Identification of 18F-FDG PET/CT Parameters Associated with Weight Loss in Patients with Esophageal Cancer
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Imaging Data Acquisition and Processing
2.3. Quantification of 18F-FDG Uptake
2.4. Clinical Data Collection and Nutritional Assessment
2.5. Statistical Analysis
3. Results
3.1. Demographic and Nutritional Characteristics of Patients
3.2. TLG and Brain SUVpeak Associated with WL ≥ 10%
3.3. TLG and Brain SUVpeak Associated with Survival
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salaün, P.-Y.; Abgral, R.; Malard, O.; Querellou-Lefranc, S.; Quere, G.; Wartski, M.; Coriat, R.; Hindie, E.; Taieb, D.; Tabarin, A.; et al. Good Clinical Practice Recommendations for the Use of PET/CT in Oncology. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Butof, R.; Hofheinz, F.; Zophel, K.; Stadelmann, T.; Schmollack, J.; Jentsch, C.; Lock, S.; Kotzerke, J.; Baumann, M.; van den Hoff, J. Prognostic Value of Pretherapeutic Tumor-to-Blood Standardized Uptake Ratio in Patients with Esophageal Carcinoma. J. Nucl. Med. 2015, 56, 1150–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofheinz, F.; Li, Y.; Steffen, I.G.; Lin, Q.; Lili, C.; Hua, W.; van den Hoff, J.; Zschaeck, S. Confirmation of the Prognostic Value of Pretherapeutic Tumor SUR and MTV in Patients with Esophageal Squamous Cell Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Lemarignier, C.; Di Fiore, F.; Marre, C.; Hapdey, S.; Modzelewski, R.; Gouel, P.; Michel, P.; Dubray, B.; Vera, P. Pretreatment Metabolic Tumour Volume Is Predictive of Disease-Free Survival and Overall Survival in Patients with Oesophageal Squamous Cell Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Otomi, Y.; Otsuka, H.; Terazawa, K.; Kondo, M.; Arai, Y.; Yamanaka, M.; Otomo, M.; Abe, T.; Shinya, T.; Harada, M. A Reduced Liver 18F-FDG Uptake May Be Related to Hypoalbuminemia in Patients with Malnutrition. Ann. Nucl. Med. 2019, 33, 689–696. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, H.; Zhao, Y.; Cui, Y.; Dai, J.; Huang, S.; Li, C.; Mao, H.; Ju, S.; Peng, X.-G. Abnormal [18F]FDG Uptake in Liver and Adipose Tissue: A Potential Imaging Biomarker for Cancer-Associated Cachexia. Eur. Radiol. 2023, 33, 2561–2573. [Google Scholar] [CrossRef]
- Anandavadivelan, P.; Lagergren, P. Cachexia in Patients with Oesophageal Cancer. Nat. Rev. Clin. Oncol. 2016, 13, 185–198. [Google Scholar] [CrossRef]
- Bozzetti, F. SCRINIO Working Group Screening the Nutritional Status in Oncology: A Preliminary Report on 1,000 Outpatients. Support. Care Cancer 2009, 17, 279–284. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.J.S.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. J. Cachexia Sarcopenia Muscle 2019, 10, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Dewys, W.D.; Begg, C.; Lavin, P.T.; Band, P.R.; Bennett, J.M.; Bertino, J.R.; Cohen, M.H.; Douglass, H.O.; Engstrom, P.F.; Ezdinli, E.Z.; et al. Prognostic Effect of Weight Loss Prior Tochemotherapy in Cancer Patients. Am. J. Med. 1980, 69, 491–497. [Google Scholar] [CrossRef]
- Pan, Y.-P.; Kuo, H.-C.; Hsu, T.-Y.; Lin, J.-Y.; Chou, W.-C.; Lai, C.-H.; Chang, P.-H.; Yeh, K.-Y. Body Mass Index-Adjusted Body Weight Loss Grading Predicts Overall Survival in Esophageal Squamous Cell Carcinoma Patients. Nutr. Cancer 2020, 73, 1130–1137. [Google Scholar] [CrossRef]
- Di Fiore, F.; Lecleire, S.; Pop, D.; Rigal, O.; Hamidou, H.; Paillot, B.; Ducrotté, P.; Lerebours, E.; Michel, P. Baseline Nutritional Status Is Predictive of Response to Treatment and Survival in Patients Treated by Definitive Chemoradiotherapy for a Locally Advanced Esophageal Cancer. Am. J. Gastroenterol. 2007, 102, 2557–2563. [Google Scholar] [CrossRef]
- Olaechea, S.; Gannavarapu, B.S.; Gilmore, A.; Alvarez, C.; Iyengar, P.; Infante, R. The Influence of Tumour Fluorodeoxyglucose Avidity and Cachexia Development on Patient Survival in Oesophageal or Gastroesophageal Junction Cancer. JCSM Clin. Rep. 2021, 6, 128–136. [Google Scholar] [CrossRef]
- Nakamoto, R.; Okuyama, C.; Ishizu, K.; Higashi, T.; Takahashi, M.; Kusano, K.; Kagawa, S.; Yamauchi, H. Diffusely Decreased Liver Uptake on FDG PET and Cancer-Associated Cachexia With Reduced Survival. Clin. Nucl. Med. 2019, 44, 634–642. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. J. Nucl. Med. 2009, 50, 122S–150S. [Google Scholar] [CrossRef] [Green Version]
- O, J.H.; Lodge, M.A.; Wahl, R.L. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology 2016, 280, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Lodge, M.A.; Chaudhry, M.A.; Wahl, R.L. Noise Considerations for PET Quantification Using Maximum and Peak Standardized Uptake Value. J. Nucl. Med. 2012, 53, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Mourtzakis, M.; Prado, C.M.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A Practical and Precise Approach to Quantification of Body Composition in Cancer Patients Using Computed Tomography Images Acquired during Routine Care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- James, W.P.T. Research on Obesity. Nutr. Bull. 1977, 4, 187–190. [Google Scholar] [CrossRef]
- Janmahasatian, S.; Duffull, S.B.; Ash, S.; Ward, L.C.; Byrne, N.M.; Green, B. Quantification of Lean Bodyweight. Clin. Pharm. 2005, 44, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Tahari, A.K.; Chien, D.; Azadi, J.R.; Wahl, R.L. Optimum Lean Body Formulation for Correction of Standardized Uptake Value in PET Imaging. J. Nucl. Med. 2014, 55, 1481–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholm, P.; Minn, H.; Joensuu, H. FDG Uptake in Cancer A PET Study. J. Nucl. Med. 1993, 34, 1–6. [Google Scholar] [PubMed]
- Zasadny, K.R.; Wahl, R.L. Standardized Uptake Values of Normal Tissues at PET with 2-[Fluorine-18]-Fluoro-2-Deoxy-D-Glucose: Variations with Body Weight and a Method for Correction. Radiology 1993, 189, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Claeys, J.; Mertens, K.; D’Asseler, Y.; Goethals, I. Normoglycemic Plasma Glucose Levels Affect F-18 FDG Uptake in the Brain. Ann. Nucl. Med. 2010, 24, 501–505. [Google Scholar] [CrossRef]
- Viglianti, B.L.; Wong, K.K.; Wimer, S.M.; Parameswaran, A.; Nan, B.; Ky, C.; Townsend, D.M.; Rubello, D.; Frey, K.A.; Gross, M.D. Effect of Hyperglycemia on Brain and Liver 18 F-FDG Standardized Uptake Value (FDG SUV) Measured by Quantitative Positron Emission Tomography (PET) Imaging. Biomed. Pharmacother. 2017, 88, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Sprinz, C.; Zanon, M.; Altmayer, S.; Watte, G.; Irion, K.; Marchiori, E.; Hochhegger, B. Effects of Blood Glucose Level on 18F Fluorodeoxyglucose (18F-FDG) Uptake for PET/CT in Normal Organs: An Analysis on 5623 Patients. Sci. Rep. 2018, 8, 2126–2131. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, I.; Albatineh, A.; Sarikaya, A. Re-Visiting SUV-Weight and SUV-Lean Body Mass in FDG PET Studies. J. Nucl. Med. Technol. 2019, 48, 233–249. [Google Scholar] [CrossRef]
- Senesse, P.; Isambert, A.; Janiszewski, C.; Fiore, S.; Flori, N.; Poujol, S.; Arroyo, E.; Courraud, J.; Guillaumon, V.; Mathieu-Daudé, H.; et al. Management of Cancer Cachexia and Guidelines Implementation in a Comprehensive Cancer Center: A Physician-Led Cancer Nutrition Program Adapted to the Practices of a Country. J. Pain Symptom Manag. 2017, 54, 387–393.e3. [Google Scholar] [CrossRef] [Green Version]
- Penet, M.-F.; Gadiya, M.M.; Krishnamachary, B.; Nimmagadda, S.; Pomper, M.G.; Artemov, D.; Bhujwalla, Z.M. Metabolic Signatures Imaged in Cancer-Induced Cachexia. Cancer Res. 2011, 71, 6948–6956. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-C. Anatomy of SUV. Nucl. Med. Biol. 2000, 27, 643–646. [Google Scholar] [CrossRef]
- Viglianti, B.L.; Wale, D.J.; Wong, K.K.; Johnson, T.D.; Ky, C.; Frey, K.A.; Gross, M.D. Effects of Tumor Burden on Reference Tissue Standardized Uptake for PET Imaging: Modification of PERCIST Criteria. Radiology 2018, 287, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Hasselbalch, S.G.; Knudsen, G.M.; Jakobsen, J.; Hageman, L.P.; Holm, S.; Paulson, O.B. Brain Metabolism during Short-Term Starvation in Humans. J. Cereb. Blood Flow Metab. 1994, 14, 125–131. [Google Scholar] [CrossRef]
- Owen, O.E.; Morgan, A.P.; Kemp, H.G.; Sullivan, J.M.; Herrera, M.G.; Cahill, G.F. Brain Metabolism during Fasting. J. Clin. Investig. 1967, 46, 1589–1595. [Google Scholar] [CrossRef]
- Redies, C.; Hoffer, L.J.; Beil, C.; Marliss, E.B.; Evans, A.C.; Lariviere, F.; Marrett, S.; Meyer, E.; Diksic, M.; Gjedde, A.; et al. Generalized Decrease in Brain Glucose Metabolism during Fasting in Humans Studied by PET. Am. J. Physiol.-Endocrinol. Metab. 1989, 256, E805–E810. [Google Scholar] [CrossRef]
- Buschiazzo, A.; Cossu, V.; Bauckneht, M.; Orengo, A.; Piccioli, P.; Emionite, L.; Bianchi, G.; Grillo, F.; Rocchi, A.; Di Giulio, F.; et al. Effect of Starvation on Brain Glucose Metabolism and 18F-2-Fluoro-2-Deoxyglucose Uptake: An Experimental in-Vivo and Ex-Vivo Study. EJNMMI Res. 2018, 8, 44. [Google Scholar] [CrossRef]
- Courchesne-Loyer, A.; Croteau, E.; Castellano, C.-A.; St-Pierre, V.; Hennebelle, M.; Cunnane, S.C. Inverse Relationship between Brain Glucose and Ketone Metabolism in Adults during Short-Term Moderate Dietary Ketosis: A Dual Tracer Quantitative Positron Emission Tomography Study. J. Cereb. Blood Flow Metab. 2017, 37, 2485–2493. [Google Scholar] [CrossRef] [Green Version]
- LaManna, J.C.; Salem, N.; Puchowicz, M.; Erokwu, B.; Koppaka, S.; Flask, C.; Lee, Z. Ketones Suppress Brain Glucose Consumption. Adv. Exp. Med. Biol. 2009, 645, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kuang, Y.; Xu, K.; Harris, D.; Lee, Z.; LaManna, J.; Puchowicz, M.A. Ketosis Proportionately Spares Glucose Utilization in Brain. J. Cereb. Blood Flow Metab. 2013, 33, 1307–1311. [Google Scholar] [CrossRef] [Green Version]
- Svart, M.; Gormsen, L.C.; Hansen, J.; Zeidler, D.; Gejl, M.; Vang, K.; Aanerud, J.; Moeller, N. Regional Cerebral Effects of Ketone Body Infusion with 3-Hydroxybutyrate in Humans: Reduced Glucose Uptake, Unchanged Oxygen Consumption and Increased Blood Flow by Positron Emission Tomography. A Randomized, Controlled Trial. PLoS ONE 2018, 13, e0190556. [Google Scholar] [CrossRef] [Green Version]
- Mosconi, L.; McHugh, P.F. FDG- and Amyloid-PET in Alzheimer’s Disease: Is the Whole Greater than the Sum of the Parts? Q. J. Nucl. Med. Mol. Imaging 2011, 55, 250–264. [Google Scholar] [PubMed]
- Townsend, L.; Pillinger, T.; Selvaggi, P.; Veronese, M.; Turkheimer, F.; Howes, O. Brain Glucose Metabolism in Schizophrenia: A Systematic Review and Meta-Analysis of 18FDG-PET Studies in Schizophrenia. Psychol. Med. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Nitchingham, A.; Pereira, J.V.-B.; Wegner, E.A.; Oxenham, V.; Close, J.; Caplan, G.A. Regional Cerebral Hypometabolism on 18F-FDG PET/CT Scan in Delirium Is Independent of Acute Illness and Dementia. Alzheimer’s Dement. 2023, 19, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, H.; Ruth, M.; Hammerlid, E. Psychiatric Morbidity among Patients with Cancer of the Esophagus or the Gastro-Esophageal Junction: A Prospective, Longitudinal Evaluation. Dis. Esophagus. 2007, 20, 523–529. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Q.-D.; Hu, L.-J.; Sun, Z.-Q.; Sun, S.-P.; Yun, W.-W.; Yuan, Y.-G. Theory of Mind Deficits in Patients with Esophageal Cancer Combined with Depression. World J. Gastroenterol. 2013, 19, 2969–2973. [Google Scholar] [CrossRef]
- Han, S.; Kim, Y.J.; Woo, S.; Suh, C.H.; Lee, J.J. Prognostic Value of Volumetric Parameters of Pretreatment 18F-FDG PET/CT in Esophageal Cancer: A Systematic Review and Meta-Analysis. Clin. Nucl. Med. 2018, 43, 887–894. [Google Scholar] [CrossRef]
Variable | All | % WL ≥ 5 | % WL < 5 | p | % WL ≥ 10 | % WL < 10 | p | |
Number of patients (%) | 48 | 32 (67) | 16 (33) | 18 (37.5) | 30 (62.5) | |||
Number of females (%) | 8 (16.7) | 5 (16) | 3 (19) | 3 (17) | 5 (17) | |||
Age at diagnosis, years | 64 (36:88) | 61.5 (48.0:82.0) | 67.0 (36.0:88.0) | 0.251 | 61.0 (54.0:82.0) | 66.5 (36.0:88.0) | 0.273 | |
Usual BMI, kg·m−2 | 27.2 (17.0:40.8) | 27.6 (17.0:40.8) | 25.7 (20.0:40.3) | 0.718 | 27.2 (17.0:33.3) | 27.0 (20.0:40.8) | 0.647 | |
BMI on PET scan day, kg·m−2 | 24.6 (14.1:38.5) | 24.3 (14.1:36.9) | 25.4 (19.4:38.5) | 0.088 | 22.1 (14.1:28.7) | 25.6 (19.4:38.5) | 0.004 * | |
Fractional weight difference | −0.07 (−0.42:08) | −0.11 (−0.4:−0.1) | 0.00 (−0.0:0.1) | −0.14 (−0.4:−0.1) | −0.04 (−0.1:0.1) | <0.001 * | ||
Number of Histological type (%) | Squamous cell carcinoma | 28 (58) | 17 (53) | 11 (69) | 0.300 | 11 (61) | 17 (57) | 0.762 |
Adenocarcinoma | 20 (42) | 15 (47) | 5 (31) | 7 (39) | 13 (43) | |||
Patients with distant metastasis | 7 | 5 | 2 | 0.772 | 4 | 3 | 0.245 | |
History of former cancer (%) | 14 (29) | 6 (19) | 8 (50) | 0.042 * | 4 (22) | 10 (33) | 0.412 | |
Time tracer injection–PET acquisition, min. | 63.0 (55.0:73.0) | 64.0 (55.0:73.0) | 59.0 (55.0:68.0) | 0.024 * | 62.5 (55.0:71.0) | 63.0 (55.0:73.0) | 0.958 | |
Glycemia before PET, mg/dL | 99.5 (65:134) | 101.0 (65.0:134.0) | 97.5 (84.0:131.0) | 0.550 | 103.0 (90.0:134.0) | 97.5 (65.0:131.0) | 0.023 * |
All | % WL ≥ 5 | % WL < 5 | p | % WL ≥ 10 | % WL < 10 | p | ||
Brain | SUVpeak | 8.8 (3.4:13.6) | 8.3 (3.4:13.6) | 9.7 (6.4:12.2) | 0.189 | 7.2 (3.4:10.3) | 10.1 (6.4:13.6) | <0.001 * |
Liver | SUVpeak | 2.8 (1.4:4.5) | 2.8 (1.4:4.5) | 2.0 (1.6:2.4) | 0.710 | 2.8 (1.4:3.4) | 2.8 (2.2:4.5) | 0.148 |
Spleen | SUVpeak | 2.3 (1.4: 3.9) | 2.4 (1.9:2.9) | 1.7 (1.2:2.1) | 0.670 | 2.2 (1.4:2.7) | 2.4 (1.8:3.9) | 0.170 |
Bone marrow | SUVpeak | 1.7 (1.0:3.5) | 1.7 (1.0:3.5) | 1.6 (1.0:2.4) | 0.678 | 1.7 (1.0:2.4) | 1.7 (1.0:3.5) | 0.307 |
Muscle at L3 | SUVmean | 0.7 (0.5:1.6) | 0.7 (0.5:0.9) | 0.7 (0.5:1.6) | 0.623 | 0.7 (0.6:0.9) | 0.7 (0.5:1.6) | 0.221 |
SUVpeak | 11.4 (1.8:28.7) | 12.1 (1.8:28.7) | 10.6 (3.7:22.4) | 0.431 | 14.2 (3.9:28.7) | 11.1 (1.8:22.4) | 0.394 | |
Primary tumor | MTV (cm3) | 11.4 (0.5:69.6) | 15.4 (0.5:69.6) | 5.7 (1.9:47.0) | 0.003 * | 20.3 (4.6:61.1) | 9.6 (0.5:69.6) | 0.013 * |
TLG | 125.8 (3.0:677.8) | 171.3 (3.0:677.8) | 63.7 (11.1:269.9) | 0.005 * | 230.1 (24.6:677.8) | 99.9 (3.0:295.4) | 0.005 * |
Odds Ratio | p > |z| | 95% CI | ||
TLG | 1.004 | 0.031 | 1.000–1.009 | |
Brain SUVpeak | ||||
<8.82 (median) | 1 | |||
≥8.82 | 0.098 | <0.001 | 0.028–0.346 |
Variables | AUC | Optimal Cut-Point Value | # Patients above Cut-Point | AUC | Optimal Cut-Point Value | # Patients above Cut-Point |
WL ≥ 5% | WL ≥ 10% | |||||
Brain SUVpeak | NA | 0.863 | 7.32 | 10 | ||
MTV | 0.763 | 12.03 | 21 | 0.717 | 40.78 | 5 |
TLG | 0.748 | 107.86 | 27 | 0.743 | 291.1 | 7 |
Variables | Cut-Off | HR | 95% CI | p |
Glycemia before PET (mg/dL) | 99.5 (median) | 1.82 | [0.801–4.12] | 0.137 |
Sex (female) | yes/no | 1.82 | [0.546–6.07] | 0.218 |
Age at diagnosis | 64 (median) | 0.902 | [0.405–2.01] | 0.798 |
Distant metastasis | yes/no | 3.77 | [0.871–16.3] | 0.002 * |
History of former cancer | yes/no | 0.975 | [0.406–2.34] | 0.954 |
Usual BMI, kg·m−2 | 27.2 (median) | 1.21 | [0.543–2.71] | 0.631 |
BMI (on the day of PETscan), kg·m−2 | 24.6 (median) | 0.409 | [0.181–0.924] | 0.0268 * |
Weight loss | ≥5% vs. <5% | 2.19 | [0.98–4.94] | 0.083 |
≥10% vs. <10% | 4.17 | [1.52–11.5] | 5.88 × 10−5 * | |
Brain SUVpeak | 8.8 (median) | 0.634 | [0.274–1.47] | 0.241 |
≤7.32 vs. >7.32 | 0.31 | [0.0785–1.22] | 0.0065 * | |
Liver SUVpeak | 2.8 (median) | 1.08 | [0.484–2.43] | 0.844 |
Spleen SUVpeak | 2.3 (median) | 1.16 | [0.52–2.57] | 0.722 |
Bone marrow SUVpeak | 1.7 (median) | 1.11 | [0.496–2.48] | 0.798 |
Muscle SUVmean | 0.7 (median) | 1.29 | [0.581–2.88] | 0.528 |
Primary tumor SUVpeak | 11.4 (median) | 0.954 | [0.428–2.13] | 0.908 |
MTV | 11.4 (median) | 2.15 | [0.96–4.82] | 0.0616 |
TLG | 125.8 (median) | 1.68 | [0.736–3.85] | 0.192 |
≤291 vs. >291 | 2.89 | [0.568–14.7] | 0.038 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvez, T.; Berkane, I.; Thézenas, S.; Eberlé, M.-C.; Flori, N.; Guillemard, S.; Ilonca, A.D.; Santoro, L.; Kotzki, P.-O.; Senesse, P.; et al. Identification of 18F-FDG PET/CT Parameters Associated with Weight Loss in Patients with Esophageal Cancer. Nutrients 2023, 15, 3042. https://doi.org/10.3390/nu15133042
Galvez T, Berkane I, Thézenas S, Eberlé M-C, Flori N, Guillemard S, Ilonca AD, Santoro L, Kotzki P-O, Senesse P, et al. Identification of 18F-FDG PET/CT Parameters Associated with Weight Loss in Patients with Esophageal Cancer. Nutrients. 2023; 15(13):3042. https://doi.org/10.3390/nu15133042
Chicago/Turabian StyleGalvez, Thierry, Ikrame Berkane, Simon Thézenas, Marie-Claude Eberlé, Nicolas Flori, Sophie Guillemard, Alina Diana Ilonca, Lore Santoro, Pierre-Olivier Kotzki, Pierre Senesse, and et al. 2023. "Identification of 18F-FDG PET/CT Parameters Associated with Weight Loss in Patients with Esophageal Cancer" Nutrients 15, no. 13: 3042. https://doi.org/10.3390/nu15133042
APA StyleGalvez, T., Berkane, I., Thézenas, S., Eberlé, M. -C., Flori, N., Guillemard, S., Ilonca, A. D., Santoro, L., Kotzki, P. -O., Senesse, P., & Deshayes, E. (2023). Identification of 18F-FDG PET/CT Parameters Associated with Weight Loss in Patients with Esophageal Cancer. Nutrients, 15(13), 3042. https://doi.org/10.3390/nu15133042