The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia
Highlights
- Nitrite Intake: The estimated daily intake (EDI) of nitrites from meat products indicated that 6.4% of Serbian children exceeded the acceptable daily intake (ADI) proposed by the European Food Safety Authority (EFSA). This proportion was higher among children aged 1–3 years.
- Phosphorus Intake: The EDI of phosphorus from meat products was well below the ADI proposed by EFSA, suggesting that phosphorus intake from these sources is generally within safe limits.
- The study highlights a potential health concern regarding nitrite exposure in young Serbian children, particularly those aged from 1–3 years. Exceeding the ADI for nitrites may increase the risk of adverse health effects, including the formation of carcinogenic nitrosamines. These findings underscore the need for monitoring and possibly regulating nitrite levels in meat products consumed by children to ensure their safety.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Meat Products and Sample Preparation
2.3. Determination of Nitrite Content
2.4. Phosphorus Measurement
2.5. National Food Consumption Survey on Toddlers and Children
2.6. Exposure Assessment and Risk Characterization
2.7. Statistical Analysis
3. Results and Discussion
3.1. Processed Meat Products Consumption among Children 1–9 Years Old
3.2. Nitrite Content in Processed Meat Products
3.3. Estimated Dietary Intake of Nitrites from Processed Meat Products
3.4. Phosphorus Content in Processed Meat Products
3.5. Contribution of Processed Meat Products to the Daily Intake of Phosphorous
3.6. Study Strengths and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019. Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [CrossRef]
- World Cancer Research Fund, American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report; World Cancer Research Fund: London, UK, 2018. [Google Scholar]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Gøtterup, J.; Olsen, K.; Knøchel, S.; Tjener, K.; Stahnke, L.H.; Møller, J.K. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities. Meat Sci. 2008, 78, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Pennington, J.A.T. Dietary exposure models for nitrates and nitrites. Food Control 1998, 9, 385–395. [Google Scholar] [CrossRef]
- Sebranek, J.G. Basic curing Ingredients in Meat Products. In Ingredients in Meat Products: Properties, Functionality and Applications; Tarté, R., Ed.; Springer Science: New York, NY, USA, 2009; pp. 1–24. [Google Scholar]
- Marco, A.; Navarro, J.L.; Flores, M. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Sci. 2006, 73, 660–673. [Google Scholar] [CrossRef]
- Van den Brand, A.D.; Beukers, M.; Niekerk, M.; van Donkersgoed, G.; van der Aa, M.; van de Ven, B.; Sprong, C.R. Assessment of the combined nitrate and nitrite exposure from food and drinking water: Application of uncertainty around the nitrate to nitrite conversion factor. Food Addit. Contam. Part A 2020, 37, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Chetty, A.A.; Prasad, S.; Pinho, O.C.; de Morais, C.M. Estimated dietary intake of nitrate and nitrite from meat consumed in Fiji. Food Chem. 2019, 278, 630–635. [Google Scholar] [CrossRef]
- Tamme, T.; Reinik, M.; Rosato, M. Nitrates and Nitrites in Vegetables: Occurrence and Health Risks. In Bioactive Foods in Promoting Health; Wotson, R., Preedy, V., Eds.; Academic Press: London, UK; San Diego, CA, USA, 2010; p. 754. [Google Scholar]
- Ward, M.H.; Heineman, E.F.; Markin, R.S.; Weisenburger, D.D. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. Int. J. Occup. Environ. Health 2008, 14, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricker, A.R. N-nitroso compounds and man: Sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev. 1997, 6, 226–268. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.J.; Ferrucci, L.M.; Risch, A.; Graubard, B.I.; Ward, M.H.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R. A large prospective study of meat consumption and colorectal cancer risk: An investigation of potential mechanisms underlying this association. Cancer Res. 2010, 70, 2406–2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Research Fund, American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective; American Institute for Cancer Research: Washington, DC, USA, 2007. [Google Scholar]
- Ozel, M.Z.; Gogus, F.; Yagci, S.; Hamilton, J.F.; Lewis, A.C. Determination of volatile nitrosamines in various meat products using comprehensive gas chromatography-nitrogen chemiluminescence detection. Food Chem. Toxicol. 2010, 48, 3268–3273. [Google Scholar] [CrossRef]
- Gilchrist, M.; Winyard, P.G.; Benjamin, N. Dietary nitrate—Good or bad? Nitric Oxide 2010, 15, 104–109. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (EFSA ANS Panel); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific Opinion on the re-evaluation of potassium nitrite (E 249) and sodiumnitrite (E 250) as food additives. EFSA J. 2017, 15, 4786. [Google Scholar] [CrossRef]
- Tonacchera, M.; Pinchera, A.; Dimida, A.; Ferrarini, E.; Agretti, P.; Vitti, P.; Santini, F.; Crump, K.; Gibbs, J. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibitionof radioactive iodide uptake by the humansodium iodide symporter. Thyroid 2004, 14, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- De Groef, B.; Decallonne, B.R.; Van der Geyten, S.; Darras, V.M.; Bouillon, R. Perchlorate versus other environmentalsodium/iodide symporter inhibitors: Potentialthyroid-related health effects. Eur. J. Endocrinol. 2006, 155, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Regulation on the Quality of ground meat, meat preparations and meat products. Official Gazette of RS No 50, 12 July 2019.
- Regulation on the food additives. Official Gazette of RS No 53, 11 July 2018.
- Joint FAO/WHO Expert Committee on Food Additives. World Health Organization & Food and Agriculture Organization of the United Nations. Evaluation of Certain food Additives: Fifty-Ninth Report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; WHO: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/42601 (accessed on 17 November 2021).
- Habermeyer, M.; Roth, A.; Guth, S.; Diel, P.; Engel, K.H.; Epe, B.; Fürst, P.; Heinz, V.; Humpf, H.U.; Joost, H.G.; et al. Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. Mol. Nutr. Food Res. 2015, 59, 106–128. [Google Scholar] [CrossRef]
- Calvo, M.S.; Sherman, R.A.; Uribarri, J. Dietary Phosphate and the Forgotten Kidney Patient: A Critical Need for FDA Regulatory Action. Am. J. Kidney Dis. 2019, 73, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Bailey, R.L.; Lappe, J.; O’Brien, K.O.; Wang, D.D.; Sahni, S.; Weaver, C.M. Dairy intake and bone health across the lifespan: A systematic review and expert narrative. Crit. Rev. Food Sci. Nutr. 2021, 61, 3661–3707. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Flavourings (EFSA FAF Panel); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.-H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Husøy, T.; et al. Scientific Opinion on the re-evaluation of phosphoric acid–phosphates–di-, tri- and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use. EFSA J. 2019, 17, 5674. [Google Scholar] [CrossRef] [Green Version]
- European Uniion. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Union 2008, 354, 16–31. [Google Scholar]
- Institute of Public Health of Serbia “Dr Milan Jovanovic Batut”. Health Statistical Year Book of Republic of Serbia 2020; Institute of Public Health of Serbia “Dr Milan Jovanovic Batut: Belgrade, Serbia, 2021; Available online: www.batut.org.rs (accessed on 17 November 2021).
- ISO 2918:1999; Meat and Meat Products—Determination of Nitrite Content (Reference Method). ISO: Geneva, Switzerland, 1996.
- ISO 13730:1996; Meat and Meat Products—Determination of Total Phosphorus Content—Spectrometric Method. ISO: Geneva, Switzerland, 1996.
- Gurinović, M.; Nikolić, M.; Zeković, M.; Milešević, J.; Kadvan, A.; Ranić, M.; Glibetic, M. Implementation of Harmonized Food Consumption Data Collection in Balkan Region According to the EFSA EU Menu Methodology Standards. Front. Nutr. 2021; provisionally accepted; in press. [Google Scholar] [CrossRef]
- Zekovic, M.; Gurinovic, M.; Milesevic, J.; Glibetic, M. National Food Consumption Survey among children from 1 to 9 years in Serbia–final deliverable. EFSA Support. Publ. 2021, 18, 27. [Google Scholar] [CrossRef]
- Nikolic, M.; Milesevic, J.; Zekovic, M.; Gurinovic, M.; Glibetic, M. The development and validation of food atlas for portion size estimation in the Balkan region. Front. Nutr. 2018, 5, 78. [Google Scholar] [CrossRef]
- Gurinović, M.; Milešević, J.; Kadvan, A.; Nikolić, M.; Zeković, M.; Djekić-Ivanković, M.; Glibetić, M. Development, features and application of DIET ASSESS & PLAN (DAP) software in supporting public health nutrition research in Central Eastern European Countries (CEEC). Food Chem. 2018, 238, 186–194. [Google Scholar] [CrossRef]
- Gurinović, M.; Milešević, J.; Kadvan, A.; Đekić-Ivanković, M.; Debeljak-Martačić, J.; Takić, M.; Glibetić, M. Establishment and advances in the online Serbian food and recipe data base harmonized with EuroFIRTM standards. Food Chem. 2016, 193, 30–38. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance on the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar]
- JECFA—Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series 1002; WHO: Geneva, Switzerland, 2017; pp. 1–166. Available online: https://apps.who.int/iris/handle/10665/254893 (accessed on 17 November 2021).
- European Food Safety Authority (EFSA). Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1557. [Google Scholar]
- Lee, H.S. Exposure estimates of nitrite and nitrate from consumption of cured meat products by the U.S. population. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2018, 35, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Temme, E.H.M.; Vandevijvere, S.; Vinkx, C.; Huybrechts, I.; Goeyens, L.; Oyen, H.V. Average daily nitrate and nitrite intake in the Belgian population older than 15 years. Food Addit. Contam. 2011, 28, 1193–1204. [Google Scholar] [CrossRef]
- Choi, S.-H.; Suh, H.-J. Determination and estimation of daily nitrite intake from processed meats in Korea. J. Consum. Prot. Food. Saf. 2017, 12, 15–22. [Google Scholar] [CrossRef]
- Andrée, S.; Jira, W.; Schwind, K.H.; Wagner, H.; Schwägele, F. Chemical safety of meat and meat products. Meat Sci. 2010, 86, 38–48. [Google Scholar] [CrossRef]
- Gibson, A.; Roberts, T.A.; Robinson, A. The effect of pH, sodium chloride, sodium nitrite and storage temperature on the growth of Clostridium perfringens and faecal streptococci in laboratory media. J. Food Sci. Technol. 1984, 3, 195–210. [Google Scholar] [CrossRef]
- Bajcic, A.; Petronijevic, R.; Katanic, N.; Trbovic, D.; Betic, N.; Nikolic, A.; Milojevic, L. Evaluation of the content and safety of nitrite utilisation in meat products in Serbia in the period 2016–2018. Meat Technol. 2018, 59, 102–109. [Google Scholar] [CrossRef]
- Zivkovic, D.; Stajic, S. Meat Preservation Procedures. Meat Technology 1; Faculty of Agriculture, University of Belgrade: Belgrade, Serbia, 2016. [Google Scholar]
- Elias, A.; Jalakas, S.; Roasto, M.; Reinik, M.; Nurk, E.; Kaart, T.; Tuvike, A.; Meremäe, K.; Nelis, K.; Elias, T. Nitrite and nitrate content in meat products and estimated nitrite intake by the Estonian children. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1229–1237. [Google Scholar] [CrossRef]
- Adam, A.H.B.; Mustafa, N.E.M.; Rietjens, I.M.C.M. Nitrite in processed meat products in Khartoum, Sudan and dietary intake. Food Addit. Contam. Part B Surveill. 2017, 10, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Choi, E.; Lee, S.J.; Nam, H.S.; Lee, J.K. Improved spectrophotometric method for nitrite determination in processed foods and dietary exposure assessment for Korean children and adolescents. Food Chem. 2022, 367, 130628. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, S.Y.; Jo, C.; Yoon, Y.; Jeong, J.Y.; Hur, S.J. Effect on health from consumption of meat and meat products. J. Anim. Sci. Technol. 2021, 63, 955–976. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010; Volume 94. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer. Red Meat and Processed Meat, 6th ed.; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2018; Volume 114, ISBN 978-92-832-0152-6. [Google Scholar]
- Bahadoran, Z.; Ghasemi, A.; Mirmiran, P.; Azizi, F.; Hadaegh, F. Nitrate-nitrite-nitrosamines exposure and the risk of type 1 diabetes: A review of current data. World J. Diabetes 2016, 7, 433. [Google Scholar] [CrossRef] [PubMed]
- Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef]
- Koricanac, V.; Vranic, D.; Lilic, S.; Milicevic, D.; Sobajic, S.; Zrnic, M. Total phosphorus content in various types of cooked sausages from the Serbian market. International 58th Meat Industry Conference “Meat Safety and Quality: Where it goes?”. Proc. Food Sci. 2015, 5, 152–155. [Google Scholar] [CrossRef] [Green Version]
- Saičić, S.; Vranić, D.; Trbović, D.; Pavlov, N. Total phosphorus content in meat products. Tehnol. Mesa 2008, 49, 147–152. [Google Scholar]
- Polak, T.; Lušnic Polak, M.; Tomović, V.; Žlender, B.; Demšar, L. Characterization of the Kranjska klobasa, a traditional slovenian cooked, cured, and smoked sausage from coarse ground pork. J. Food Process. Preserv. 2017, 41, e13269. [Google Scholar] [CrossRef]
- Puolanne, E.J.; Ruusunen, M.H.; Vainionpaa, J.I. Combined effects of NaCl and raw meat pH on water-holding in cooked sausage with and without added phosphate. Meat Sci. 2001, 58, 1–7. [Google Scholar] [CrossRef]
- Polak, T.; Polak Lušnic, M.; Zahija, I.; Babič, K.; Demšar, L. Comparison of the physico-chemical parameters and sensory properties of selected pasteurized meat products on Slovenian market. Meso 2020, 22, 196–208. [Google Scholar] [CrossRef]
- Gadekar, Y.P.; Sharma, B.D.; Shinde, A.K.; Mendiratta, S.K. Effect of Different Phosphates on Quality of Goat Meat and Restructured Goat Meat Product. Agric. Res. 2014, 3, 370–376. [Google Scholar] [CrossRef]
- Cuadrado-Soto, E.; Lopez-Sobaler, A.M.; Jimenez-Ortega, A.I.; Aparicio, A.; Bermejo, L.M.; Hernandez-Ruiz, A.; Lara Villoslada, F.; Leis, R.; Mertinez de Victoria, E.; Moreno, J.M.; et al. Usual dietary intake, nutritional adequacy and food sources of calcium, phosphorus, magnesium and vitamin D of Spanish children aged one to <10 Years–Results from the EsNuPI Study. Nutrients 2020, 12, 1787. [Google Scholar]
- Chouraqui, J.P.; Tavoularis, G.; Turck, D.; Ferry, C.; Feillet, F. Mineral and vitamin intake of infants and young children: The Nutri-Bébé 2013 survey. Eur. J. Nutr. 2020, 59, 2463–2480. [Google Scholar] [CrossRef]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported dietary intake, disparity between the reported consumption and the level needed for adequacy and food sources of calcium, phosphorus, magnesium and vitamin D in the Spanish population: Findings from the ANIBES study. Nutrients 2017, 9, 168. [Google Scholar] [CrossRef]
- Uribarri, J.; Calvo, M.S. Dietary phosphorus intake and health. Am. J. Clin. Nutr. 2014, 99, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Pinton, M.B.; dos Santos, B.A.; Lorenzo, J.M.; Cichoski, A.J.; Boeira, C.P.; Campagnol, P.C.B. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Curr. Opin. Food Sci. 2021, 40, 1–5. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Outcome of the questions for health professionals in the fields of nephrology, mineral metabolism, cardiovascular and nutrition medicine on phosphates food additives re-evaluation. EFSA Support. Publ. 2019, 16, 1624E. [Google Scholar]
Age Group | N | Age (Year) Median (ICR) | Body Weight (kg) Mean ± SD | |||
---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |
Toddlers, 1–3 years | 149 | 141 | 2.0 (1.5–2.6) | 2.0 (1.4–2.5) | 13.92 ± 2.81 | 13.92 ± 2.76 |
Children, 3–9 years | 147 | 139 | 6.1 (4.4–7.9) | 6.2 (5.0–7.8) | 23.99 ± 6.98 | 23.89 ± 6.63 |
Total sample | 576 |
Age Group | Bacon | Canned Meat | CMCS | DFS | FMCS | LSP | SMP | Total | |
---|---|---|---|---|---|---|---|---|---|
Mean ± SD (g/day) | |||||||||
Toddlers, 1–3 years | M | 2.17 ± 5.55 | 2.37 ± 6.40 | 0.92 ± 6.79 | 1.06 ± 3.90 | 6.49 ± 16.41 | 0.86 ± 3.42 | 0.40 ± 2.38 | 14.28 ± 44.86 |
F | 2.87 ± 12.71 | 2.17 ± 6.08 | 0.50 ± 3.08 | 1.13 ± 4.25 | 5.68 ± 14.41 | 1.41 ± 4.20 | 0.75 ± 3.03 | 14.51 ± 47.76 | |
Children, 3–9 years | M | 1.24 ± 5.37 | 8.01 ± 13.74 | 0.05 ± 0.64 | 1.75 ± 6.18 | 11.11 ± 19.71 | 3.22 ± 7.51 | 0.95 ± 3.89 | 26.33 ± 57.06 |
F | 2.93 ± 10.00 | 8.32 ± 11.51 | -- | 2.65 ± 11.53 | 7.66 ± 18.74 | 3.21 ± 7.78 | 1.54 ± 7.34 | 26.30 ± 66.89 | |
Average | 2.29 ± 8.89 | 5.20 ± 10.39 | 0.37 ± 3.80 | 1.64 ± 7.10 | 7.76 ± 17.53 | 2.16 ± 6.11 | 0.90 ± 4.54 | 20.31 ± 58.35 |
Meat Product | N | n (%) | Mean ± SD (mg/kg) | Q1 (mg/kg) | Q2 (mg/kg) | Q3 (mg/kg) | P95 (mg/kg) | Range (mg/kg) | MPL (mg/kg) [23] |
---|---|---|---|---|---|---|---|---|---|
Bacon | 241 | 228 (94.6) | 15.26 ± 18.74 | 2.74 | 6.78 | 21.00 | 53.66 | 0.33–100.38 | |
Canned meat | 362 | 348 (96) | 34.95 ± 22.12 | 18.00 | 33.77 | 52.28 | 71.1 | 0.08–93.45 | |
Coarsely minced cooked sausages | 353 | 345 (97.7) | 32.85 ± 23.25 | 11.31 | 31.31 | 51.01 | 71.14 | 0.05–113.51 | |
Dry fermented sausages | 683 | 374 (54.7) | 1.50 ± 2.48 | 0.00 | 0.41 | 1.95 | 6.15 | 0.05–24.88 | 150 |
Finely minced cooked sausages | 580 | 578 (99.6) | 40.25 ± 20.37 | 26.75 | 40.72 | 54.67 | 71.75 | 0.09–101.19 | |
Liver sausage and pate | 46 | 42 (91.3) | 12.62 ± 9.01 | 5.10 | 11.07 | 19.95 | 26.12 | 0.84–30.39 | |
Smoked meat products | 338 | 322 (95.2) | 23.09 ± 22.80 | 4.67 | 18.51 | 35.10 | 61.70 | 0.10–180.25 | |
Average | 2603 | 2238 (85.97) | 23.31 ± 23.75 | 1.72 | 15.97 | 41.08 | 67.10 | 0.05–180.25 |
Meat Product | Age Group | Gender | ADC (g/day) | Nitrite Ion (NO2−) Content | EDI (mg/kg bw/day) | Contribution to ADI (%) | ADI (mg/kg bw/day) | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD(mg/kg) | P95th (mg/kg) | Mean | P95th | Mean | P95th | |||||
Bacon | Toddlers, 1–3 years | M | 2.17 | 10.17 ± 12.50 | 35.77 | 0.002 | 0.006 | 2.26 | 7.97 | 0.07 |
F | 2.87 | 0.002 | 0.007 | 3.00 | 10.55 | |||||
Children, 3–9 years | M | 1.24 | 0.001 | 0.002 | 0.75 | 2.64 | ||||
F | 2.93 | 0.001 | 0.004 | 1.78 | 6.27 | |||||
Canned meat | Toddlers, 1–3 years | M | 2.37 | 23.30 ± 14.75 | 47.4 | 0.004 | 0.008 | 5.67 | 11.54 | |
F | 2.17 | 0.004 | 0.007 | 5.18 | 10.53 | |||||
Children, 3–9 years | M | 8.01 | 0.008 | 0.016 | 11.12 | 22.62 | ||||
F | 8.32 | 0.008 | 0.017 | 11.59 | 23.58 | |||||
Coarsely minced cooked sausages | Toddlers, 1–3 years | M | 0.92 | 21.90 ± 15.50 | 47.43 | 0.001 | 0.003 | 2.07 | 4.49 | |
F | 0.50 | 0.001 | 0.002 | 1.12 | 2.42 | |||||
Children, 3–9 years | M | 0.05 | 0.000 | 0.000 | 0.07 | 0.15 | ||||
F | 0.00 | 0.000 | 0.000 | 0.00 | 0.00 | |||||
Dry fermented sausages | Toddlers, 1–3 years | M | 1.06 | 1.00 ± 1.65 | 4.11 | 0.000 | 0.000 | 0.11 | 0.45 | |
F | 1.13 | 0.000 | 0.000 | 0.12 | 0.48 | |||||
Children, 3–9 years | M | 1.75 | 0.000 | 0.000 | 0.10 | 0.43 | ||||
F | 2.65 | 0.000 | 0.000 | 0.16 | 0.65 | |||||
Finely minced cooked sausages | Toddlers, 1–3 years | M | 6.49 | 26.83 ± 13.58 | 47.82 | 0.013 | 0.022 | 17.88 | 31.87 | |
F | 5.68 | 0.011 | 0.020 | 15.65 | 27.90 | |||||
Children, 3–9 years | M | 11.11 | 0.012 | 0.022 | 17.75 | 31.64 | ||||
F | 7.66 | 0.009 | 0.015 | 12.29 | 21.90 | |||||
Liver sausage and pate | Toddlers, 1–3 years | M | 0.86 | 8.41 ± 6.0 | 17.41 | 0.001 | 0.001 | 0.74 | 1.54 | |
F | 1.41 | 0.001 | 0.002 | 1.22 | 2.52 | |||||
Children, 3–9 years | M | 3.22 | 0.001 | 0.002 | 1.61 | 3.34 | ||||
F | 3.21 | 0.001 | 0.002 | 1.61 | 3.34 | |||||
Smoked meat products | Toddlers, 1–3 years | M | 0.40 | 15.39 ± 15.19 | 41.13 | 0.000 | 0.001 | 0.62 | 1.67 | |
F | 0.75 | 0.001 | 0.002 | 1.18 | 3.15 | |||||
Children, 3–9 years | M | 0.95 | 0.001 | 0.002 | 0.87 | 2.32 | ||||
F | 1.54 | 0.001 | 0.003 | 1.42 | 3.78 | |||||
Average | Toddlers, 1–3 years | M | 2.04 | 15.54 ± 15.84 | 44.86 | 0.003 | 0.006 | 4.20 | 8.50 | |
F | 2.07 | 0.003 | 0.006 | 3.92 | 8.22 | |||||
Children, 3–9 years | M | 3.76 | 0.003 | 0.006 | 4.61 | 9.02 | ||||
F | 3.76 | 0.003 | 0.006 | 4.12 | 8.50 | |||||
Total | Toddlers, 1–3 years | M | 14.28 | 15.54 ± 15.84 | 44.86 | 0.021 | 0.042 | 29.37 | 59.52 | |
F | 14.51 | 0.019 | 0.040 | 27.46 | 57.54 | |||||
Children, 3–9 years | M | 26.33 | 0.023 | 0.044 | 32.27 | 63.12 | ||||
F | 26.30 | 0.020 | 0.042 | 28.85 | 59.52 |
Age Group | Gender | N | % of Total Subjects | EDI (mg/kg bw/day) | Contribution to ADI (%) | N (%) Above ADI | |||
---|---|---|---|---|---|---|---|---|---|
Mean | P95th | Mean | P95th | Mean | P95th | ||||
Toddlers, 1–3 years | M | 81 | 54.36 | 0.038 | 0.076 | 53.89 | 109.00 | 10 (12.35) | 32 (39.51) |
F | 81 | 57.45 | 0.037 | 0.074 | 52.37 | 106.18 | 10 (12.35) | 31 (38.27) | |
Children, 3–9 years | M | 113 | 76.87 | 0.021 | 0.044 | 30.33 | 62.57 | 8 (7.08) | 17 (15.04) |
F | 111 | 79.86 | 0.021 | 0.044 | 30.64 | 63.29 | 8 (7.21) | 18 (16.22) | |
Average/Total | 386 | 67.01 | 0.028 | 0.057 | 39.99 | 81.67 | 36 (9.33) | 98 (25.39) |
Meat Product | N | Mean ± SD (g/kg) | Q1 (g/kg) | Q2 (g/kg) | Q3 (g/kg) | P95 (g/kg) | Range (g/kg) | Above MPL (%) |
---|---|---|---|---|---|---|---|---|
Bacon | 230 | 4.41 ± 1.22 | 3.57 | 4.39 | 5.13 | 6.53 | 1.10–7.94 | -- |
Canned meat | 375 | 5.79 ± 1.01 | 5.14 | 5.76 | 6.43 | 7.40 | 2.37–9.83 | 6 (1.6) |
Coarsely minced cooked sausages | 353 | 5.21 ± 1.14 | 4.44 | 5.12 | 5.89 | 7.14 | 2.25–9.92 | 7 (2) |
Finely minced cooked sausages | 551 | 4.70 ± 0.88 | 4.16 | 4.64 | 5.17 | 6.10 | 1.12–9.22 | 4 (0.7) |
Liver sausage and pate | 45 | 2.71 ± 1.05 | 2.18 | 2.50 | 3.08 | 3.88 | 0.27–7.96 | -- |
Smoked meat products | 346 | 6.12 ± 1.33 | 5.35 | 6.02 | 6.97 | 7.98 | 2.11–10.64 | 15 (4.3) |
Total | 1900 | 5.18 ± 1.31 | 4.36 | 5.11 | 5.98 | 7.54 | 0.27–10.64 | 32 (1.7) |
Meat Product | Age Group | Gender | ADC (g/day) | Phosphorus Content | EDI (mg/kg bw/day) | Contribution to ADI (%) | ADI (mg/kg bw/day) | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD (g/kg) | P95th (g/kg) | Mean | P95th | Mean | P95th | |||||
Bacon | Toddlers, 1–3 years | M | 2.17 | 1.92 ± 0.53 | 2.85 | 0.30 | 0.44 | 0.75 | 1.11 | 40 |
F | 2.87 | 0.40 | 0.59 | 0.99 | 1.47 | |||||
Children, 3–9 years | M | 1.24 | 0.10 | 0.15 | 0.25 | 0.37 | ||||
F | 2.93 | 0.24 | 0.35 | 0.59 | 0.87 | |||||
Canned meat | Toddlers, 1–3 years | M | 2.37 | 2.53 ± 0.44 | 3.23 | 0.43 | 0.55 | 1.08 | 1.38 | |
F | 2.17 | 0.39 | 0.50 | 0.98 | 1.26 | |||||
Children, 3–9 years | M | 8.01 | 0.84 | 1.08 | 2.11 | 2.70 | ||||
F | 8.32 | 0.88 | 1.12 | 2.20 | 2.81 | |||||
Coarsely minced cooked sausages | Toddlers, 1–3 years | M | 0.92 | 2.27 ± 0.49 | 3.11 | 0.15 | 0.21 | 0.38 | 0.52 | |
F | 0.50 | 0.08 | 0.11 | 0.20 | 0.28 | |||||
Children, 3–9 years | M | 0.05 | 0.00 | 0.01 | 0.01 | 0.02 | ||||
F | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||||
Finely minced cooked sausages | Toddlers, 1–3 years | M | 6.49 | 2.05 ± 0.38 | 2.66 | 0.96 | 1.24 | 2.39 | 3.10 | |
F | 5.68 | 0.84 | 1.09 | 2.09 | 2.72 | |||||
Children, 3–9 years | M | 11.11 | 0.95 | 1.23 | 2.37 | 3.08 | ||||
F | 7.66 | 0.66 | 0.85 | 1.64 | 2.13 | |||||
Liver sausage and pate | Toddlers, 1–3 years | M | 0.86 | 1.18 ± 0.46 | 1.7 | 0.07 | 0.11 | 0.18 | 0.26 | |
F | 1.41 | 0.12 | 0.17 | 0.30 | 0.43 | |||||
Children, 3–9 years | M | 3.22 | 0.16 | 0.23 | 0.40 | 0.57 | ||||
F | 3.21 | 0.16 | 0.23 | 0.40 | 0.57 | |||||
Smoked meat products | Toddlers, 1–3 years | M | 0.40 | 2.67 ± 0.58 | 3.48 | 0.08 | 0.10 | 0.19 | 0.25 | |
F | 0.75 | 0.14 | 0.19 | 0.36 | 0.47 | |||||
Children, 3–9 years | M | 0.95 | 0.11 | 0.14 | 0.26 | 0.34 | ||||
F | 1.54 | 0.17 | 0.22 | 0.43 | 0.56 | |||||
Average | Toddlers, 1–3 years | M | 2.04 | 2.26 ± 0.57 | 3.30 | 0.28 | 0.38 | 0.71 | 0.95 | |
F | 2.07 | 0.28 | 0.38 | 0.70 | 0.95 | |||||
Children, 3–9 years | M | 3.76 | 0.31 | 0.40 | 0.77 | 1.01 | ||||
F | 3.76 | 0.30 | 0.40 | 0.75 | 0.99 | |||||
Total | Toddlers, 1–3 years | M | 14.28 | 2.26 ± 0.57 | 3.30 | 1.99 | 2.65 | 4.97 | 6.62 | |
F | 14.51 | 1.97 | 2.65 | 4.93 | 6.62 | |||||
Children, 3–9 years | M | 26.33 | 2.16 | 2.83 | 5.40 | 7.07 | ||||
F | 26.30 | 2.10 | 2.78 | 5.26 | 6.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milešević, J.; Vranić, D.; Gurinović, M.; Korićanac, V.; Borović, B.; Zeković, M.; Šarac, I.; Milićević, D.R.; Glibetić, M. The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia. Nutrients 2022, 14, 242. https://doi.org/10.3390/nu14020242
Milešević J, Vranić D, Gurinović M, Korićanac V, Borović B, Zeković M, Šarac I, Milićević DR, Glibetić M. The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia. Nutrients. 2022; 14(2):242. https://doi.org/10.3390/nu14020242
Chicago/Turabian StyleMilešević, Jelena, Danijela Vranić, Mirjana Gurinović, Vladimir Korićanac, Branka Borović, Milica Zeković, Ivana Šarac, Dragan R. Milićević, and Maria Glibetić. 2022. "The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia" Nutrients 14, no. 2: 242. https://doi.org/10.3390/nu14020242
APA StyleMilešević, J., Vranić, D., Gurinović, M., Korićanac, V., Borović, B., Zeković, M., Šarac, I., Milićević, D. R., & Glibetić, M. (2022). The Intake of Phosphorus and Nitrites through Meat Products: A Health Risk Assessment of Children Aged 1 to 9 Years Old in Serbia. Nutrients, 14(2), 242. https://doi.org/10.3390/nu14020242