Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,372)

Search Parameters:
Keywords = zinc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 629 KiB  
Article
Bridging Nutritional and Environmental Assessment Tools: A One Health Integration Using Zinc Supplementation in Weaned Pigs
by Jinsu Hong, Joel Tallaksen and Pedro E. Urriola
Environments 2025, 12(8), 279; https://doi.org/10.3390/environments12080279 (registering DOI) - 12 Aug 2025
Abstract
Zinc is an essential trace mineral for livestock, but excessive use can contribute to ecotoxicity and antimicrobial resistance. The objective of this study was to assess the impact of different zinc oxide (ZnO) levels in diets for weaned pigs on growth performance, mortality, [...] Read more.
Zinc is an essential trace mineral for livestock, but excessive use can contribute to ecotoxicity and antimicrobial resistance. The objective of this study was to assess the impact of different zinc oxide (ZnO) levels in diets for weaned pigs on growth performance, mortality, dietary zinc flow, and environmental impacts. A 6-week feeding trial with 432 weaned pigs assessed three dietary treatments: high ZnO (pharmaceutical levels), intermediate ZnO, and low ZnO (EU recommendation). Growth performance for the growing–finishing period was modeled using the NRC (2012), and dietary Zn intake and fecal Zn excretion were estimated. Environmental impacts were analyzed via life cycle assessment (LCA) using SimaPro LCA software. High ZnO improved growth performance and reduced mortality (p < 0.05), but increased nursery fecal zinc excretion, resulting in a total fecal Zn excretion per pig of 54,125 mg, 59,485 mg, and 106,043 mg for low-, intermediate-, and high-ZnO treatments, respectively. In the nursery phase, high-ZnO treatment had the greatest impact on environmental footprint, increasing freshwater ecotoxicity and marine ecotoxicity indicators by 59.6% and 57.9%, respectively. However, high-ZnO-fed pigs had a greater body weight at the end of the nursery phase and were predicted to achieve a higher growth rate per 130 kg market pig, with fewer days to market and by sparing feed. Therefore, high-ZnO-fed pigs had reduced environmental burdens, including global warming potential, ozone depletion, land use, and mineral resource depletion. These findings demonstrate how livestock nutritionists can apply integrated modeling approaches to link animal performance with environmental outcomes within a One Health framework. Full article
Show Figures

Figure 1

10 pages, 8704 KiB  
Article
Effect of Preparation Method on the Optical Properties of Novel Luminescent Glass-Crystalline Composites
by Radosław Lisiecki, Natalia Miniajluk-Gaweł and Bartosz Bondzior
Appl. Sci. 2025, 15(16), 8877; https://doi.org/10.3390/app15168877 (registering DOI) - 12 Aug 2025
Abstract
Phosphor-in-glass (PiG) composites are promising materials for applications in various fields of material engineering. There are competing methods of preparation of PiGs which result in materials with different structural and performance characteristics. The glass-crystal composites comprising tellurite-zinc-sodium glass (TZN) and perovskite LaAlO3 [...] Read more.
Phosphor-in-glass (PiG) composites are promising materials for applications in various fields of material engineering. There are competing methods of preparation of PiGs which result in materials with different structural and performance characteristics. The glass-crystal composites comprising tellurite-zinc-sodium glass (TZN) and perovskite LaAlO3 doped with Eu3+ (LAO:Eu) are prepared using three distinct methods: remelt, direct-doping and co-sintering, in order to evaluate the impact of the preparation method on the structural, optical and luminescence properties of the novel phosphor-in-glass (PiG) composites. The composites prepared by the remelt and direct-doping method suffer from the decomposition of LAO:Eu and Eu3+ ion diffusion into the glass matrix. The highest rate of preservation and luminescence intensity of LAO:Eu is achieved in the composites prepared by the co-sintering method. Unfortunately, the loss of transparency is substantial. This article demonstrates the challenges and tradeoffs that are yet to be resolved in preparation of PiG composites. The preservation of the crystalline phase leads to the lower transparency of the final material. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

38 pages, 6998 KiB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

16 pages, 312 KiB  
Article
Protein Source and Micronutrient Adequacy in Australian Adult Diets with Higher Diet Quality Score and Lower Environmental Impacts
by Bradley Ridoutt, Danielle Baird and Gilly A. Hendrie
Dietetics 2025, 4(3), 35; https://doi.org/10.3390/dietetics4030035 - 11 Aug 2025
Abstract
Protein-rich foods, such as meats, eggs, nuts, legumes, and dairy foods, can be important sources of micronutrients, especially those micronutrients that tend to be widely under-consumed. The source of dietary protein, animal or plant origin, is therefore a relevant consideration in the transition [...] Read more.
Protein-rich foods, such as meats, eggs, nuts, legumes, and dairy foods, can be important sources of micronutrients, especially those micronutrients that tend to be widely under-consumed. The source of dietary protein, animal or plant origin, is therefore a relevant consideration in the transition to healthier and sustainable diets. In this study, 1589 Australian adult diets with higher diet quality and lower environmental impact were isolated from Australian Health Survey data. These diets were primarily differentiated by lower intake of energy-dense/nutrient-poor discretionary foods. These diets were grouped according to the proportion of total protein obtained from animal and plant sources. On average, 55% of protein was from animal sources and 45% was plant derived. As the proportion of animal protein increased, total dietary protein intake also increased, and total energy intake decreased. Diets with between 60 and 80% of protein from animal sources met the greatest number of Estimated Average Requirements (EARs). Furthermore, diets with this ratio of animal protein were closest to benchmarks when assessed as a proportion of EAR met. That said, across all identified “sustainable healthy diets”, calcium, vitamins B6 and A, zinc, and magnesium were at risk of inadequate intake. This evidence suggests that a diet with around 60–80% of total protein coming from animal sources can reduce the risks of inadequate intake of micronutrients in a sustainable diet. Full article
Show Figures

Graphical abstract

18 pages, 3636 KiB  
Article
A Concept of New Generation Films for Haylage Production Which Meets the Condition of the Closed-Loop Material Cycle
by Piotr Kacorzyk, Jacek Strojny and Michał Niewiadomski
Sustainability 2025, 17(16), 7240; https://doi.org/10.3390/su17167240 - 11 Aug 2025
Abstract
The recycling rate of silage and stretch films is low. The low degree of recycling of polymer films used in agriculture results from the high contamination of films and technological problems in their processing. Material recycling of haylage preservation films is conditioned by [...] Read more.
The recycling rate of silage and stretch films is low. The low degree of recycling of polymer films used in agriculture results from the high contamination of films and technological problems in their processing. Material recycling of haylage preservation films is conditioned by the possibility of their effective and cost-effective cleaning. Thus, the study focuses on designing a new generation material for wrapping hay-silage bales that meet the closed-loop material cycle condition while at the same time guaranteeing the desired operating conditions. The developed new generation silage films made it possible to achieve 100% recycling, while this indicator for traditional films did not exceed 50%. The concept is based on the notion of circular economy. The study compared four types of film—one that is commonly used for feed preservation and three types of new generation film. The nanosilver-containing film and the film containing a microbiological additive of zinc provided a high quality of silage and, due to the low contamination, facilitated the recycling of the burdensome waste. The 8% microcellulose film had too little viscosity, which was why it did not cut off the atmospheric air penetration into the bale. Hence, the biodegradable film with the addition of microcellulose does not comply with the technological regime for feed preservation. Full article
Show Figures

Figure 1

15 pages, 1704 KiB  
Article
Impact of Grazing Intensity on Floristic Diversity and Soil Properties in Semi-Natural Grasslands of Jbel Bouhachem (Northern Morocco)
by Saïd Chakri, Ahmed Taheri, Fatima El Lamti, Susan Canavan, Mohamed Kadiri and Mohammed Mrani Alaoui
Ecologies 2025, 6(3), 56; https://doi.org/10.3390/ecologies6030056 - 11 Aug 2025
Abstract
Semi-natural grasslands are key biodiversity reservoirs in Mediterranean mountain ecosystems. Grazing pressure may significantly influence plant communities and soil conditions, with potential effects on ecosystem functioning. This study evaluated the impact of grazing intensity on floristic diversity, community structure, and soil physico-chemical and [...] Read more.
Semi-natural grasslands are key biodiversity reservoirs in Mediterranean mountain ecosystems. Grazing pressure may significantly influence plant communities and soil conditions, with potential effects on ecosystem functioning. This study evaluated the impact of grazing intensity on floristic diversity, community structure, and soil physico-chemical and microbiological properties across eight grasslands in the Jbel Bouhachem massif (northern Morocco). Species richness, Shannon diversity, and floristic composition were assessed using PERMANOVA and NMDS ordination. Soil parameters and microbial groups were analyzed through laboratory measurements, with statistical comparisons based on Wilcoxon and t-tests. No significant differences were found in species richness or alpha diversity between grazing intensities, although floristic dispersion was higher under intensive grazing. Soil texture, potassium, iron, zinc, and electrical conductivity differed significantly between treatments. Among microbial groups, only yeasts and molds showed higher abundance under intensive grazing, while sulfite-reducing clostridia were exclusively detected in these plots. These results suggest that grazing intensity has a selective impact on soil properties and microbial communities, while plant diversity remains relatively stable. Full article
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Potentially Toxic Elements in Local Cigarettes and Marijuana Leaves of Bauchi State, Nigeria: Public Health and Environmental Implications
by Tasha Siame, Yisa Adeniyi Abolade, Famodu Omotayo, Albert Junior Nyarko, Mu’awiya Baba Aminu, Uchechukwu Anthony Ogwurumba, Bertha Onyenachi Akagbue, Fatima Abdulmalik and Hareyani Zabidi
Pollutants 2025, 5(3), 26; https://doi.org/10.3390/pollutants5030026 - 11 Aug 2025
Abstract
Exposure to potentially toxic elements (PTEs) in commonly used substances remains a serious public health concern, especially in low-regulation environments. This study assessed and compared the concentrations of five PTEs, cadmium (Cd), lead (Pb), zinc (Zn), iron (Fe), and copper (Cu), in marijuana [...] Read more.
Exposure to potentially toxic elements (PTEs) in commonly used substances remains a serious public health concern, especially in low-regulation environments. This study assessed and compared the concentrations of five PTEs, cadmium (Cd), lead (Pb), zinc (Zn), iron (Fe), and copper (Cu), in marijuana and Aspen-brand cigarettes consumed in Bauchi, Nigeria. Using atomic absorption spectrophotometry (AAS), we analyzed PTE content in both substances after acid digestion and proper calibration. Cigarettes showed higher levels of all tested metals. Cd (3.12 μg/g) and Pb (0.88 μg/g) in cigarettes exceeded WHO limits, while marijuana contained lower levels of Cd (0.645 μg/g) and Pb (0.11 μg/g), with only Cd approaching the level that poses environmental and public health concern. Zn (71.2 μg/g), Cu (64.0 μg/g), and Fe (19.2 μg/g) were also significantly higher in cigarettes (p < 0.01). The high levels of Cd and Pb in cigarettes indicate that smokers are more exposed to harmful PTEs through inhalation than marijuana users, which points to a greater health risk from cigarette use. These findings call for stronger policies and regulations that ensure cleaner agricultural practices and industrial accountability to minimize exposure to harmful PTEs and protect community health in Bauchi. Full article
Show Figures

Figure 1

27 pages, 14027 KiB  
Article
Machine Learning and Integrative Structural Dynamics Identify Potent ALK Inhibitors from Natural Compound Libraries
by Rana Alateeq
Pharmaceuticals 2025, 18(8), 1178; https://doi.org/10.3390/ph18081178 - 10 Aug 2025
Viewed by 88
Abstract
Background: Anaplastic lymphoma kinase (ALK) is a validated oncogenic driver in non-small cell lung cancer and other malignancies, making it a clinically relevant target for small-molecule inhibition. Methods: Here, we report a computational discovery pipeline integrating structure-based virtual screening, machine learning-guided [...] Read more.
Background: Anaplastic lymphoma kinase (ALK) is a validated oncogenic driver in non-small cell lung cancer and other malignancies, making it a clinically relevant target for small-molecule inhibition. Methods: Here, we report a computational discovery pipeline integrating structure-based virtual screening, machine learning-guided prioritization, molecular dynamics simulations, and binding free energy analysis to identify potential ALK inhibitors from a natural product-derived subset of the ZINC20 database. We trained and benchmarked eleven machine learning models, including tree-based, kernel-based, linear, and neural architectures, on curated bioactivity datasets of ALK inhibitors to capture nuanced structure-activity relationships and prioritize candidates beyond conventional docking metrics. Results: Six compounds were shortlisted based on binding affinity, solubility, bioavailability, and synthetic accessibility. Molecular dynamics simulations over 100 ns revealed stable ligand engagement, with limited conformational fluctuations and consistent retention of the protein’s structural integrity. Key catalytic residues, including GLU105, MET107, and ASP178, displayed minimal fluctuation, while hydrogen bonding and residue interaction analyses confirmed persistent engagement across all ligand-bound complexes. Binding free energy estimates identified ZINC3870414 and ZINC8214398 as top-performing candidates, with ΔGtotal values of –46.02 and –46.18 kcal/mol, respectively. Principal component and dynamic network analyses indicated that these compounds restrict conformational sampling and reorganize residue communication pathways, consistent with functional inhibition. Conclusions: These results highlight ZINC3870414 and ZINC8214398 as promising scaffolds for further optimization and support the utility of integrating machine learning with dynamic and network-based metrics in early-stage kinase inhibitor discovery. Full article
Show Figures

Graphical abstract

18 pages, 4583 KiB  
Article
Bright Blue Light Emission of ZnCl2-Doped CsPbCl1Br2 Perovskite Nanocrystals with High Photoluminescence Quantum Yield
by Bo Feng, Youbin Fang, Jin Wang, Xi Yuan, Jihui Lang, Jian Cao, Jie Hua and Xiaotian Yang
Micromachines 2025, 16(8), 920; https://doi.org/10.3390/mi16080920 - 9 Aug 2025
Viewed by 191
Abstract
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals [...] Read more.
The future development of perovskite light-emitting diodes (LEDs) is significantly limited by the poor stability and low brightness of the pure-blue emission in the wavelength range of 460–470 nm. In this study, the Cl/Br element ratio in CsPbClxBr3−x perovskite nanocrystals (NCs) was modulated to precisely control their blue emission in the 428–512 nm spectral region. Then, the undoped CsPbCl1Br2 and the ZnCl2-doped CsPbCl1Br2 perovskite NCs were synthesized via the hot-injection method and investigated using variable-temperature photoluminescence (PL) spectroscopy. The PL emission peak of the ZnCl2-doped CsPbCl1Br2 perovskite NCs exhibits a blue shift from 475 nm to 460 nm with increasing ZnCl2 doping concentration. Additionally, the ZnCl2-doped CsPbCl1Br2 perovskite NCs show a high photoluminescence quantum yield (PLQY). The variable-temperature PL spectroscopy results show that the ZnCl2-doped CsPbCl1Br2 perovskite NCs have a larger exciton binding energy than the CsPbCl1Br2 perovskite NCs, which is indicative of a potentially higher PL intensity. To assess the stability of the perovskite NCs, high-temperature experiments and ultraviolet-irradiation experiments were conducted. The results indicate that zinc doping is beneficial for improving the stability of the perovskite NCs. The ZnCl2-doped CsPbCl1Br2 perovskite NCs were post-treated using didodecylammonium bromide, and after the post-treatment, the PLQY increased to 83%. This is a high PLQY value for perovskite NC-LEDs in the blue spectral range, and it satisfies the requirements of practical display applications. This work thus provides a simple preparation method for pure blue light-emitting materials. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

14 pages, 1308 KiB  
Article
Mineral Intake and Depression: A Cross-Sectional Comparative Study Based on National Health and Nutrition Examination Surveys in Korea and the United States
by Jiwoo Kim, Inho Kim, Junhui Lee, Kyungwhan Jeon, Juseong Kang, Dongchan Lee, Sera Choi, HyunSoo Kim and Minkook Son
Nutrients 2025, 17(16), 2593; https://doi.org/10.3390/nu17162593 - 9 Aug 2025
Viewed by 193
Abstract
Background/Objectives: Depression is a major global health burden, and previous studies suggest that nutrient deficiencies may contribute to its development. However, research on mineral intake and depression, particularly sodium and potassium, is limited. We conducted a cross-sectional analysis of data from the [...] Read more.
Background/Objectives: Depression is a major global health burden, and previous studies suggest that nutrient deficiencies may contribute to its development. However, research on mineral intake and depression, particularly sodium and potassium, is limited. We conducted a cross-sectional analysis of data from the National Health and Nutrition Examination Survey in Korea (KNHANES) and the United States (NHANES) to assess associations between various mineral intakes and depression in Korean and American adults. Methods: This cross-sectional study used the KNHANES and NHANES data. Seven minerals were analyzed: sodium, potassium, phosphorus, magnesium, iron, zinc, and calcium. Depression was defined as a Patient Health Questionnaire-9 score of 10 or higher. Associations between mineral intakes and depression were examined using a multivariable-adjusted logistic regression analysis. Results: In KNHANES, 537 participants (4.1%) exhibited depression, whereas 588 participants (6.2%) in NHANES experienced similar conditions. In addition, sodium, potassium, and phosphorus intake in KNHANES demonstrated inverse associations with depression, while in NHANES, potassium, iron, and zinc exhibited comparable trends. Subgroup analyses by sex, obesity status, and age revealed significant differences for several minerals. Conclusions: This study revealed significant associations between mineral intake and depression in both Korean and American adults. These findings suggest that adequate mineral intake may support mental health. Further research is needed to explore these relationships and underlying mechanisms. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

13 pages, 10178 KiB  
Article
Luffa-like Interconnective Porous Nanofiber with Anchored Co/CoCr2O4 Hybrid Nanoparticles for Zinc–Air Batteries
by Guoqiang Jin, Bin Liu, Yan Liu, Xueting Zhang, Dapeng Cao and Xiuling Zhang
Batteries 2025, 11(8), 306; https://doi.org/10.3390/batteries11080306 - 8 Aug 2025
Viewed by 166
Abstract
The development of robust oxygen reduction reaction (ORR) catalyst with fast kinetics and good durability is significant for rechargeable zinc–air batteries (ZABs) but still remains a great challenge. Herein, inspired by the chain-like interconnective porous structure of plant luffa, an ORR catalyst of [...] Read more.
The development of robust oxygen reduction reaction (ORR) catalyst with fast kinetics and good durability is significant for rechargeable zinc–air batteries (ZABs) but still remains a great challenge. Herein, inspired by the chain-like interconnective porous structure of plant luffa, an ORR catalyst of Co/CoCr2O4@ IPCF is fabricated, with Co and CoCr2O4 hybrid nanoparticles (NPs) embedding into interconnective porous carbon nanofibers (IPCF). Contributing to CoCr2O4 NPs stabilized Co active sites, the resulting ZABs assembled with Co/CoCr2O4@IPCF as an air cathode catalyst delivering sustainable cycling stability of 550 h, surpassing that of Co@IPCF based on ZABs (215 h). Also, the Co/CoCr2O4@IPCF has a high ORR performance with a half-wave potential (E1/2) of 0.866 V in alkaline medium. The cycling stability originates from the IPCF carrier and the synergistic effect of Co NPs and CoCr2O4 NPs. The chain-like interconnective porous structure of the fibers provides more active sites and facilitates mass transfer to avoid the accumulation of OH and the exposure of H2O2, while the CoCr2O4 NPs can serve as a regulator for stabilizing the Co NPs electrochemical performance. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Figure 1

16 pages, 4024 KiB  
Article
Phenylthiadiazole-Based Schiff Base Fluorescent Chemosensor for the Detection of Al3+ and Zn2+ Ions
by Jorge Heredia-Moya, Ariana Fiallos-Ayala and Amanda Cevallos-Vallejo
Chemistry 2025, 7(4), 128; https://doi.org/10.3390/chemistry7040128 - 8 Aug 2025
Viewed by 304
Abstract
Aluminum (Al) and zinc (Zn) are two of the most widely used metals in industry, and their excessive accumulation in the body has been linked to serious diseases like Alzheimer’s, Parkinson’s, and cancer. This highlights the need for effective ways to detect and [...] Read more.
Aluminum (Al) and zinc (Zn) are two of the most widely used metals in industry, and their excessive accumulation in the body has been linked to serious diseases like Alzheimer’s, Parkinson’s, and cancer. This highlights the need for effective ways to detect and measure them. In this study, we synthesized the fluorescent chemosensor 1, which contains a Schiff base and a 1,3,4-thiadiazole ring in its structure, and evaluated its fluorescent response in the presence of various metal ions. The chemosensor enabled the selective quantification of Al3+ and Zn2+ ions through excitations at different wavelengths, yielding differentiated fluorescent emissions. For Al3+, excitation at 370 nm generated a strong emission at 480 nm, whereas for Zn2+, excitation at 320 nm led to a new small broad emission at 560 nm. We established detection limits of 2.22 × 10−6 M for Al3+ and 1.62 × 10−5 M for Zn2+; their binding stoichiometry was found to be 1:1 for Al3+ and 2:1 for Zn2+, based on Job’s plot analysis. These results show that chemosensor 1 is a promising tool for detecting Al3+ and Zn2+. Full article
(This article belongs to the Special Issue Organic Chalcogen Chemistry: Recent Advances)
Show Figures

Figure 1

24 pages, 4914 KiB  
Article
Research on the Production of Methyltrioxorhenium and Heterogenous Catalysts from Waste Materials
by Joanna Malarz, Karolina Goc, Mateusz Ciszewski, Karolina Pianowska, Patrycja Wróbel, Łukasz Hawełek, Dorota Kopyto and Katarzyna Leszczyńska-Sejda
Crystals 2025, 15(8), 717; https://doi.org/10.3390/cryst15080717 - 8 Aug 2025
Viewed by 157
Abstract
This paper presents the research results on the synthesis of rhenium catalysts MTO, Re2O7/Al2O3, and M-Re2O7/Al2O3 (where M = Ni, Ag, Co, Cu) from rhenium compounds (ammonium perrhenate, [...] Read more.
This paper presents the research results on the synthesis of rhenium catalysts MTO, Re2O7/Al2O3, and M-Re2O7/Al2O3 (where M = Ni, Ag, Co, Cu) from rhenium compounds (ammonium perrhenate, perrhenic acid, nickel(II) perrhenate, cobalt(II) perrhenate, zinc perrhenate, silver perrhenate, and copper(II) perrhenate) derived from waste materials. Methyltrioxorhenium (MTO) was obtained from silver perrhenate with a yield of over 80%, whereas when using nickel(II), cobalt(II), and zinc perrhenates, the product was contaminated with tin compounds and the yield did not exceed 17%. The Re2O7/Al2O3 and M-Re2O7/Al2O3 catalysts were obtained from the above-mentioned rhenium compounds. Alumina obtained in a calcination process of aluminum nitrate nonahydrate was used as a support. The catalysts were characterized in terms of their chemical and phase composition and physicochemical properties. Catalytic activity in model reactions, such as cyclohexene epoxidation and hex-1-ene homometathesis, was also studied. MTO obtained from silver perrhenate showed >70% activity in the epoxidation reaction, thus surpassing commercial MTO (1.0 mol% MTO, room temperature, and reaction time—2 h). Ag-Re2O7/Al2O3, Cu-Re2O7/Al2O3, and H-Re2O7/Al2O3 catalysts were inactive, while Co-Re2O7/Al2O3 and Ni-Re2O7/Al2O3 showed low activity (<43%) in the hex-1-ene homometathesis reaction. Only Re2O7/Al2O3 catalysts achieved >70% activity in this reaction (2.5 wt% Re, room temperature, and reaction time—2 h). The results indicate the potential of using rhenium compounds derived from waste materials to synthesize active catalysts for chemical processes. Full article
Show Figures

Figure 1

15 pages, 26209 KiB  
Article
Quality of Constructed Technogenic Soils in Urban Gardens Located on a Reclaimed Clay Pit
by Dariusz Gruszka, Katarzyna Szopka and Cezary Kabala
Land 2025, 14(8), 1613; https://doi.org/10.3390/land14081613 - 8 Aug 2025
Viewed by 222
Abstract
Urban gardening plays diverse social, cultural and economic roles; its further development appears to be worthwhile, provided that soil contamination does not compromise ecosystem services. This study was conducted at a complex of urban gardens in Wroclaw (Poland) where topsoil screening indicated significant [...] Read more.
Urban gardening plays diverse social, cultural and economic roles; its further development appears to be worthwhile, provided that soil contamination does not compromise ecosystem services. This study was conducted at a complex of urban gardens in Wroclaw (Poland) where topsoil screening indicated significant spatial differentiation of trace elements content, presumably related to the history of the site. Urbic Technosols cover the reclaimed section of the gardens, where industrial and urban waste materials, such as ash, slag, construction and demolition, and household waste, were used to fill former clay and sand mines. Although the topsoil layers, comprised of transported external soil, exhibited beneficial physicochemical properties and high fertility, they were seriously contaminated with trace elements (up to 1700, 920, 740, 5.1, 7.4, and 5.1 mg kg−1 zinc, lead, copper, cadmium, mercury, and arsenic, respectively). The trace elements were likely transferred from technogenic materials used for mine infilling, which now underlie the thin humus layers of the garden soils. The results suggest that the quality of soils in urban gardens located at reclaimed post-mining sites, while seemingly beneficial for horticulture based on physicochemical soil properties and fertility indices, can be seriously and permanently compromised by soil contamination from inappropriate materials used for site reclamation, thereby affecting soil quality and posing potential health and ecological risks. Full article
(This article belongs to the Special Issue Soil Ecological Risk Assessment Based on LULC)
Show Figures

Figure 1

10 pages, 1157 KiB  
Communication
Phytoremediation of Zinc-Contaminated Industrial Effluents with Phragmites australis and Typha latifolia in Constructed Wetlands
by Inga Zinicovscaia, Aneta Svozilíková Krakovská, Nikita Yushin, Alexandra Peshkova and Dmitrii Grozdov
Water 2025, 17(16), 2358; https://doi.org/10.3390/w17162358 - 8 Aug 2025
Viewed by 169
Abstract
This study evaluated the ability of two plants, Phragmites australis and Typha latifolia, to bioaccumulate zinc from industrial effluents in constructed wetlands using ceramsite as a support medium. Two types of experiments were conducted: one with real industrial effluent containing 9.4 mg/L [...] Read more.
This study evaluated the ability of two plants, Phragmites australis and Typha latifolia, to bioaccumulate zinc from industrial effluents in constructed wetlands using ceramsite as a support medium. Two types of experiments were conducted: one with real industrial effluent containing 9.4 mg/L of Zn and another with synthetic effluent containing Zn at concentrations ranging from 10 to 100 mg/L. Zinc uptake in plant segments, ceramsite, and its concentration in wastewater were determined using ICP-OES. Both plants removed 97–99% of zinc ions from the industrial effluent, with the highest metal uptake occurring in the roots. In the case of synthetic solutions, Typha latifolia demonstrated higher zinc removal efficiency (95–99% removal) compared to Phragmites australis (74–90%). Typha latifolia also accumulated significantly higher levels of Zn, primarily in the roots. Transfer factor values were calculated to assess zinc translocation within plant tissues. No visual signs of toxicity were observed during the experiment. This phytoremediation approach could represent a sustainable and environmentally friendly method for treating industrial effluents. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop