Culturing and Molecular Approaches for Identifying Microbiota Taxa Impacting Children’s Obesogenic Phenotypes Related to Xenobiotic Dietary Exposure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microbiota Culturing Approaches, Media, and Conditions for Isolation of Gut Microbial Taxa Components
2.2. BPA Directed Culturomics Taxa Catalogue from Microbiota of Normal-Weight, Overweight, and Obese Children
2.3. BPA Directed Culturomics and Spore-Forming Microbiota Taxa: Clostridium and Bacillus spp.
2.4. BPA Biodegradation Metabolic Maps through WGST Data Mining
3. Materials and Methods
3.1. Culturomics Review Data for Increasing the Microbiota Taxa Isolates
3.2. Experimental Culturomics Approach to Isolate Gut Microbes Metabolising Obesogenic EDCs
BPA Directed Culturing Approach for the Isolation of Microbiota Strain Catalogue
3.3. Genomic DNA Extraction and Partial and Complete 16S rRNA Analysis
3.4. BPA Directed Culturing and Searching for Spore-Forming Taxa Components: Clostridium spp. and Bacillus spp.
3.5. Genome Data Mining Tools for Prediction of BPA Metabolic Maps and Enzymatic Pathways in Whole Genome Sequence of Type Strains (WGST) from the Closest Species to Isolates from Gut Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Egusquiza, R.J.; Blumberg, B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020, 161, bqaa024. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, M.; Lamas, B.; Van Pamel, E.; Bhide, M.; Houdeau, E.; Rivas, A. Editorial: Risk of Dietary Hazardous Substances and Impact on Human Microbiota: Possible Role in Several Dysbiosis Phenotypes. Front. Microbiol. 2021, 12, 669480. [Google Scholar] [CrossRef]
- Cohen, I.C.; Cohenour, E.R.; Harnett, K.G.; Schuh, S.M. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int. J. Mol. Sci. 2021, 22, 5363. [Google Scholar] [CrossRef]
- Wang, T.; Li, M.; Chen, B.; Xu, M.; Xu, Y.; Huang, Y.; Lu, J.; Chen, Y.; Wang, W.; Li, X.; et al. Urinary Bisphenol A (BPA) Concentration Associates with Obesity and Insulin Resistance. J. Clin. Endocrinol. Metab. 2012, 97, E223–E227. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.P.; Ng, A.H.-M.; Wan, H.T.; Wong, A.Y.-M.; Leung, C.C.-T.; Li, R.; Wong, C.K.-C. Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated with the Development of Metabolic Syndrome. Front. Microbiol. 2018, 9, 2552. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, M.; Gálvez-Ontiveros, Y.; Rivas, A. Endobolome, a New Concept for Determining the Influence of Microbiota Disrupting Chemicals (MDC) in Relation to Specific Endocrine Pathogenesis. Front. Microbiol. 2020, 11, 578007. [Google Scholar] [CrossRef]
- Jalal, N.; Surendranath, A.R.; Pathak, J.L.; Yu, S.; Chung, C.Y. Bisphenol A (BPA) the Mighty and the Mutagenic. Toxicol. Rep. 2018, 5, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Louati, I.; Dammak, M.; Nasri, R.; Belbahri, L.; Nasri, M.; Abdelkafi, S.; Mechichi, T. Biodegradation and Detoxification of Bisphenol A by Bacteria Isolated from Desert Soils. 3 Biotech 2019, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Joskow, R.; Barr, D.B.; Barr, J.R.; Calafat, A.M.; Needham, L.L.; Rubin, C. Exposure to Bisphenol A from Bis-Glycidyl Dimethacrylate-Based Dental Sealants. J. Am. Dent. Assoc. 2006, 137, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Gálvez-Ontiveros, Y.; Moscoso-Ruiz, I.; Rodrigo, L.; Aguilera, M.; Rivas, A.; Zafra-Gómez, A. Presence of Parabens and Bisphenols in Food Commonly Consumed in Spain. Foods 2021, 10, 92. [Google Scholar] [CrossRef]
- Stoker, C.; Andreoli, M.F.; Kass, L.; Bosquiazzo, V.L.; Rossetti, M.F.; Canesini, G.; Luque, E.H.; Ramos, J.G. Perinatal Exposure to Bisphenol A (BPA) Impairs Neuroendocrine Mechanisms Regulating Food Intake and Kisspetin System in Adult Male Rats. Evidences of Metabolic Disruptor Hypothesis. Mol. Cell. Endocrinol. 2020, 499, 110614. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Han, J.H.; Lee, S.-B.; Lee, Y.-H. Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure. Toxicol. Res. 2017, 33, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Hormann, A.M.; Vom Saal, F.S.; Nagel, S.C.; Stahlhut, R.W.; Moyer, C.L.; Ellersieck, M.R.; Welshons, W.V.; Toutain, P.-L.; Taylor, J.A. Holding Thermal Receipt Paper and Eating Food after Using Hand Sanitizer Results in High Serum Bioactive and Urine Total Levels of Bisphenol A (BPA). PLoS ONE 2014, 9, e110509. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-J.; Kannan, K. Phthalates, Bisphenols, Parabens, and Triclocarban in Feminine Hygiene Products from the United States and Their Implications for Human Exposure. Environ. Int. 2020, 136, 105465. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Chahoud, I.; Heindel, J.J.; Padmanabhan, V.; Paumgartten, F.J.R.; Schoenfelder, G. Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A. Cienc. Saude Colet. 2012, 17, 407–434. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human Exposure to Bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Suyamud, B.; Thiravetyan, P.; Gadd, G.M.; Panyapinyopol, B.; Inthorn, D. Bisphenol A Removal from a Plastic Industry Wastewater by Dracaena Sanderiana Endophytic Bacteria and Bacillus Cereus NI. Int. J. Phytoremediat. 2020, 22, 167–175. [Google Scholar] [CrossRef]
- Vijayalakshmi, V.; Senthilkumar, P.; Mophin-Kani, K.; Sivamani, S.; Sivarajasekar, N.; Vasantharaj, S. Bio-Degradation of Bisphenol A by Pseudomonas Aeruginosa PAb1 Isolated from Effluent of Thermal Paper Industry: Kinetic Modeling and Process Optimization. J. Radiat. Res. Appl. Sci. 2018, 11, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Thoene, M.; Dzika, E.; Gonkowski, S.; Wojtkiewicz, J. Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review. Nutrients 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.-H.; Zhang, X.-M.; Wang, F.; Gao, C.-J.; Chen, D.; Palumbo, J.R.; Guo, Y.; Zeng, E.Y. Occurrence of Bisphenol S in the Environment and Implications for Human Exposure: A Short Review. Sci. Total Environ. 2018, 615, 87–98. [Google Scholar] [CrossRef]
- Völkel, W.; Colnot, T.; Csanády, G.A.; Filser, J.G.; Dekant, W. Metabolism and Kinetics of Bisphenol a in Humans at Low Doses Following Oral Administration. Chem. Res. Toxicol. 2002, 15, 1281–1287. [Google Scholar] [CrossRef]
- McCarver, D.G.; Hines, R.N. The Ontogeny of Human Drug-Metabolizing Enzymes: Phase II Conjugation Enzymes and Regulatory Mechanisms. J. Pharmacol. Exp. Ther. 2002, 300, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Kang, J.S. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021, 11, 485. [Google Scholar] [CrossRef]
- Rajkumar, H.; Mahmood, N.; Kumar, M.; Varikuti, S.R.; Challa, H.R.; Myakala, S.P. Effect of Probiotic (VSL#3) and Omega-3 on Lipid Profile, Insulin Sensitivity, Inflammatory Markers, and Gut Colonization in Overweight Adults: A Randomized, Controlled Trial. Mediat. Inflamm. 2014, 2014, 348959. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.-C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial Culturomics: Paradigm Shift in the Human Gut Microbiome Study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Váradi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the Detection and Identification of Pathogenic Bacteria: Past, Present, and Future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.-C.; Hugon, P.; Khelaifia, S.; Fournier, P.-E.; La Scola, B.; Raoult, D. The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clin. Microbiol. Rev. 2015, 28, 237–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagier, J.-C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; et al. Culture of Previously Uncultured Members of the Human Gut Microbiota by Culturomics. Nat. Microbiol. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- López-Moreno, A.; Acuña, I.; Torres-Sánchez, A.; Ruiz-Moreno, Á.; Cerk, K.; Rivas, A.; Suárez, A.; Monteoliva-Sánchez, M.; Aguilera, M. Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients 2021, 13, 1617. [Google Scholar] [CrossRef]
- López-Moreno, A.; Suárez, A.; Avanzi, C.; Monteoliva-Sánchez, M.; Aguilera, M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1921. [Google Scholar] [CrossRef]
- Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Effects of Exposure to Bisphenol A and Ethinyl Estradiol on the Gut Microbiota of Parents and Their Offspring in a Rodent Model. Gut Microbes 2016, 7, 471–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Toole, P.W.; Marchesi, J.R.; Hill, C. Next-Generation Probiotics: The Spectrum from Probiotics to Live Biotherapeutics. Nat. Microbiol. 2017, 2, 17057. [Google Scholar] [CrossRef] [PubMed]
- Bilen, M.; Dufour, J.-C.; Lagier, J.-C.; Cadoret, F.; Daoud, Z.; Dubourg, G.; Raoult, D. The Contribution of Culturomics to the Repertoire of Isolated Human Bacterial and Archaeal Species. Microbiome 2018, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Greub, G. Culturomics: A New Approach to Study the Human Microbiome. Clin. Microbiol. Infect. 2012, 18, 1157–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locey, K.J.; Lennon, J.T. Scaling Laws Predict Global Microbial Diversity. Proc. Natl. Acad. Sci. USA 2016, 113, 5970–5975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilen, M. Strategies and Advancements in Human Microbiome Description and the Importance of Culturomics. Microb. Pathog. 2020, 149, 104460. [Google Scholar] [CrossRef]
- Diakite, A.; Dubourg, G.; Dione, N.; Afouda, P.; Bellali, S.; Ngom, I.I.; Valles, C.; Million, M.; Levasseur, A.; Cadoret, F.; et al. Extensive Culturomics of 8 Healthy Samples Enhances Metagenomics Efficiency. PLoS ONE 2019, 14, e0223543. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zu, L.; Wong, P.-K.; Hui, X.; Lu, Y.; Xiong, J.; An, T. Biodegradation and Detoxification of Bisphenol A with One Newly-Isolated Strain Bacillus sp. GZB: Kinetics, Mechanism and Estrogenic Transition. Bioresour. Technol. 2012, 114, 224–230. [Google Scholar] [CrossRef]
- Das, R.; Liang, Z.; Li, G.; Mai, B.; An, T. Genome Sequence of a Spore-Laccase Forming, BPA-Degrading Bacillus sp. GZB Isolated from an Electronic-Waste Recycling Site Reveals Insights into BPA Degradation Pathways. Arch. Microbiol. 2019, 201, 623–638. [Google Scholar] [CrossRef]
- López-Moreno, A.; Torres-Sánchez, A.; Acuña, I.; Suárez, A.; Aguilera, M. Representative Bacillus sp. AM1 from Gut Microbiota Harbor Versatile Molecular Pathways for Bisphenol A Biodegradation. Int. J. Mol. Sci. 2021, 22, 4952. [Google Scholar] [CrossRef]
- Tetz, G.; Tetz, V. Introducing the Sporobiota and Sporobiome. Gut Pathog. 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.; Dempsey, E.; Ryan, C.A.; Ross, R.P.; Stanton, C. The Sporobiota of the Human Gut. Gut Microbes 2021, 13, 1863134. [Google Scholar] [CrossRef]
- Chang, Y.; Hou, F.; Pan, Z.; Huang, Z.; Han, N.; Bin, L.; Deng, H.; Li, Z.; Ding, L.; Gao, H.; et al. Optimization of Culturomics Strategy in Human Fecal Samples. Front. Microbiol. 2019, 10, 2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-K.; Kim, M.-S.; Roh, S.W.; Bae, J.-W. Blautia stercoris sp. Nov., Isolated from Human Faeces. Int. J. Syst. Evol. Microbiol. 2012, 62, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-P.-T.; Cadoret, F.; Alou, M.T.; Brah, S.; Diallo, B.A.; Diallo, A.; Sokhna, C.; Delerce, J.; Fournier, P.-E.; Million, M.; et al. ‘Urmitella timonensis’ Gen. Nov., sp. Nov., ‘Blautia marasmi’ sp. Nov., ‘Lachnoclostridium pacaense’ sp. Nov., ‘Bacillus marasmi’ sp. Nov. and ‘Anaerotruncus Rubiinfantis’ sp. Nov., Isolated from Stool Samples of Undernourished African Children. New Microbes New Infect. 2017, 17, 84–88. [Google Scholar] [CrossRef]
- Diakite, A.; Dubourg, G.; Dione, N.; Afouda, P.; Bellali, S.; Ngom, I.I.; Valles, C.; lamine Tall, M.; Lagier, J.-C.; Raoult, D. Optimization and Standardization of the Culturomics Technique for Human Microbiome Exploration. Sci. Rep. 2020, 10, 9674. [Google Scholar] [CrossRef]
- Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of ‘Unculturable’ Human Microbiota Reveals Novel Taxa and Extensive Sporulation. Nature 2016, 533, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Durand, G.A.; Pham, T.; Ndongo, S.; Traore, S.I.; Dubourg, G.; Lagier, J.-C.; Michelle, C.; Armstrong, N.; Fournier, P.-E.; Raoult, D.; et al. Blautia massiliensis sp. Nov., Isolated from a Fresh Human Fecal Sample and Emended Description of the Genus Blautia. Anaerobe 2017, 43, 47–55. [Google Scholar] [CrossRef]
- Traore, S.I.; Azhar, E.I.; Yasir, M.; Bibi, F.; Fournier, P.-E.; Jiman-Fatani, A.A.; Delerce, J.; Cadoret, F.; Lagier, J.-C.; Raoult, D. Description of ‘Blautia phocaeensis’ sp. Nov. and ‘Lachnoclostridium edouardi’ sp. Nov., Isolated from Healthy Fresh Stools of Saudi Arabia Bedouins by Culturomics. New Microbes New Infect. 2017, 19, 129–131. [Google Scholar] [CrossRef]
- Ghimire, S.; Wongkuna, S.; Kumar, R.; Nelson, E.; Christopher-Hennings, J.; Scaria, J. Genome Sequence and Description of Blautia brookingsii SG772 sp. Nov., a Novel Bacterial Species Isolated from Human Faeces. New Microbes New Infect. 2020, 34, 100648. [Google Scholar] [CrossRef]
- Alou, M.T.; Ndongo, S.; Frégère, L.; Labas, N.; Andrieu, C.; Richez, M.; Couderc, C.; Baudoin, J.-P.; Abrahão, J.; Brah, S.; et al. Taxonogenomic Description of Four New Clostridium Species Isolated from Human Gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’. New Microbes New Infect. 2018, 21, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Yimagou, E.K.; Tall, M.L.; Baudoin, J.P.; Raoult, D.; Bou Khalil, J.Y. Clostridium transplantifaecale sp. Nov., a New Bacterium Isolated from Patient with Recurrent Clostridium Difficile Infection. New Microbes New Infect. 2019, 32, 100598. [Google Scholar] [CrossRef] [PubMed]
- Tall, M.L.; Lo, C.I.; Yimagou, E.K.; Ndongo, S.; Pham, T.P.T.; Raoult, D.; Fournier, P.-E.; Fenollar, F.; Levasseur, A. Description of Clostridium cagae sp. Nov., Clostridium rectalis sp. Nov. and Hathewaya massiliensis sp. Nov., New Anaerobic Bacteria Isolated from Human Stool Samples. New Microbes New Infect. 2020, 37, 100719. [Google Scholar] [CrossRef] [PubMed]
- Gouba, N.; Yimagou, E.K.; Hassani, Y.; Drancourt, M.; Fellag, M.; Mbogning Fonkou, M.D. Enterococcus Burkinafasonensis sp. Nov. Isolated from Human Gut Microbiota. New Microbes New Infect. 2020, 36, 100702. [Google Scholar] [CrossRef]
- Anani, H.; Guilhot, E.; Andrieu, C.; Fontanini, A.; Raoult, D.; Fournier, P.E. Prevotella ihumii sp. Nov., a New Bacterium Isolated from a Stool Specimen of a Healthy Woman. New Microbes New Infect. 2019, 32, 100607. [Google Scholar] [CrossRef]
- Hedberg, M.E.; Israelsson, A.; Moore, E.R.B.; Svensson-Stadler, L.; Wai, S.N.; Pietz, G.; Sandström, O.; Hernell, O.; Hammarström, M.-L.; Hammarström, S. Prevotella jejuni sp. Nov., Isolated from the Small Intestine of a Child with Coeliac Disease. Int. J. Syst. Evol. Microbiol. 2013, 63, 4218–4223. [Google Scholar] [CrossRef]
- Bellali, S.; Naud, S.; Ndongo, S.; Lo, C.I.; Anani, H.; Raoult, D.; Lagier, J.-C. Corynebacterium pacaense sp. Nov., Alistipes megaguti sp. Nov., Alistipes provencensis sp. Nov., 3 New Bacteria Isolated from Fresh Human Stool Specimens. New Microbes New Infect. 2019, 32, 100593. [Google Scholar] [CrossRef]
- Lagier, J.-C.; Karkouri, K.E.; Mishra, A.K.; Robert, C.; Raoult, D.; Fournier, P.-E. Non Contiguous-Finished Genome Sequence and Description of Enterobacter massiliensis sp. Nov. Stand. Genom. Sci. 2013, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Oishi, K.; Sato, T.; Yokoi, W.; Yoshida, Y.; Ito, M.; Sawada, H. Effect of Probiotics, Bifidobacterium Breve and Lactobacillus Casei, on Bisphenol A Exposure in Rats. Biosci. Biotechnol. Biochem. 2008, 72, 1409–1415. [Google Scholar] [CrossRef]
- Endo, Y.; Kimura, N.; Ikeda, I.; Fujimoto, K.; Kimoto, H. Adsorption of Bisphenol A by Lactic Acid Bacteria, Lactococcus, Strains. Appl. Microbiol. Biotechnol. 2007, 74, 202–207. [Google Scholar] [CrossRef]
- Wang, Y.; Rui, M.; Nie, Y.; Lu, G. Influence of Gastrointestinal Tract on Metabolism of Bisphenol A as Determined by in Vitro Simulated System. J. Hazard Mater. 2018, 355, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Filippidou, S.; Junier, T.; Wunderlin, T.; Lo, C.-C.; Li, P.-E.; Chain, P.S.; Junier, P. Under-Detection of Endospore-Forming Firmicutes in Metagenomic Data. Comput. Struct. Biotechnol. J. 2015, 13, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Tetz, V.; Tetz, G. Draft Genome Sequence of Bacillus Obstructivus VT-16-70 Isolated from the Bronchoalveolar Lavage Fluid of a Patient with Chronic Obstructive Pulmonary Disease. Genome Announc. 2017, 5, e01754-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vartoukian, S.R. Cultivation Strategies for Growth of Uncultivated Bacteria. J. Oral Biosci. 2016, 58, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.V.; Shah, S.A.; Wellen, K.E. Obesity, Cancer and Acetyl-CoA Metabolism. Drug Discov. Today Dis. Mech. 2013, 10, e55–e61. [Google Scholar] [CrossRef] [Green Version]
- Trent, C.M.; Blaser, M.J. Microbially Produced Acetate: A “Missing Link” in Understanding Obesity? Cell Metab. 2016, 24, 9–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calatayud Arroyo, M.; García Barrera, T.; Callejón Leblic, B.; Arias Borrego, A.; Collado, M.C. A Review of the Impact of Xenobiotics from Dietary Sources on Infant Health: Early Life Exposures and the Role of the Microbiota. Environ. Pollut. 2021, 269, 115994. [Google Scholar] [CrossRef]
- Abdelsalam, N.A.; Ramadan, A.T.; ElRakaiby, M.T.; Aziz, R.K. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front. Pharmacol 2020, 11, 390. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, S.H.; Kuznetsov, A.; Ananiev, V.; Asztalos, A.; Borodin, E.; Evgeniev, V.; Joukov, V.; Lotov, V.; Pannu, R.; Rudnev, D.; et al. Accessing NCBI Data Using the NCBI Sequence Viewer and Genome Data Viewer (GDV). Genome Res. 2020. [Google Scholar] [CrossRef]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A Web-Based Tool for Comprehensive Statistical, Visual and Meta-Analysis of Microbiome Data. Nucleic Acids Res. 2017, 45, W180–W188. [Google Scholar] [CrossRef]
- Riva, A.; Borgo, F.; Lassandro, C.; Verduci, E.; Morace, G.; Borghi, E.; Berry, D. Pediatric Obesity Is Associated with an Altered Gut Microbiota and Discordant Shifts in Firmicutes Populations. Environ. Microbiol. 2017, 19, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.K.; Doden, H.L.; Ridlon, J.M. Gut Feelings about Bacterial Steroid-17,20-Desmolase. Mol. Cell. Endocrinol. 2021, 525, 111174. [Google Scholar] [CrossRef] [PubMed]
- Eltoukhy, A.; Jia, Y.; Nahurira, R.; Abo-Kadoum, M.A.; Khokhar, I.; Wang, J.; Yan, Y. Biodegradation of Endocrine Disruptor Bisphenol A by Pseudomonas Putida Strain YC-AE1 Isolated from Polluted Soil, Guangdong, China. BMC Microbiol. 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Chen, J.; Ji, R.; Liu, Y.; Su, Y.; Guo, R. Degradation of Bisphenol S by a Bacterial Consortium Enriched from River Sediments. Bull. Environ. Contam. Toxicol. 2019, 103, 630–635. [Google Scholar] [CrossRef]
- Barrios-Estrada, C.; de Jesús Rostro-Alanis, M.; Parra, A.L.; Belleville, M.-P.; Sanchez-Marcano, J.; Iqbal, H.M.N.; Parra-Saldívar, R. Potentialities of Active Membranes with Immobilized Laccase for Bisphenol A Degradation. Int. J. Biol. Macromol. 2018, 108, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Gkrillas, A.; Dirven, H.; Papadopoulou, E.; Andreassen, M.; Hjertholm, H.; Husøy, T. Exposure Estimates of Phthalates and DINCH from Foods and Personal Care Products in Comparison with Biomonitoring Data in 24-Hour Urine from the Norwegian EuroMix Biomonitoring Study. Environ. Int. 2021, 155, 106598. [Google Scholar] [CrossRef]
- Monteagudo, C.; Robles-Aguilera, V.; Salcedo-Bellido, I.; Gálvez-Ontiveros, Y.; Samaniego-Sánchez, C.; Aguilera, M.; Zafra-Gómez, A.; Burgos, M.A.M.; Rivas, A. Dietary Exposure to Parabens and Body Mass Index in an Adolescent Spanish Population. Environ. Res. 2021, 201, 111548. [Google Scholar] [CrossRef]
- Vindenes, H.K.; Svanes, C.; Lygre, S.H.L.; Real, F.G.; Ringel-Kulka, T.; Bertelsen, R.J. Exposure to Environmental Phenols and Parabens, and Relation to Body Mass Index, Eczema and Respiratory Outcomes in the Norwegian RHINESSA Study. Environ. Health 2021, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Musser, J.M.B.; Gonzalez, R. Efficacy of an Anaerobic Swab Transport System to Maintain Aerobic and Anaerobic Microorganism Viability after Storage at −80 °C. J. VET Diagn. Investig. 2011, 23, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Gorzelak, M.A.; Gill, S.K.; Tasnim, N.; Ahmadi-Vand, Z.; Jay, M.; Gibson, D.L. Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLoS ONE 2015, 10, e0134802. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Sekiguchi, Y.; Hanada, S.; Nakamura, K.; Nomura, N.; Matsumura, M.; Kamagata, Y. Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved Cultivation-Based Techniques. Appl. Environ. Microbiol. 2005, 71, 2162–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A Taxonomically United Database of 16S RRNA Gene Sequences and Whole-Genome Assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef] [PubMed]
Species/Oxygen Tolerance | Culturing Media and Conditions * | |
---|---|---|
Firmicutes | Bacillus spp./Aer/AAn /Fan [25,43,44,45,46] | BCB38; BCB02; BCB03; BCB04; BCB05; BCB06; BCB08; BCB09; BCB10; COS01; COS03; MB01; MB02; TSB01; BHI01; BCB19; YCFA06; BCB23; COS09; TSB04; BCB07; YCFA02; MB03; TSB03; BCB18; BCB01; COS02; COS04; BHI02; CBA01; MRS02; BCB37; BCB33; BHI07; BCB36; BCB46; BCB14; BCB15; BCB12; BBCB22; BHI04; BCB13; YCFA01; MB04; BCB55 |
Blautia spp./SAn [44,45,46,47,48,49,50] | BHI05; BCB13; BCB15; BCB01; BCB03; BCB05; BCB07; BCB09; BCB10; COS02; MB02; TSB04; YCFA05; CBA01; BCB52; RM01; BCB11; CNA01; YCFA01; BCB28; BCB19; COS09; YCFA03; WC02; CBA02; GAM02; RCA02 | |
Clostridium spp./San [27,43,46,47,51,52,53] | BCB01; BCB03; BCB05; BCB07; BCB09; BCB10; COS04; MB02; BCB15; COS02; RM01; RCA01; BCB34; BCB39; CHRIS01; CBA01; BCB19; COS09; YCFA05; BCB13; TSB04; CBA02; YCFA01; SCM04; YCFA04; MB04; RM02; BCB49; BCB28; BCB25; CNA01; BCB17; BCB21; BCB50; BCB32; BCB02; BCB04; BCB11; WC01; BHI02; YCFA03; RCA02; WC02; BHI03; BCB33; BCB30; TSB02; BCB31; YCFA02; MRS02; RM03; COS03; TSB01; BCB22; COS08; MB03; TSB03; BCB06; MRS01; BHI01; BCB23; BCB12; BCB14; BCB16; BCB20 | |
Dialister spp./SAn [46] | BCB07; CHRIS01; SCM04; RM01; RM02; BCB11; BCB19; COS02; BCB01; BCB03; BCB05; BCB09; BCB10; COS04; MB02; YCFA01; MRS01 | |
Enterococcus spp./FAn [43,46,54] | CBA03; YCFA04; YCFA06; BCB04; BCB07; BCB06; BCB08; COS01; COS03; COS04; MB01; MB02; TSB01; YCFA01; CHRIS01; MRS01; SCM04; RM01; BCB23; BCB11; BCB17; BCB22; BCB19; BCB20; COS09; MB03; TSB03; TSB04; BCB10; RM02; BCB01; BCB03; COS02; BCB05; BCB09; BHI01; BCB02; CNA01; RM03; SCM01; YCFA02; RCA01; BCB15; BCB21; TSB02; WC01; BHI02; CBA01; MRS02; BCB13; BCB14; COS08; MB04; BCB12; BCB16; YCFA03; RCA02; WC02; BHI03; MRS03 | |
Eubacterium spp./SAn [43,46] | BCB07; SCM04; BCB15; MB02; BCB19; BCB01; BCB05; BCB09; COS02; COS04; RM01; RCA01; YCFA04; BCB03; BCB11; WC01; CBA01; COS09; BCB13; MB04 | |
Lactobacillus spp./AAn [46] | BCB07; COS04; SCM04; CNA01; BCB10; COS02; YCFA01; MRS01; RM01; BCB11; YCFA02; CHRIS01; BCB15; BCB19; COS09; BHI03; BCB02; BCB03; BCB04; BCB06; COS01; COS03; MB01; MB02; TSB01; BHI01; BCB13; RCA01; RM02; BCB23; RM03; SCM01; CBA01; MRS02; BCB01; BCB09; BCB05; WC01; BHI02 | |
Megasphaera spp./SAn [46,55] | COS02; COS04; RM01; BCB07; YCFA01; BCB09; BCB10; SCM04; BCB31 | |
Peptoniphilus spp./San [25,27,46] | CHRIS01; BCB01; BCB05; BCB07; MB02; BCB10; COS02; COS04; RM02; BCB35; YCFA01; MRS01; RM01; BCB53; BCB15; BCB03; BCB09; SCM04; BCB11; BCB38; BCB40; YCFA03 | |
Ruminococcus spp./SAn [25,27,46,47] | YCFA05; BCB11; RM03; SCM01/04; YCFA02; CBA01; BCB05/11/13/15/40/41; BCB19; BCB03; BCB07; BCB09; COS02; RCA02; BHI03; RM01; RM02; TSB04; YCFA01; CHRIS01; CNA01 | |
Staphylococcus spp./FAn [43,46] | YCFA06; BCB01; BCB02; BCB03; BCB07; BCB06, BCB10; COS01; COS04; MB01; MB02; YCFA01; RM01; RM02; BCB11; BCB15; BCB19; COS09; MB04; BCB05; BCB14; BCB17; BCB20; COS08; MB03; TSB03; BCB08; BCB09; CHRIS01; BCB04; COS02; COS03; BHI01; CBA01 | |
Streptococcus spp./FAn [43,46] | BCB07; YCFA04; BCB04; BCB05; BCB10; MB02; RM01; CBA01; BCB06; COS02; BHI01: YCFA01; BCB02; BCB09; COS01; COS03; BCB03; COS04; BCB23; CNA01; BCB01; CHRIS01; SCM04; BHI02; BCB08; TSB01; MRS01; RCA01; WC01; YCFA06; BCB11 | |
Bacteroidetes | Alistipes spp./SAn [25,27,43,46,47] | YCFA05; BCB01; BCB03; BCB05; BCB07; BCB09; BCB10; COS02; COS04; RM02; BCB11; CNA01; YCFA02; WC01; CBA01; BCB19; YCFA01; CHRIS01; SCM04; BCB48; MB02; BHI02; CPVX01; BCB13; BCB24; MRS01; TSB04; YCFA04; RCA01; BRU02; SCM01; BCB15; COS09; MB04; SCM02; RM03; BCB27 |
Bacteroides spp./SAn [27,43,46] | BCB01; BCB03; BCB05; BCB07; BCB09; BCB10; COS02; COS04; MB02; BCB11; SCM01; YCFA02; RCA01; WC01; BHI02; CBA01; MRS02; BCB19; RM03; BCB13; CBA02; SCM04; YCFA04; CNA01; RM01; TSB04; BCB15; RM02; YCFA01; CHRIS01; MB04; TSB03; WC02; COS09; YCFA03; TSB02 | |
Butyricimonas spp./SAn [27,43,46] | BCB41; BCB01; BCB03; BCB05; BCB07; BCB09; BCB10; COS02; MB02; CBA01; YCFA04; CHRIS01; SCM04; RM02; BCB11; SCM01; COS09; YCFA02; CNA01; BCB19 | |
Parabacteroides spp. /SAn/[43,46] | BCB05; BCB07; COS02; COS04; SCM04; RM02; CBA01; BCB19; YCFA04; CHRIS01; RM01; BCB11; CNA01; SCM01; BCB15; TSB04; BCB01; BCB03; BCB09; BCB10; BHI01; WC01; BHI02; YCFA01; MB02; YCFA02; RCA01 | |
Prevotella spp./SAn [43,46,47,56] | BCB10; COS02; RM01; BCB05; BCB01; BCB07; BCB09; YCFA01; CHRIS01; WC01; BCB11; CNA01; CBA01; YCFA05; SCM01; SCM04; CBA04; BRU03; BCB19; BCB03 | |
Actinobacteria | Actinomyces spp. AAn [25,27,47] | BCB03; BCB09; YCFA02; CBA01; COS09; BCB19; BCB07; MB02; BCB48; BCB11; BCB42 |
Bifidobacterium spp. /An/SAn [43,46] | BCB07; BCB10; YCFA01; MRS01; SCM04; RM01; RM02; BCB11; CNA01; RM03; SCM01; CBA01; BCB15; BCB19; COS09; BCB01; BCB03; BCB05; YCFA02; RCA01; WC01; BHI02; COS02; MB02; CHRIS01; MRS02; BCB13; BCB17; YCFA03; WC02; BHI03; CBA02; MRS03; RCA02; BCB09; COS04; YCFA04; BCB23 | |
Collinsella spp./SAn [27,43,46] | YCFA04; BCB05; BCB07; COS02; YCFA01; CHRIS01; RM01; BCB11; CNA01; RM03; SCM01; CBA01; BCB13; BCB15; BCB19; SCM04; RM02; BCB01; CBA02; MRS02; BCB41; MB07; BCB10; YCFA02; BCB23; COS09 | |
Corynebacterium spp./AAn [27,46,57] | SCM04; RM02; BCB11; BCB23; CPVX02; COS02; BCB44; BHI01; BCB07; COS04; BCB10; MRS01; CBA03 | |
Propionibacterium spp. /AAn [46] | BCB07; YCFA01; RM02; BCB11; BCB19; MB04; TSB04; YCFA03; CHRIS01; MRS01; SCM04; RM01; BCB09; MRS02; BCB02; BCB06; BCB10; MB01; MB02 | |
α-P | Enterobacter spp./AAn [43,46,58] | BHI08; COS04; MB02; RM01; RM02; YCFA04; MRS01; BCB23; YCFA06; BCB11; BCB02; BCB03; BCB04; BCB07; BCB09; COS01; COS02; MB01; BHI01 |
Normal-Weight Children * | Overweight/Obese Children * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | ||||||||
ID | BMI | Age | ID | BMI | Age | ID | BMI | Age | ID | BMI | Age |
1 | 17.1 | 7 | 13 | 13.8 | 6 | 23 | 19.6 | 7 | 35 | 22.3 | 9 |
2 | 18.4 | 12 | 14 | 13.2 | 5 | 24 | 20.7 | 10 | 36 | 22.1 | 8 |
3 | 15.6 | 6 | 15 | 15.9 | 5 | 25 | 21.2 | 8 | 37 | 25.4 | 10 |
4 | 15.6 | 6 | 16 | 15.3 | 7 | 26 | 23.9 | 8 | 38 | 17.4 | 6 |
5 | 13.9 | 8 | 17 | 15.6 | 7 | 27 | 18.2 | 8 | 39 | 20.6 | 6 |
6 | 13.8 | 6 | 18 | 14.1 | 5 | 28 | 22.6 | 12 | 40 | 23.6 | 11 |
7 | 17.1 | 6 | 19 | 14.7 | 4 | 29 | 18.4 | 11 | 41 | 24.9 | 6 |
8 | 14.1 | 4 | 20 | 14.5 | 7 | 30 | 25.3 | 10 | 42 | 23.9 | 11 |
9 | 15.4 | 6 | 21 | 18.0 | 9 | 31 | 26.8 | 10 | 43 | 21.4 | 5 |
10 | 14.4 | 10 | 22 | 16.5 | 10 | 32 | 29.9 | 7 | 44 | 27.1 | 8 |
11 | 13.4 | 6 | 33 | 26.9 | 11 | 45 | 25.6 | 9 | |||
12 | 16.3 | 6 | 34 | 21.4 | 9 | 46 | 23.5 | 9 | |||
Means ± SD 15.4 ± 1.6 | 6.9 ± 2.2 | 15.2 ± 1.4 | 6.5 ± 1.9 | 22.9 ± 3.7 | 9.3 ± 1.7 | 23.1 ± 2.6 | 8.2 ± 2.0 |
Closest Taxa | Microbiota Isolates from Normal-Weight | Microbiota Isolates from Overweight/Obese | ||||
---|---|---|---|---|---|---|
Phylum/Species | BPA [ppm] | Media | % | BPA [ppm] | Media | % |
Firmicutes | ||||||
Bacillus amyloliquefaciens | 100 | BHI | 1.1 | 20 | RCM | 1.0 |
Bacillus velezensis | 50 | BHI/MRS | 11.5 | 50 | BHI/MRS | 12.4 |
Bacillus subtilis | 50 | BHI/MRS | 3.4 | 50 | GAMg | 1.9 |
Bacillus nealsonii | 50 | GAMg | 1.1 | - | - | - |
Bacillus altitudinis | 50 | BHI | 2.3 | 20 | GAMg | 1.0 |
Bacillus pacificus | - | - | - | 50 | GAMa | 1.0 |
Bacillus cereus | - | - | - | 20 | MRS | 1.0 |
Bacillus paramycoides | - | - | - | 20 | RCM | 1.0 |
Bacillus circulans | - | - | - | 50 | MRS | 1.0 |
Bacillus safensis | - | - | - | 20 | BHI | 1.9 |
Bacillus licheniformis | - | - | - | 20 | MRS | 1.0 |
Lacticaseibacillus paracasei | 10 | RCM | 1.1 | - | - | - |
Lacticaseibacillus casei | - | - | - | 20 | MRS | 1.9 |
Latilactobacillus sakei | - | - | - | 10 | MRS | 3.8 |
Lysinibacillus fusiformis | 50 | MRS | 2.3 (1) | 50 | BHI | 1.0 |
Bifidobacterium animalis | 20 | MRS | 1.1 (19) | - | - | - |
Enterococcus faecium | 50 | BHI/MRS/GAMg/RCM | 14.9 | 20/50 | BHI/MRS/GAMa | 18.1 |
Enterococcus faecalis | 20 | BHI | 5.7 | 20 | BHI/RCM | 2.9 |
Enterococcus durans | 50 | GAMg | 1.1 | - | - | - |
Enterococcus mundtii | 20 | GAMg | 1.1 | - | - | - |
Enterococcus lactis | 20 | RCM | 1.1 | 50 | BHI | 3.8 |
Enterococcus hirae | 50 | RCM | 3.4 | 20 | BHI | 2.9 |
Enterococcus galinarum | - | - | - | 50 | BHI | 1.0 |
Staphylococcus capitis | 20 | BHI | 1.1 | 10 | MRS | 1.0 |
Staphylococcus caprae | 50 | MRS | 2.3 | 50 | BHI | 1.0 |
Staphylococcus cohnii | 50 | BHI/GAMa | 2.3 | - | - | - |
Staphylococcus epidermidis | 50 | RCM | 3.4 | 20/50 | BHI/RCM/GAMa | 4.8 |
Staphylococcus saprophyticus | 50 | BHI | 1.1 | 20 | BHI | 1.0 |
Turicibacter sanguinis | 50 | BHI | 1.1 | 50 | BHI | 1.0 |
Clostridium tertium | 20 | BHI | 1.1 | 50 | BHI | 1.0 |
Clostridium symbiosis | 20 | BHI | 1.1 | - | - | - |
Clostridium paraputrificum | 50 | BHI/GAMa | 5.7 | 50 | GAMg | 4.8 |
Clostridium disporicum | - | - | - | 20 | GAMg | 1.0 |
Paraclostridium bifermentans | 50 | RCM | 1.1 | - | - | - |
Proteobacteria | ||||||
Escherichia coli | 20/50 | BHI/MRS/GAMa | 11.5 | 20/50 | BHI/MRS | 13.3 |
Escherichia fergusonii | 20 | BHI | 1.1 | 10 | BHI | 1.0 |
Shigella flexneri | - | - | - | 50 | RCM | 1.0 |
Pseudomonas synxantha | 20 | GAMg | 1.1 | - | - | - |
Pseudomonas parafulva | 50 | GAMa | 1.1 | 50 | MRS | 1.0 |
Enterobacter hormaechei | 50 | RCM | 1.1 | - | - | - |
Enterobacter cancerogenus | - | - | - | 20 | RCM | 1.0 |
Acinetobacter radioresistens | 20 | RCM | 1.1 | 10 | BHI | 1.9 |
Raoultella ornithinolytica | - | - | - | 50 | BHI | 1.0 |
Burkholderia contaminans | - | - | - | 20 | MRS | 1.0 |
Actinobacteria | ||||||
Rothia dentocariosa | 100 | BHI | 1.1 | - | - | - |
Microbacterium paraoxydans | 20/50 | BHI | 4.6 | - | - | - |
Microbacterium oxydans | - | - | - | 50 | BHI | 1.0 |
Micrococcus luteus | - | - | - | 20 | BHI | 1.0 |
Kocuria rhizophila | - | - | - | 20 | BHI | 1.0 |
Uncultured bacteria | 20/100 | RCM/BHI | 4.6 | 20/50 | BHI | 2.9 |
Closest Taxa | Microbiota Isolates from Normal-Weight | Microbiota Isolates from Overweight/Obese | ||||
---|---|---|---|---|---|---|
Sporobiota Species | BPA [ppm] | Media | % | BPA [ppm] | Media | % |
Bacillus amyloliquefaciens | 20/50 | GAMa/GAMg | 10.3 | 50 | RCM/GAMa | 12.5 |
Bacillus vallismortis | - | - | - | 50 | RCM | 6.3 |
Bacillus velezensis | 20/50 | GAMa | 6.9 | - | - | - |
Bacillus pumilus | 50 | GAMa | 3.4 | - | - | - |
Bacillus subtilis | 50 | GAMa | 3.4 | - | - | - |
Bacillus licheniformis | 20 | RCM | 3.4 | - | - | - |
Bacillus paralicheniformis | - | - | - | 50 | GAMg | 6.3 |
Clostridium disporicum | 50 | GAMg | 3.4 | - | - | - |
Clostridium paraputrificum | 20/50 | RCM/GAMa/GAMg | 13.8 | 20/50 | GAMa/GAMg | 31.3 |
Clostridium perfringens | 50 | GAMa | 3.4 | 20 | GAMg | 6.3 |
Clostridium symbiosum | 20 | RCM | 3.4 | - | - | - |
Clostridium tepidum | - | - | - | 20 | GAMa | 6.3 |
Paraclostridium benzoelyticum | 50 | GAMa/GAMg | 10.3 | 20/50 | GAMg | 12.5 |
Paeniclostridium sordellii | 20/50 | RCM/GAMa/GAMg | 34.5 | - | - | - |
Uncultured bacteria | 20 | GAMa | 3.4 | 50 | GAMa/GAMg/RCM | 18.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Moreno, A.; Ruiz-Moreno, Á.; Pardo-Cacho, J.; Cerk, K.; Torres-Sánchez, A.; Ortiz, P.; Úbeda, M.; Aguilera, M. Culturing and Molecular Approaches for Identifying Microbiota Taxa Impacting Children’s Obesogenic Phenotypes Related to Xenobiotic Dietary Exposure. Nutrients 2022, 14, 241. https://doi.org/10.3390/nu14020241
López-Moreno A, Ruiz-Moreno Á, Pardo-Cacho J, Cerk K, Torres-Sánchez A, Ortiz P, Úbeda M, Aguilera M. Culturing and Molecular Approaches for Identifying Microbiota Taxa Impacting Children’s Obesogenic Phenotypes Related to Xenobiotic Dietary Exposure. Nutrients. 2022; 14(2):241. https://doi.org/10.3390/nu14020241
Chicago/Turabian StyleLópez-Moreno, Ana, Ángel Ruiz-Moreno, Jesús Pardo-Cacho, Klara Cerk, Alfonso Torres-Sánchez, Pilar Ortiz, Marina Úbeda, and Margarita Aguilera. 2022. "Culturing and Molecular Approaches for Identifying Microbiota Taxa Impacting Children’s Obesogenic Phenotypes Related to Xenobiotic Dietary Exposure" Nutrients 14, no. 2: 241. https://doi.org/10.3390/nu14020241
APA StyleLópez-Moreno, A., Ruiz-Moreno, Á., Pardo-Cacho, J., Cerk, K., Torres-Sánchez, A., Ortiz, P., Úbeda, M., & Aguilera, M. (2022). Culturing and Molecular Approaches for Identifying Microbiota Taxa Impacting Children’s Obesogenic Phenotypes Related to Xenobiotic Dietary Exposure. Nutrients, 14(2), 241. https://doi.org/10.3390/nu14020241