Copper and Zinc Particles as Regulators of Cardiovascular System Function—A Review
Abstract
:1. General Characteristics of the Role of Copper and Zinc in Physiological Processes
2. Effects of Copper and Zinc on Heart Functioning
3. Effects of Copper and Zinc on Vasculature
4. The Impact of Nanoparticles of Copper and Zinc on the Cardiovascular System
Compound | Dose | Duration of Study/Incubation Time | Experimental Model | Effect on the Cardiovascular System | References |
---|---|---|---|---|---|
CuNPs (40 nm) | 6.5 mg/kg CuCO3 or CuNPs (100% replacement) or 3.25 mg/kg CuCO3 plus 3.25 mg/kg CuNPs (50% replacement) | 8 weeks in food | Wistar rats | CuNPs enhanced vascular contraction induced by prostaglandin F2-alpha and decreased the blood plasma Cu-Zn ratio | [7] |
WKY and SHR | CuNPs exacerbated the negative changes induced by hypertension in the heart, liver, and intestines | [48] | |||
young WKY rats | CuNPs in both doses modified vasodilation through the vasoconstrictor 20-HETE and the TP receptors | [49] | |||
young Wistar rats | CuNPs influenced oxidative stress, which further modified the vascular response | [52] | |||
Wistar rats | interaction between fish oil and CuNPs may follow the replacement of CuCO3 with CuNPs | [55] | |||
CuO-NPs | 100 mg/kg body weight/day | 2 to 4 weeks | rats | induced cardiac dysfunction and toxicity | [51] |
CuO-NPs | 0, 10, 20, or 40 μg/mL | 0–24 h | HUVECs | DNA damage and cell death, enhanced oxidative stress | [57] |
ZnO-NPs | 2.5, 5, 10, and 20 μg/cm2 | 24, 48, 72 h | rats cardiomyoblasts | severe damage to cardiomyocytes | [58] |
ZnO-NPs | 0, 1.25, 2.5, and 5.0 mg/kg | 12 weeks | rats | atherosclerotic alterations | [60] |
ZnO-NPs | 0, 3, 10 or 30 µg/mouse | 4 weeks | mice | increased permeability of blood vessels in the lungs | [61] |
ZnO-NPs | 8–50 μg/mL | 12 and 24 h | HAECs | apoptotic role | [62] |
ZnO-NPs | 20, 25, 30, 35, 40, 45 and 50 µg/mL | 24 h | HUVEC | above 20 µg/mL increased apoptosis | [63] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Institute of Health. Available online: https://ors.od.nih.gov/sr/dvr/drs/nutrition/Pages/Diets.aspx (accessed on 16 June 2023).
- Ingle, A.P.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; da Silva Martins, L.H.; Rai, M. Copper in medicine: Perspectives and toxicity. In Biomedical Applications of Metals; Springer: Cham, Switzerland, 2018; pp. 95–112. [Google Scholar] [CrossRef]
- Fu, C.; Lizhao, J.; Luo, Z.; Wang, T.; Grapperhaus, C.A.; Ding, X.; Kang, Y.J. Active uptake of hydrophilic copper complex Cu(ii)-TETA in primary cultures of neonatal rat cardiomyocytes. Metallomics 2019, 11, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Anant, J.K.; Inchulkar, S.R.; Bhagat, S. An overview of copper toxicity relevance to public health. EJPMR 2018, 5, 232–237. [Google Scholar]
- Bjørklund, G.; Dadar, M.; Pivina, L.; Doşa, M.D.; Semenova, Y.; Aaseth, J. The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus. Curr. Med. Chem. 2020, 27, 6643–6657. [Google Scholar] [CrossRef] [PubMed]
- Altarelli, M.; Ben-Hamouda, N.; Schneider, A.; Berger, M.M. Copper Deficiency: Causes, Manifestations, and Treatment. Nutr. Clin. Pract. 2019, 34, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.; Ognik, K.; Juśkiewicz, J. Copper nanoparticles enhance vascular contraction induced by prostaglandin F2-alpha and decrease the blood plasma cu-zn ratio in wistar rats. J. Elem. 2019, 24, 911–922. [Google Scholar] [CrossRef]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Nose, Y.; Wood, L.K.; Kim, B.E.; Prohaska, J.R.; Fry, R.S.; Spears, J.W.; Thiele, D.J. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J. Biol. Chem. 2010, 285, 32385–32392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The many “faces” of copper in medicine and treatment. Biometals 2014, 27, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Baltaci, A.K.; Mogulkoc, R.; Baltaci, S.B. Review: The role of zinc in the endocrine system. Pak. J. Pharm. Sci. 2019, 32, 231–239. [Google Scholar] [PubMed]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018, 68, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasapis, C.T.; Ntoupa, P.A.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Agnew, U.M.; Slesinger, T.L. Zinc Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Maxfield, L.; Shukla, S.; Crane, J.S. Zinc Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cousins, R.J. Gastrointestinal factors influencing zinc absorption and homeostasis. Int. J. Vitam. Nutr. Res. 2010, 80, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130 (Suppl. S5), 1378S–1383S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, C. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Ramos, D.; Mar, D.; Ishida, M.; Vargas, R.; Gaite, M.; Montgomery, A.; Linder, M.C. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS ONE 2016, 11, e0149516. [Google Scholar] [CrossRef] [Green Version]
- Grubman, A.; White, A.R. Copper as a key regulator of cell signalling pathways. Expert Rev. Mol. Med. 2014, 16, e11. [Google Scholar] [CrossRef]
- Chen, X.; Cai, Q.; Liang, R.; Zhang, D.; Liu, X.; Zhang, M.; Xiong, Y.; Xu, M.; Liu, Q.; Li, P.; et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis. 2023, 14, 105. [Google Scholar] [CrossRef]
- Wang, T.; Xiang, P.; Ha, J.H.; Wang, X.; Doguer, C.; Flores, S.R.L.; Kang, Y.J.; Collins, J.F. Copper supplementation reverses dietary iron overload-induced pathologies in mice. J. Nutr. Biochem. 2018, 59, 56–63. [Google Scholar] [CrossRef]
- Pan, M.; Cheng, Z.W.; Huang, C.G.; Ye, Z.Q.; Sun, L.J.; Chen, H.; Fu, B.B.; Zhou, K.; Fang, Z.R.; Wang, Z.J.; et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol. Environ. Saf. 2022, 234, 113329. [Google Scholar] [CrossRef]
- Huo, S.; Wang, Q.; Shi, W.; Peng, L.; Jiang, Y.; Zhu, M.; Guo, J.; Peng, D.; Wang, M.; Men, L.; et al. ATF3/SPI1/SLC31A1 Signaling Promotes Cuproptosis Induced by Advanced Glycosylation End Products in Diabetic Myocardial Injury. Int. J. Mol. Sci. 2023, 24, 1667. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Dey, R.S.; Laukkanen, J.A. Circulating Serum Copper Is Associated with Atherosclerotic Cardiovascular Disease, but Not Venous Thromboembolism: A Prospective Cohort Study. Pulse 2021, 9, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, M. Identification of Potential Biomarkers for Coronary Artery Disease Based on Cuproptosis. Cardiovasc. Ther. 2023, 2023, 5996144. [Google Scholar] [CrossRef]
- Handing, K.B.; Shabalin, I.G.; Kassaar, O.; Khazaipoul, S.; Blindauer, C.A.; Stewart, A.J.; Chruszcz, M.; Minor, W. Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chem. Sci. 2016, 7, 6635–6648. [Google Scholar] [CrossRef] [Green Version]
- Barnett, J.P.; Blindauer, C.A.; Kassaar, O.; Khazaipoul, S.; Martin, E.M.; Sadler, P.J.; Stewart, A.J. Allosteric modulation of zinc speciation by fatty acids. Biochim. Biophys. Acta 2013, 1830, 5456–5464. [Google Scholar] [CrossRef] [Green Version]
- Rowe, D.J.; Bobilya, D.J. Albumin facilitates zinc acquisition by endothelial cells. Proc. Soc. Exp. Biol. Med. 2000, 224, 178–186. [Google Scholar] [CrossRef]
- Peters, T., Jr. All About Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Bin, B.H.; Seo, J.; Kim, S.T. Function, Structure, and Transport Aspects of ZIP and ZnT Zinc Transporters in Immune Cells. J. Immunol. Res. 2018, 2018, 9365747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thokala, S.; Bodiga, V.L.; Kudle, M.R.; Bodiga, S. Comparative Response of Cardiomyocyte ZIPs and ZnTs to Extracellular Zinc and TPEN. Biol. Trace Elem. Res. 2019, 192, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.; Foster, M.; Samman, S. Zinc Status and Risk of Cardiovascular Diseases and Type 2 Diabetes Mellitus—A Systematic Review of Prospective Cohort Studies. Nutrients 2016, 8, 707. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhou, J. Zinc and myocardial ischemia/reperfusion injury. Biometals 2013, 26, 863–878. [Google Scholar] [CrossRef]
- Karagulova, G.; Yue, Y.; Moreyra, A.; Boutjdir, M.; Korichneva, I. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J. Pharmacol. Exp. Ther. 2007, 321, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Knez, M.; Glibetic, M. Zinc as a Biomarker of Cardiovascular Health. Front. Nutr. 2021, 8, 686078. [Google Scholar] [CrossRef] [PubMed]
- Piavchenko, G.; Alekseev, A.; Stelmashchuk, O.; Seryogina, E.; Zherebtsov, E.; Kuznetsova, E.; Dunaev, A.; Volkov, Y.; Kuznetsov, S. A complex morphofunctional approach for zinc toxicity evaluation in rats. Heliyon 2020, 6, e03768. [Google Scholar] [CrossRef]
- Wu, R.; Mei, X.; Wang, J.; Sun, W.; Xue, T.; Lin, C.; Xu, D. Zn (II)-Curcumin supplementation alleviates gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Food Funct. 2019, 10, 5587–5604. [Google Scholar] [CrossRef]
- Wang, Y.C.; Hu, C.W.; Liu, M.Y.; Jiang, H.C.; Huo, R.; Dong, D.L. Copper induces vasorelaxation and antagonizes noradrenaline-induced vasoconstriction in rat mesenteric artery. Cell Physiol. Biochem. 2013, 32, 1247–1254. [Google Scholar] [CrossRef]
- Chiarugi, A.; Pitari, G.M.; Costa, R.; Ferrante, M.; Villari, L.; Amico-Roxas, M.; Godfraind, T.; Bianchi, A.; Salomone, S. Effect of prolonged incubation with copper on endothelium-dependent relaxation in rat isolated aorta. Br. J. Pharmacol. 2002, 136, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.J.; Tickner, M.L.; Hourani, S.M.; Ferns, G.A. Dietary copper supplements modulate aortic superoxide dismutase, nitric oxide and atherosclerosis. Int. J. Exp. Pathol. 2005, 86, 247–255. [Google Scholar] [CrossRef]
- Majewski, M.; Ognik, K.; Thoene, M.; Rawicka, A.; Juśkiewicz, J. Resveratrol modulates the blood plasma levels of Cu and Zn, the antioxidant status and the vascular response of thoracic arteries in copper deficient Wistar rats. Toxicol. Appl. Pharmacol. 2020, 390, 114877. [Google Scholar] [CrossRef]
- Kusleikaite, M.; Stonkus, S.; Kusleika, S. The effect of zinc on endothelium-dependent relaxation of blood-vessels and on the ultrastructure of endothelial cells under immobilization stress. J. Trace Elem. Med. Biol. 2003, 17, 193–198. [Google Scholar] [CrossRef]
- Betrie, A.H.; Brock, J.A.; Harraz, O.F.; Bush, A.I.; He, G.W.; Nelson, M.T.; Angus, J.A.; Wright, C.E.; Aytonet, S. Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nat. Commun. 2021, 12, 3296. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Miyazaki, T.; Nodera, M.; Miyajima, Y.; Suzuki, T.; Kido, T.; Suka, M. Zinc-Excess Intake Causes the Deterioration of Renal Function Accompanied by an Elevation in Systemic Blood Pressure Primarily Through Superoxide Radical-Induced Oxidative Stress. Int. J. Toxicol. 2014, 33, 288–296. [Google Scholar] [CrossRef]
- Cholewińska, E.; Juśkiewicz, J.; Majewski, M.; Smagieł, R.; Listos, P.; Fotschki, B.; Godycka-Kłos, I.; Ognik, K. Effect of Copper Nanoparticles in the Diet of WKY and SHR Rats on the Redox Profile and Histology of the Heart, Liver, Kidney, and Small Intestine. Antioxidants 2022, 11, 910. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.; Juśkiewicz, J.; Krajewska-Włodarczyk, M.; Gromadziński, L.; Socha, K.; Cholewińska, E.; Ognik, K. The Role of 20-HETE, COX, Thromboxane Receptors, and Blood Plasma Antioxidant Status in Vascular Relaxation of Copper-Nanoparticle-Fed WKY Rats. Nutrients 2021, 13, 3793. [Google Scholar] [CrossRef]
- Majewski, M.; Gromadziński, L.; Cholewińska, E.; Ognik, K.; Fotschki, B.; Juśkiewicz, J. Dietary Effects of Chromium Picolinate and Chromium Nanoparticles in Wistar Rats Fed with a High-Fat, Low-Fiber Diet: The Role of Fat Normalization. Nutrients 2022, 14, 5138. [Google Scholar] [CrossRef]
- Tousson, E.; El-Gharbawy, D.M. Impact of Saussurea lappa root extract against copper oxide nanoparticles induced oxidative stress and toxicity in rat cardiac tissues. Environ. Toxicol. 2023, 38, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.; Lis, B.; Olas, B.; Ognik, K.; Juśkiewicz, J. Dietary supplementation with copper nanoparticles influences the markers of oxidative stress and modulates vasodilation of thoracic arteries in young Wistar rats. PLoS ONE 2020, 15, e0229282. [Google Scholar] [CrossRef] [Green Version]
- Majewski, M.; Ognik, K.; Zdunczyk, P.; Juskiewicz, J. Effect of dietary copper nanoparticles versus one copper (II) salt: Analysis of vasoreactivity in a rat model. Pharmacol. Rep. 2017, 69, 1282–1288. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B.; Szablińska-Piernik, J.; Lahuta, L.B.; Rynkiewicz, A.; Cygański, P.; Socha, K.; Gromadziński, L.; Thoene, M.; Majewski, M. Beneficial In Vitro Effects of a Low Myo-Inositol Dose in the Regulation of Vascular Resistance and Protein Peroxidation under Inflammatory Conditions. Nutrients 2022, 14, 1118. [Google Scholar] [CrossRef]
- Majewski, M.; Ognik, K.; Juśkiewicz, J. The antioxidant status, lipid profile, and modulation of vascular function by fish oil supplementation in nano-copper and copper carbonate fed Wistar rats. J. Funct. Foods 2020, 64, 103595. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kumar, A.; Sahu, M.; Sharma, G.; Datusalia, A.K.; Rajput, S.K. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc. Res. 2018, 120, 59–66. [Google Scholar] [CrossRef]
- He, H.; Zou, Z.; Wang, B.; Xu, G.; Chen, C.; Qin, X.; Yu, C.; Zhanget, J. Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells. Int. J. Nanomed. 2020, 15, 3291–3302. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Milla, C.; Macías Macías, F.I.; Velázquez Delgado, K.A.; Herrera Rodríguez, M.A.; Colín-Val, Z.; Ramos-Godinez, M.D.P.; Cano-Martínez, A.; Vega-Miranda, A.; Robledo-Cadena, D.X.; Delgado-Buenrostro, N.L.; et al. Zinc Oxide Nanoparticles Induce Toxicity in H9c2 Rat Cardiomyoblasts. Int. J. Mol. Sci. 2022, 23, 12940. [Google Scholar] [CrossRef] [PubMed]
- Asri-Rezaei, S.; Dalir-Naghadeh, B.; Nazarizadeh, A.; Noori-Sabzikar, Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J. Trace Elem. Med. Biol. 2017, 42, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Wang, W.; Wu, Y.; Wang, W.; Li, B.; Liang, N.; Wu, W. Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int. J. Nanomed. 2017, 12, 4433–4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-M.; Wu, M.-L.; Ho, Y.-C.; Gung, P.-Y.; Tsai, M.-H.; Orekhov, A.N.; Sobenin, I.A.; Lin, P.; Yet, S.-F. Exposure to Zinc Oxide Nanoparticles Disrupts Endothelial Tight and Adherens Junctions and Induces Pulmonary Inflammatory Cell Infiltration. Int. J. Mol. Sci. 2020, 21, 3437. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Sun, K.; Wang, Y.; Dong, S.; Wang, C.; Liu, L.; Wu, Y. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid. Chem. Biol. Interact. 2016, 258, 40–51. [Google Scholar] [CrossRef]
- Poier, N.; Hochstöger, J.; Hackenberg, S.; Scherzad, A.; Bregenzer, M.; Schopper, D.; Kleinsasser, N. Effects of Zinc Oxide Nanoparticles in HUVEC: Cyto- and Genotoxicity and Functional Impairment After Long-Term and Repetitive Exposure in vitro. Int. J. Nanomed. 2020, 15, 4441–4452. [Google Scholar] [CrossRef]
- Tada-Oikawa, S.; Ichihara, G.; Suzuki, Y.; Izuoka, K.; Wu, W.; Yamada, Y.; Mishima, T.; Ichihara, S. Zn(II) released from zinc oxide nano/micro particles suppresses vasculogenesis in human endothelial colony-forming cells. Toxicol. Rep. 2015, 2, 692–701. [Google Scholar] [CrossRef] [Green Version]
Compound | Dose | Method of Administration | Duration of Study | Experimental Model | The Effect | References |
---|---|---|---|---|---|---|
CuSO4 pentahydrate | 20 or 200 mg/L of copper | per os in water | 2 weeks | mice | compensation for disorders caused by a high-iron diet | [24] |
CuCl2 | 1.08 g/kg | per os in water | 8 to 14 weeks | mice | increase in markers of myocardial damage, cardiac fibrosis | [25] |
Zn pyrithione | 35 mg/kg | per os in diet | 1 week | male Sprague Dawley rats | increased myocardial healing and decreased arrhythmias during reperfusion | [37] |
Zn succinate | 100 mg/kg | per os in water | 1 month | male Wistar rats | toxic and dystrophic alterations in the heart | [39] |
Zn(II)–curcumin | 25, 50 and 100 mg/kg | by oral gavage | 2 weeks | male Sprague Dawley rats | protects the heart of rats from damage during treatment with doxorubicin | [40] |
Zn(II) acetate | 0.3 mg/kg | per os in diet | 48 days | chinchilla male rabbits | defends endothelial cell ultrastructure and function | [45] |
Zn | 1.1, 11 and 44 mg/day | per os in diet | 4 weeks | male Sprague Dawley rats | decline in renal function, increased blood pressure induced by superoxide radicals | [47] |
Compound | Dose | Incubation Time | Experimental Model | The Effect | References |
---|---|---|---|---|---|
CuCl2 and copper ionophore | 10 μM | 48 h | mice cardiomyocytes | diabetic cardiomyopathy may be caused by cuproptosis | [26] |
CuCl2 | 10–200 μM | 10 min | rats mesenteric arteries | dilation of the mesenteric artery, inhibited by L-NAME | [41] |
CuSO4 | 2 μM | 3–24 h | rat aorta | impairment of the relaxing response to acetylcholine | [42] |
CuSO4 | 10 mM | 2 h | rabbit smooth muscle cells | improved relaxation of arteries | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitala, K.; Tanski, D.; Godlewski, J.; Krajewska-Włodarczyk, M.; Gromadziński, L.; Majewski, M. Copper and Zinc Particles as Regulators of Cardiovascular System Function—A Review. Nutrients 2023, 15, 3040. https://doi.org/10.3390/nu15133040
Kitala K, Tanski D, Godlewski J, Krajewska-Włodarczyk M, Gromadziński L, Majewski M. Copper and Zinc Particles as Regulators of Cardiovascular System Function—A Review. Nutrients. 2023; 15(13):3040. https://doi.org/10.3390/nu15133040
Chicago/Turabian StyleKitala, Klaudia, Damian Tanski, Janusz Godlewski, Magdalena Krajewska-Włodarczyk, Leszek Gromadziński, and Michał Majewski. 2023. "Copper and Zinc Particles as Regulators of Cardiovascular System Function—A Review" Nutrients 15, no. 13: 3040. https://doi.org/10.3390/nu15133040
APA StyleKitala, K., Tanski, D., Godlewski, J., Krajewska-Włodarczyk, M., Gromadziński, L., & Majewski, M. (2023). Copper and Zinc Particles as Regulators of Cardiovascular System Function—A Review. Nutrients, 15(13), 3040. https://doi.org/10.3390/nu15133040