Sample
2.2. Data Collection
2.3. Blood Collection and Measurement of Serum Fatty Acids
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; Williamson, E.J.; Bassett, J.K.; MacInnis, R.J.; Giles, G.G.; English, D.R. Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int. J. Cancer 2015, 137, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Aglago, E.K.; Murphy, N.; Huybrechts, I.; Nicolas, G.; Casagrande, C.; Fedirko, V.; Weiderpass, E.; Rothwell, J.A.; Dahm, C.C.; Olsen, A.; et al. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Int. J. Cancer 2021, 149, 865–882. [Google Scholar] [CrossRef]
- Cao, D.; Song, X.; Che, L.; Li, X.; Pilo, M.G.; Vidili, G.; Porcu, A.; Solinas, A.; Cigliano, A.; Pes, G.M.; et al. Both de novo synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver Int. 2017, 37, 80–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rysman, E.; Brusselmans, K.; Scheys, K.; Timmermans, L.; Derua, R.; Munck, S.; Van Veldhoven, P.P.; Waltregny, D.; Daniëls, V.W.; Machiels, J.; et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 2010, 70, 8117–8126. [Google Scholar] [CrossRef] [Green Version]
- Arab, L. Biomarkers of fat and fatty acid intake. J. Nutr. 2003, 133 (Suppl. S3), 925s–932s. [Google Scholar] [CrossRef] [Green Version]
- Nkondjock, A.; Shatenstein, B.; Maisonneuve, P.; Ghadirian, P. Specific fatty acids and human colorectal cancer: An overview. Cancer Detect. Prev. 2003, 27, 55–66. [Google Scholar] [CrossRef]
- Saadatian-Elahi, M.; Slimani, N.; Chajès, V.; Jenab, M.; Goudable, J.; Biessy, C.; Ferrari, P.; Byrnes, G.; Autier, P.; Peeters, P.H.; et al. Plasma phospholipid fatty acid profiles and their association with food intakes: Results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2009, 89, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Shannon, J.; King, I.B.; Moshofsky, R.; Lampe, J.W.; Gao, D.L.; Ray, R.M.; Thomas, D.B. Erythrocyte fatty acids and breast cancer risk: A case-control study in Shanghai, China. Am. J. Clin. Nutr. 2007, 85, 1090–1097. [Google Scholar] [CrossRef] [Green Version]
- Bassett, J.K.; Hodge, A.M.; English, D.R.; MacInnis, R.J.; Giles, G.G. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control 2016, 27, 759–773. [Google Scholar] [CrossRef]
- Crowe, F.L.; Allen, N.E.; Appleby, P.N.; Overvad, K.; Aardestrup, I.V.; Johnsen, N.F.; Tjønneland, A.; Linseisen, J.; Kaaks, R.; Boeing, H.; et al. Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. Am. J. Clin. Nutr. 2008, 88, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Bassett, J.K.; Severi, G.; Hodge, A.M.; MacInnis, R.J.; Gibson, R.A.; Hopper, J.L.; English, D.R.; Giles, G.G. Plasma phospholipid fatty acids, dietary fatty acids and prostate cancer risk. Int. J. Cancer 2013, 133, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Mouillot, T.; Rizk, M.; Pais de Barros, J.P.; Gilloteau, A.; Busson, A.; Bernard-Chabert, B.; Thiefin, G.; Barraud, H.; Bronowicki, J.P.; Richou, C.; et al. Fatty acid composition of the erythrocyte membrane and risk of hepatocellular carcinoma in cirrhotic patients. Alimen. Pharmacol. Ther. 2020, 52, 1503–1515. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Wakai, K.; Tokudome, S.; Suzuki, K.; Tamakoshi, K.; Watanabe, Y.; Kawado, M.; Hashimoto, S.; Hayakawa, N.; Ozasa, K.; et al. Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: A prospective study. Am. J. Epidemiol. 2005, 161, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, K.; Wakai, K.; Hirose, K.; Matsuo, K.; Ito, H.; Suzuki, T.; Saito, T.; Kanemitsu, Y.; Hirai, T.; Kato, T.; et al. Risk of colorectal cancer is linked to erythrocyte compositions of fatty acids as biomarkers for dietary intakes of fish, fat, and fatty acids. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1791–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linseisen, J.; Grundmann, N.; Zoller, D.; Kühn, T.; Jansen, E.H.J.M.; Chajès, V.; Fedirko, V.; Weiderpass, E.; Dahm, C.C.; Overvad, K.; et al. Red Blood Cell Fatty Acids and Risk of Colorectal Cancer in The European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Epidemiol. Biomark. Prev. 2021, 30, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2012, 152, 387–395. [Google Scholar] [CrossRef]
- Grösch, S.; Schiffmann, S.; Geisslinger, G. Chain length-specific properties of ceramides. Prog. Lipid Res. 2012, 51, 50–62. [Google Scholar] [CrossRef]
- Liu, M.; Zuo, L.S.; Sun, T.Y.; Wu, Y.Y.; Liu, Y.P.; Zeng, F.F.; Chen, Y.M. Circulating Very-Long-Chain Saturated Fatty Acids Were Inversely Associated with Cardiovascular Health: A Prospective Cohort Study and Meta-Analysis. Nutrients 2020, 12, 2709. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; McKnight, B.; Sotoodehnia, N.; Fretts, A.M.; Qureshi, W.T.; Song, X.; King, I.B.; Sitlani, C.M.; Siscovick, D.S.; Psaty, B.M.; et al. Circulating Very Long-Chain Saturated Fatty Acids and Heart Failure: The Cardiovascular Health Study. J. Am. Heart Assoc. 2018, 7, e010019. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; Sharp, S.J.; Koulman, A.; Schulze, M.B.; Kröger, J.; Griffin, J.L.; Huerta, J.M.; Guevara, M.; Sluijs, I.; Agudo, A.; et al. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study. PLoS Med. 2017, 14, e1002409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.H.; Bertrand, K.A.; Zhang, S.; Laden, F.; Epstein, M.M.; Rosner, B.A.; Chiuve, S.; Campos, H.; Giovannucci, E.L.; Chavarro, J.E.; et al. A prospective analysis of circulating saturated and monounsaturated fatty acids and risk of non-Hodgkin lymphoma. Int. J. Cancer 2018, 143, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Fang, A.; He, J.; Liu, Z.; Guo, M.; Gao, R.; Li, K. Trends in dietary fat and fatty acid intakes and related food sources among Chinese adults: A longitudinal study from the China Health and Nutrition Survey (1997–2011). Public Health Nutr. 2017, 20, 2927–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Fang, Y.J.; Pan, Z.Z.; Li, B.; Wang, L.; Zheng, M.C.; Chen, Y.M.; Zhang, C.X. Dietary fat, fatty acid intakes and colorectal cancer risk in Chinese adults: A case-control study. Eur. J. Cancer Prev. 2013, 22, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.D.; Fang, Y.J.; Jiang, Y.L.; Dong, T.; Zhang, Z.L.; Ma, T.; Zhou, R.L.; Ou, Q.J.; Zhang, C.X. Serum levels of n-3 PUFA and colorectal cancer risk in Chinese population. Br. J. Nutr. 2023; 1–11, online ahead of print. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Controlling and Monitoring the Tobacco Epidemic; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sport. Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sport. Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.X.; Ho, S.C. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac. J. Clin. Nutr. 2009, 18, 240–250. [Google Scholar]
- Huang, J.; Fang, Y.J.; Xu, M.; Luo, H.; Zhang, N.Q.; Huang, W.Q.; Pan, Z.Z.; Chen, Y.M.; Zhang, C.X. Carbohydrate, dietary glycaemic index and glycaemic load, and colorectal cancer risk: A case-control study in China. Br. J. Nutr. 2018, 119, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Fang, Y.J.; Lu, M.S.; Pan, Z.Z.; Huang, J.; Chen, Y.M.; Zhang, C.X. Dietary and serum vitamins A and E and colorectal cancer risk in Chinese population: A case-control study. Eur. J. Cancer Prev. 2019, 28, 268–277. [Google Scholar] [CrossRef]
- Yang, Y.X.; Wang, G.Y.; Pan, X.C. China Food Composition; Peking University Medical Press: Beijing, China, 2002. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; King, I.B.; Neuhouser, M.L.; Schaffer, S.; Barnett, M.; Thornquist, M.; Peters, U.; Goodman, G.E. Association of serum phospholipid fatty acids with breast cancer risk among postmenopausal cigarette smokers. Cancer Causes Control 2009, 20, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaemsiri, S.; Sen, S.; Tinker, L.F.; Robinson, W.R.; Evans, R.W.; Rosamond, W.; Wasserthiel-Smoller, S.; He, K. Serum fatty acids and incidence of ischemic stroke among postmenopausal women. Stroke 2013, 44, 2710–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Sohn, K.H.; Rhee, S.H.; Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 2001, 276, 16683–16689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccolis, M.; Bond, L.M.; Kampmann, M.; Pulimeno, P.; Chitraju, C.; Jayson, C.B.K.; Vaites, L.P.; Boland, S.; Lai, Z.W.; Gabriel, K.R.; et al. Probing the Global Cellular Responses to Lipotoxicity Caused by Saturated Fatty Acids. Mol. Cell 2019, 74, 32–44.e38. [Google Scholar] [CrossRef] [Green Version]
- Ghezzal, S.; Postal, B.G.; Quevrain, E.; Brot, L.; Seksik, P.; Leturque, A.; Thenet, S.; Carrière, V. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids 2020, 1865, 158530. [Google Scholar] [CrossRef]
- Fatima, S.; Hu, X.; Huang, C.; Zhang, W.; Cai, J.; Huang, M.; Gong, R.H.; Chen, M.; Ho, A.H.M.; Su, T.; et al. High-fat diet feeding and palmitic acid increase CRC growth in β2AR-dependent manner. Cell Death Dis. 2019, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Butler, L.M.; Yuan, J.M.; Huang, J.Y.; Su, J.; Wang, R.; Koh, W.P.; Ong, C.N. Plasma fatty acids and risk of colon and rectal cancers in the Singapore Chinese Health Study. NPJ Precis. Oncol. 2017, 1, 38. [Google Scholar] [CrossRef] [Green Version]
- May-Wilson, S.; Sud, A.; Law, P.J.; Palin, K.; Tuupanen, S.; Gylfe, A.; Hänninen, U.A.; Cajuso, T.; Tanskanen, T.; Kondelin, J.; et al. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. Eur. J. Cancer 2017, 84, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Fretts, A.M.; Mozaffarian, D.; Siscovick, D.S.; Djousse, L.; Heckbert, S.R.; King, I.B.; McKnight, B.; Sitlani, C.; Sacks, F.M.; Song, X.; et al. Plasma phospholipid saturated fatty acids and incident atrial fibrillation: The Cardiovascular Health Study. J. Am. Heart Assoc. 2014, 3, e000889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, X.; Zheng, W.; Yu, D.; Li, H.L.; Lan, Q.; Yang, G.; Cai, H.; Ma, X.; Rothman, N.; Gao, Y.T.; et al. Prospective metabolomics study identifies potential novel blood metabolites associated with pancreatic cancer risk. Int. J. Cancer 2018, 143, 2161–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvei, S.; Bjerve, K.S.; Tretli, S.; Jellum, E.; Robsahm, T.E.; Vatten, L. Prediagnostic level of fatty acids in serum phospholipids: Omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int. J. Cancer 1997, 71, 545–551. [Google Scholar] [CrossRef]
- Papandreou, C.; Sala-Vila, A.; Galié, S.; Muralidharan, J.; Estruch, R.; Fitó, M.; Razquin, C.; Corella, D.; Ros, E.; Timiraos, J.; et al. Association Between Fatty Acids of Blood Cell Membranes and Incidence of Coronary Heart Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Fujimori, K. Very long-chain-fatty acids enhance adipogenesis through coregulation of Elovl3 and PPARγ in 3T3-L1 cells. Am. J. Physio. Endocrinol. Metab. 2012, 302, E1461–E1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, J.O.; Kwak, D.H.; Oh, J.H.; Park, E.J.; Cho, M.C.; Song, H.S.; Song, M.J.; Han, S.B.; Moon, D.C.; Kang, K.W.; et al. Suppression of NF-kappaB and GSK-3beta is involved in colon cancer cell growth inhibition by the PPAR agonist troglitazone. Chem.-Biol. Interact. 2010, 188, 75–85. [Google Scholar] [CrossRef]
- Osawa, E.; Nakajima, A.; Wada, K.; Ishimine, S.; Fujisawa, N.; Kawamori, T.; Matsuhashi, N.; Kadowaki, T.; Ochiai, M.; Sekihara, H.; et al. Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology 2003, 124, 361–367. [Google Scholar] [CrossRef]
- Selzner, M.; Bielawska, A.; Morse, M.A.; Rüdiger, H.A.; Sindram, D.; Hannun, Y.A.; Clavien, P.A. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res. 2001, 61, 1233–1240. [Google Scholar]
- Guo, W.; Zhang, C.; Feng, P.; Li, M.; Wang, X.; Xia, Y.; Chen, D.; Li, J. M6A methylation of DEGS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis. Oncogene 2021, 40, 5913–5924. [Google Scholar] [CrossRef]
- Ghadimi, R.; Kuriki, K.; Tsuge, S.; Takeda, E.; Imaeda, N.; Suzuki, S.; Sawai, A.; Takekuma, K.; Hosono, A.; Tokudome, Y.; et al. Serum concentrations of fatty acids and colorectal adenoma risk: A case-control study in Japan. Asian Pac. J. Cancer Prev. 2008, 9, 111–118. [Google Scholar]
- Chun, Y.J.; Sohn, S.K.; Song, H.K.; Lee, S.M.; Youn, Y.H.; Lee, S.; Park, H. Associations of colorectal cancer incidence with nutrient and food group intakes in korean adults: A case-control study. Clin. Nutr. Res. 2015, 4, 110–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, B.S. Omega-3 fatty acids in colorectal cancer prevention. Int. J. Cancer 2004, 112, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Fukushima, K.; Onishi, Y.; Minami, K.; Otagaki, S.; Ishimoto, K.; Fukushima, N.; Honoki, K.; Tsujiuchi, T. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. Exp. Cell Res. 2018, 369, 54–60. [Google Scholar] [CrossRef]
- Butler, L.M.; Wang, R.; Koh, W.P.; Stern, M.C.; Yuan, J.M.; Yu, M.C. Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: A prospective study. Int. J. Cancer 2009, 124, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Yanguas-Casás, N.; Crespo-Castrillo, A.; de Ceballos, M.L.; Chowen, J.A.; Azcoitia, I.; Arevalo, M.A.; Garcia-Segura, L.M. Sex differences in the phagocytic and migratory activity of microglia and their impairment by palmitic acid. Glia 2018, 66, 522–537. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Zhang, Y.; Feng, X.; Yang, F.; Su, D.; Qiu, J.; Ling, W.; Yang, Y. Erythrocyte membrane fatty acid composition is related to overloaded plasma ferritin in Chinese males with angiographic coronary artery disease. Food Funct. 2013, 4, 1535–1542. [Google Scholar] [CrossRef]
- Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell 2019, 35, 830–849. [Google Scholar] [CrossRef]
- Zhao, L.; Hao, F.; Huang, J.; Liu, X.; Ma, X.; Wang, C.; Bao, Y.; Wang, L.; Jia, W.; Zhao, A.; et al. Sex- and Age-Related Metabolic Characteristics of Serum Free Fatty Acids in Healthy Chinese Adults. J. Proteome Res. 2020, 19, 1383–1391. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, Z.; Zheng, J.; Chen, J.; Zhang, X.; Huang, X.F.; Li, D. Serum levels of polyunsaturated fatty acids are low in Chinese men with metabolic syndrome, whereas serum levels of saturated fatty acids, zinc, and magnesium are high. Nutr. Res. 2012, 32, 71–77. [Google Scholar] [CrossRef]
- Zhai, F.; Wang, H.; Du, S.; He, Y.; Wang, Z.; Ge, K.; Popkin, B.M. Prospective study on nutrition transition in China. Nutr. Rev. 2009, 67 (Suppl. S1), S56–S61. [Google Scholar] [CrossRef] [PubMed]
- King, I.B.; Lemaitre, R.N.; Kestin, M. Effect of a low-fat diet on fatty acid composition in red cells, plasma phospholipids, and cholesterol esters: Investigation of a biomarker of total fat intake. Am. J. Clin. Nutr. 2006, 83, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.F.; Huang, H.Y.; Shi, J.F.; Guo, C.G.; Zou, S.M.; Liu, C.C.; Wang, Y.; Wang, L.; Zhu, S.L.; Wu, S.L.; et al. A systematic review of worldwide natural history models of colorectal cancer: Classification, transition rate and a recommendation for developing Chinese population-specific model. Zhonghua Liu Xing Bing Xue Za Zhi 2017, 38, 253–260. [Google Scholar] [PubMed]
- Zheng, J.S.; Imamura, F.; Sharp, S.J.; Koulman, A.; Griffin, J.L.; Mulligan, A.A.; Luben, R.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Changes in plasma phospholipid fatty acid profiles over 13 years and correlates of change: European Prospective Investigation into Cancer and Nutrition-Norfolk Study. Am. J. Clin. Nutr. 2019, 109, 1527–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthan, N.R.; Ip, B.; Resteghini, N.; Ausman, L.M.; Lichtenstein, A.H. Long-term fatty acid stability in human serum cholesteryl ester, triglyceride, and phospholipid fractions. J. Lipid Res. 2010, 51, 2826–2832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, C.D.C.; Lust, C.A.C.; Burns, J.L.; Hillyer, L.M.; Martin, S.A.; Wittert, G.A.; Ma, D.W.L. Analysis of major fatty acids from matched plasma and serum samples reveals highly comparable absolute and relative levels. Prostaglandins Leukot. Essent. Fatty Acids 2021, 168, 102268. [Google Scholar] [CrossRef]
- Hudgins, L.C.; Hellerstein, M.; Seidman, C.; Neese, R.; Diakun, J.; Hirsch, J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Investig. 1996, 97, 2081–2091. [Google Scholar] [CrossRef]
Cases (n = 680) | Controls (n = 680) | p-Value 1 | |
---|---|---|---|
Age, years, mean ± SD | 53.69 ± 10.71 | 53.25 ± 10.60 | 0.456 |
Women, n (%) | 330 (48.53) | 336 (49.41) | 0.745 |
Urban, n (%) | 455 (66.91) | 487 (71.62) | 0.060 |
Type of job, n (%) | 0.242 | ||
Administrator/other white-collar workers | 112 (16.47) | 131 (19.26) | |
Blue-collar worker | 192 (28.24) | 170 (25.00) | |
Farmer/others | 376 (55.29) | 379 (55.74) | |
Education, n (%) | <0.001 | ||
Primary school or lower | 194 (28.53) | 177 (26.03) | |
Secondary school | 200 (29.41) | 166 (24.41) | |
High school | 174 (25.59) | 157 (23.09) | |
University or above | 112 (16.47) | 180 (26.47) | |
Married, n (%) | 645 (94.85) | 622 (91.47) | 0.013 |
Income, Yuan/month, n (%) | 0.002 | ||
≤2000 | 98 (14.41) | 133 (19.56) | |
2001–5000 | 207 (30.44) | 171 (25.15) | |
5001–8000 | 208 (30.59) | 176 (25.88) | |
>8000 | 167 (24.56) | 200 (29.41) | |
Working physical activities, n (%) | 0.019 | ||
Jobless | 113 (16.62) | 114 (16.76) | |
Sedentary | 180 (26.47) | 221 (32.50) | |
Less intensity | 187 (27.50) | 164 (24.12) | |
Moderate intensity | 96 (14.12) | 66 (9.71) | |
Heavy intensity | 104 (15.29) | 115 (16.91) | |
Smoking, n (%) | <0.001 | ||
Never | 431 (63.38) | 484 (71.18) | |
Current | 184 (27.06) | 112 (16.47) | |
Former | 65 (9.56) | 84 (12.35) | |
Passive smoking, n (%) | 185 (27.21) | 129 (18.97) | <0.001 |
Drinking, n (%) | 104 (15.29) | 110 (16.18) | 0.655 |
Family history of cancer in first-degree relatives, n (%) | 98 (14.41) | 69 (10.15) | 0.017 |
BMI, kg/m2, mean ± SD | 23.28 ± 3.31 | 23.60 ± 3.16 | 0.067 |
Household and leisure-time physical activities, MET-hours/week, mean ± SD | 32.47 ± 28.44 | 35.28 ± 31.09 | 0.081 |
Total energy intake, kcal/day, median (P25, P75) | 1483.93 (1197.49, 1825.80) | 1465.65 (1232.38, 1762.89) | 0.907 |
Dietary red and processed meat intake, g/day, median (P25, P75) 2 | 109.20 (75.58, 144.61) | 99.51 (75.41, 136.68) | 0.044 |
Dietary calcium intake, mg/day, median (P25, P75) 2 | 361.35 (283.93, 448.67) | 418.81 (329.80, 535.22) | <0.001 |
Dietary fibre intake, g/day, median (P25, P75) 2 | 8.27 (6.77, 10.02) | 9.52 (7.60, 11.41) | <0.001 |
Serum MUFAs, %, median (P25, P75) | 16.00 (14.55, 17.60) | 15.80 (14.14, 17.66) | 0.180 |
Serum PUFAs, %, median (P25, P75) | 28.04 (25.49, 30.32) | 31.00 (28.47, 33.58) | <0.001 |
Site, n (%) | |||
Colon | 403 (59.26) | - | - |
Rectal | 277 (40.74) | - | - |
TNM stage, n (%) | |||
Stage I–II | 343 (50.44) | - | - |
Stage III–IV | 326 (47.94) | - | - |
Unknown | 11 (1.62) | - | - |
% of Total Fatty Acids | Cases (n = 680) | Controls (n = 680) | p-Value 1 | ||
---|---|---|---|---|---|
Mean | Median (P25, P75) | Mean | Median (P25, P75) | ||
Lauric acid (C12:0, %) | 1.91 | 1.88 (1.41, 2.34) | 1.67 | 1.66 (1.24, 2.05) | <0.001 |
Myristic acid (C14:0, %) | 0.26 | 0.15 (0.11, 0.27) | 0.20 | 0.13 (0.10, 0.19) | <0.001 |
Palmitic acid (C16:0, %) | 34.11 | 33.90 (32.48, 35.53) | 32.45 | 32.10 (30.40, 34.08) | <0.001 |
Heptadecanoic acid (C17:0, %) | 0.63 | 0.37 (0.31, 0.50) | 0.43 | 0.34 (0.29, 0.40) | <0.001 |
Stearic acid (C18:0, %) | 16.58 | 16.49 (15.18, 18.04) | 15.56 | 15.44 (14.10, 16.89) | <0.001 |
Arachidic acid (C20:0, %) | 0.31 | 0.28 (0.24, 0.34) | 0.27 | 0.26 (0.22, 0.30) | <0.001 |
Behenic acid (C22:0, %) | 0.33 | 0.26 (0.19, 0.39) | 0.42 | 0.34 (0.24, 0.48) | <0.001 |
Lignoceric acid (C24:0, %) | 0.35 | 0.30 (0.23, 0.40) | 0.39 | 0.34 (0.27, 0.45) | <0.001 |
VLCSFAs (%) | 0.99 | 0.90 (0.73, 1.11) | 1.08 | 0.98 (0.82, 1.20) | <0.001 |
Total SFAs (%) | 51.93 | 51.37 (49.17, 54.38) | 49.29 | 48.59 (45.72, 52.14) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p-Trend | |
---|---|---|---|---|---|
Lauric acid (C12:0) | |||||
Number of cases/controls | 140/170 | 109/170 | 160/170 | 271/170 | |
Model 1 1 | 1.00 | 0.78 (0.56–1.08) | 1.14 (0.84–1.56) | 1.94 (1.44–2.60) | <0.001 |
Model 2 2 | 1.00 | 1.25 (0.85–1.83) | 1.52 (1.06–2.17) | 1.94 (1.38–2.74) | <0.001 |
Myristic acid (C14:0) | |||||
Number of cases/controls | 134/170 | 134/170 | 206/170 | 206/170 | |
Model 1 1 | 1.00 | 1.00 (0.73–1.38) | 1.54 (1.13–2.08) | 1.54 (1.13–2.08) | <0.001 |
Model 2 2 | 1.00 | 0.97 (0.67–1.40) | 1.31 (0.92–1.86) | 1.34 (0.93–1.95) | 0.049 |
Palmitic acid (C16:0) | |||||
Number of cases/controls | 64/170 | 77/170 | 164/170 | 375/170 | |
Model 1 1 | 1.00 | 1.20 (0.81–1.78) | 2.56 (1.79–3.67) | 5.86 (4.17–8.23) | <0.001 |
Model 2 2 | 1.00 | 1.03 (0.66–1.60) | 1.97 (1.26–3.05) | 3.61 (2.14–6.10) | <0.001 |
Heptadecanoic acid (C17:0) | |||||
Number of cases/controls | 117/170 | 157/170 | 138/170 | 268/170 | |
Model 1 1 | 1.00 | 1.34 (0.97–1.85) | 1.18 (0.85–1.63) | 2.29 (1.69–3.10) | <0.001 |
Model 2 2 | 1.00 | 1.50 (1.04–2.17) | 1.15 (0.79–1.67) | 2.35 (1.64–3.35) | <0.001 |
Stearic acid (C18:0) | |||||
Number of cases/controls | 98/170 | 110/170 | 154/170 | 318/170 | |
Model 1 1 | 1.00 | 1.12 (0.79–1.59) | 1.57 (1.13–2.19) | 3.24 (2.38–4.43) | <0.001 |
Model 2 2 | 1.00 | 1.13 (0.75–1.71) | 1.20 (0.78–1.84) | 1.52 (0.92–2.52) | 0.108 |
Arachidic acid (C20:0) | |||||
Number of cases/controls | 120/170 | 118/170 | 179/170 | 263/170 | |
Model 1 1 | 1.00 | 0.98 (0.71–1.37) | 1.49 (1.09–2.04) | 2.19 (1.62–2.97) | <0.001 |
Model 2 2 | 1.00 | 1.11 (0.76–1.62) | 1.61 (1.12–2.31) | 2.30 (1.60–3.30) | <0.001 |
Behenic acid (C22:0) | |||||
Number of cases/controls | 280/170 | 180/170 | 115/170 | 105/170 | |
Model 1 1 | 1.00 | 0.64 (0.48–0.85) | 0.41 (0.30–0.56) | 0.38 (0.28–0.51) | <0.001 |
Model 2 2 | 1.00 | 0.72 (0.52–1.00) | 0.42 (0.30–0.60) | 0.43 (0.30–0.60) | <0.001 |
Lignoceric acid (C24:0) | |||||
Number of cases/controls | 275/170 | 154/170 | 121/170 | 130/170 | |
Model 1 1 | 1.00 | 0.56 (0.42–0.75) | 0.44 (0.33–0.59) | 0.47 (0.35–0.64) | <0.001 |
Model 2 2 | 1.00 | 0.72 (0.52–1.00) | 0.56 (0.40–0.80) | 0.58 (0.41–0.81) | <0.001 |
VLCSFAs | |||||
Number of cases/controls | 279/170 | 129/170 | 144/170 | 128/170 | |
Model 1 1 | 1.00 | 0.46 (0.34–0.62) | 0.52 (0.39–0.69) | 0.46 (0.34–0.62) | <0.001 |
Model 2 2 | 1.00 | 0.59 (0.42–0.83) | 0.60 (0.43–0.84) | 0.51 (0.36–0.72) | <0.001 |
Total SFAs | |||||
Number of cases/controls | 71/170 | 92/170 | 178/170 | 339/170 | |
Model 1 1 | 1.00 | 1.29 (0.88–1.88) | 2.49 (1.76–3.53) | 4.75 (3.40–6.62) | <0.001 |
Model 2 2 | 1.00 | 1.12 (0.72–1.73) | 1.79 (1.13–2.84) | 2.64 (1.47–4.74) | <0.001 |
Women (n = 330) | Men (n = 350) | p-Interaction | |||||
---|---|---|---|---|---|---|---|
Q1 | Q4 1 | p-Trend | Q1 | Q4 1 | p-Trend | ||
Lauric acid (C12:0) | |||||||
Number of cases/controls | 58/84 | 145/84 | 82/86 | 126/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.72 (1.63–4.56) | <0.001 | 1.00 | 1.65 (0.99–2.74) | 0.061 | 0.138 |
Myristic acid (C14:0) | |||||||
Number of cases/controls | 42/84 | 165/84 | 92/86 | 41/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 4.59 (2.53–8.32) | <0.001 | 1.00 | 0.39 (0.22–0.68) | 0.029 | <0.001 |
Palmitic acid (C16:0) | |||||||
Number of cases/controls | 12/84 | 224/84 | 52/86 | 151/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 13.05 (5.52–30.85) | <0.001 | 1.00 | 1.77 (0.81–3.85) | 0.065 | <0.001 |
Heptadecanoic acid (C17:0) | |||||||
Number of cases/controls | 66/84 | 104/84 | 51/86 | 164/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 1.40 (0.83–2.37) | 0.530 | 1.00 | 3.88 (2.29–6.57) | <0.001 | 0.056 |
Stearic acid (C18:0) | |||||||
Number of cases/controls | 21/84 | 192/84 | 77/86 | 126/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 5.16 (2.30–11.58) | <0.001 | 1.00 | 0.70 (0.33–1.46) | 0.164 | <0.001 |
Arachidic acid (C20:0) | |||||||
Number of cases/controls | 38/84 | 147/84 | 82/86 | 116/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 5.41 (3.02–9.68) | <0.001 | 1.00 | 1.55 (0.93–2.58) | 0.053 | 0.006 |
Behenic acid (C22:0) | |||||||
Number of cases/controls | 142/84 | 46/84 | 138/86 | 59/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.40 (0.23–0.67) | <0.001 | 1.00 | 0.46 (0.28–0.77) | <0.001 | 0.963 |
Lignoceric acid (C24:0) | |||||||
Number of cases/controls | 121/84 | 84/84 | 154/86 | 46/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.88 (0.54–1.43) | 0.378 | 1.00 | 0.29 (0.17–0.50) | <0.001 | 0.043 |
VLCSFAs | |||||||
Number of cases/controls | 115/84 | 70/84 | 164/86 | 58/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.66 (0.40–1.11) | 0.203 | 1.00 | 0.40 (0.24–0.66) | <0.001 | 0.067 |
Total SFAs | |||||||
Number of cases/controls | 11/84 | 203/84 | 60/86 | 136/86 | |||
Adjusted OR (95% CI) 2 | 1.00 | 14.65 (5.60–38.32) | <0.001 | 1.00 | 0.90 (0.36–2.28) | 0.876 | <0.001 |
Colon Cancer (n = 403) | Rectal Cancer (n = 277) | p-Heterogeneity | |||||
---|---|---|---|---|---|---|---|
Q1 | Q4 1 | p-Trend | Q1 | Q4 1 | p-Trend | ||
Lauric acid (C12:0) | |||||||
Number of cases/controls | 91/170 | 159/170 | 49/170 | 112/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 1.82 (1.23–2.69) | 0.002 | 1.00 | 2.21 (1.39–3.49) | 0.001 | 0.454 |
Myristic acid (C14:0) | |||||||
Number of cases/controls | 85/170 | 121/170 | 49/170 | 85/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 1.25 (0.82–1.92) | 0.190 | 1.00 | 1.59 (0.97–2.61) | 0.023 | 0.229 |
Palmitic acid (C16:0) | |||||||
Number of cases/controls | 35/170 | 239/170 | 29/170 | 136/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 3.21 (1.72–5.98) | <0.001 | 1.00 | 3.73 (1.95–7.14) | <0.001 | 0.502 |
Heptadecanoic acid (C17:0) | |||||||
Number of cases/controls | 73/170 | 166/170 | 44/170 | 102/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.29 (1.52–3.45) | <0.001 | 1.00 | 2.32 (1.44–3.74) | 0.004 | 0.310 |
Stearic acid (C18:0) | |||||||
Number of cases/controls | 51/170 | 189/170 | 47/170 | 129/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 1.44 (0.79–2.62) | 0.237 | 1.00 | 2.05 (1.09–3.86) | 0.030 | 0.098 |
Arachidic acid (C20:0) | |||||||
Number of cases/controls | 74/170 | 150/170 | 46/170 | 113/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.17 (1.43–3.31) | <0.001 | 1.00 | 2.47 (1.54–3.98) | <0.001 | 0.426 |
Behenic acid (C22:0) | |||||||
Number of cases/controls | 174/170 | 60/170 | 106/170 | 45/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.38 (0.25–0.58) | <0.001 | 1.00 | 0.49 (0.31–0.78) | <0.001 | 0.398 |
Lignoceric acid (C24:0) | |||||||
Number of cases/controls | 170/170 | 77/170 | 105/170 | 53/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.60 (0.41–0.90) | 0.002 | 1.00 | 0.59 (0.38–0.92) | 0.020 | 0.595 |
VLCSFAs | |||||||
Number of cases/controls | 173/170 | 74/170 | 106/170 | 54/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.50 (0.34–0.76) | 0.001 | 1.00 | 0.57 (0.37–0.89) | 0.025 | 0.444 |
Total SFAs | |||||||
Number of cases/controls | 38/170 | 215/170 | 33/170 | 124/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.65 (1.34–5.26) | 0.001 | 1.00 | 2.93 (1.44–5.96) | 0.002 | 0.786 |
Stage I–II (n = 343) | Stage III–IV (n = 326) | p-Heterogeneity | |||||
---|---|---|---|---|---|---|---|
Q1 | Q4 1 | p-Trend | Q1 | Q4 1 | p-Trend | ||
Lauric acid (C12:0) | |||||||
Number of cases/controls | 76/170 | 135/170 | 64/170 | 131/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 1.79 (1.19–2.70) | 0.004 | 1.00 | 2.02 (1.33–3.08) | 0.001 | 0.799 |
Myristic acid (C14:0) | |||||||
Number of cases/controls | 66/170 | 100/170 | 67/170 | 102/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 1.44 (0.91–2.28) | 0.075 | 1.00 | 1.28 (0.81–2.01) | 0.092 | 0.845 |
Palmitic acid (C16:0) | |||||||
Number of cases/controls | 31/170 | 170/170 | 32/170 | 196/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 3.00 (1.55–5.78) | <0.001 | 1.00 | 4.07 (2.18–7.59) | <0.001 | 0.894 |
Heptadecanoic acid (C17:0) | |||||||
Number of cases/controls | 62/170 | 135/170 | 54/170 | 126/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.37 (1.54–3.65) | <0.001 | 1.00 | 2.16 (1.38–3.37) | 0.002 | 0.831 |
Stearic acid (C18:0) | |||||||
Number of cases/controls | 48/170 | 154/170 | 49/170 | 159/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.03 (1.10–3.74) | 0.015 | 1.00 | 1.36 (0.73–2.54) | 0.362 | 0.059 |
Arachidic acid (C20:0) | |||||||
Number of cases/controls | 63/170 | 129/170 | 56/170 | 128/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 2.36 (1.52–3.67) | <0.001 | 1.00 | 2.28 (1.46–3.56) | <0.001 | 0.743 |
Behenic acid (C22:0) | |||||||
Number of cases/controls | 141/170 | 49/170 | 135/170 | 55/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.43 (0.28–0.67) | <0.001 | 1.00 | 0.41 (0.26–0.63) | <0.001 | 0.923 |
Lignoceric acid (C24:0) | |||||||
Number of cases/controls | 136/170 | 63/170 | 135/170 | 65/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.58 (0.38–0.88) | 0.005 | 1.00 | 0.55 (0.36–0.84) | 0.002 | 0.836 |
VLCSFAs | |||||||
Number of cases/controls | 141/170 | 59/170 | 134/170 | 66/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 0.53 (0.35–0.81) | 0.001 | 1.00 | 0.51 (0.33–0.77) | 0.006 | 0.318 |
Total SFAs | |||||||
Number of cases/controls | 35/170 | 159/170 | 35/170 | 173/170 | |||
Adjusted OR (95% CI) 2 | 1.00 | 3.12 (1.54–6.32) | <0.001 | 1.00 | 2.43 (1.20–4.90) | 0.007 | 0.283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Shi, D.; Dong, T.; Zhang, Z.; Ou, Q.; Fang, Y.; Zhang, C. Serum Saturated Fatty Acids including Very Long-Chain Saturated Fatty Acids and Colorectal Cancer Risk among Chinese Population. Nutrients 2023, 15, 1917. https://doi.org/10.3390/nu15081917
Wu Q, Shi D, Dong T, Zhang Z, Ou Q, Fang Y, Zhang C. Serum Saturated Fatty Acids including Very Long-Chain Saturated Fatty Acids and Colorectal Cancer Risk among Chinese Population. Nutrients. 2023; 15(8):1917. https://doi.org/10.3390/nu15081917
Chicago/Turabian StyleWu, Qixin, Dandan Shi, Ting Dong, Zhuolin Zhang, Qingjian Ou, Yujing Fang, and Caixia Zhang. 2023. "Serum Saturated Fatty Acids including Very Long-Chain Saturated Fatty Acids and Colorectal Cancer Risk among Chinese Population" Nutrients 15, no. 8: 1917. https://doi.org/10.3390/nu15081917
APA StyleWu, Q., Shi, D., Dong, T., Zhang, Z., Ou, Q., Fang, Y., & Zhang, C. (2023). Serum Saturated Fatty Acids including Very Long-Chain Saturated Fatty Acids and Colorectal Cancer Risk among Chinese Population. Nutrients, 15(8), 1917. https://doi.org/10.3390/nu15081917