Fatty Acids and Frailty: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources
2.3. Selection of Instrumental Variables
2.4. Frailty
2.5. Statistical Analysis
3. Results
3.1. Summary Statistics
3.2. Main Results
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruxton, C.H.; Derbyshire, E.; Toribio-Mateas, M. Role of fatty acids and micronutrients in healthy ageing: A systematic review of randomised controlled trials set in the context of European dietary surveys of older adults. J. Hum. Nutr. Diet. 2016, 29, 308–324. [Google Scholar] [CrossRef]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef]
- Ticinesi, A.; Meschi, T.; Lauretani, F.; Felis, G.; Franchi, F.; Pedrolli, C.; Barichella, M.; Benati, G.; Di Nuzzo, S.; Ceda, G.P.; et al. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins. Nutrients 2016, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- Yurko-Mauro, K.; Alexander, D.D.; Van Elswyk, M.E. Docosahexaenoic acid and adult memory: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0120391. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.H.; Chiu, W.C.; Hsu, Y.P.; Lo, Y.L.; Wang, Y.H. Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients 2020, 12, 3739. [Google Scholar] [CrossRef] [PubMed]
- Strike, S.C.; Carlisle, A.; Gibson, E.L.; Dyall, S.C. A High Omega-3 Fatty Acid Multinutrient Supplement Benefits Cognition and Mobility in Older Women: A Randomized, Double-blind, Placebo-controlled Pilot Study. J. Gerontol. A: Biol. Sci. Med. Sci. 2016, 71, 236–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández Morante, J.J.; Gómez Martínez, C.; Morillas-Ruiz, J.M. Dietary Factors Associated with Frailty in Old Adults: A Review of Nutritional Interventions to Prevent Frailty Development. Nutrients 2019, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Won, C.W.; Park, Y. Association Between Erythrocyte Levels of n-3 Polyunsaturated Fatty Acids and Risk of Frailty in Community-Dwelling Older Adults: The Korean Frailty and Aging Cohort Study. J. Gerontol. A: Biol. Sci. Med. Sci. 2021, 76, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Insausti, H.; Pérez-Tasigchana, R.F.; López-García, E.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Macronutrients Intake and Incident Frailty in Older Adults: A Prospective Cohort Study. J. Gerontol. A: Biol. Sci. Med. Sci. 2016, 71, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Jayanama, K.; Theou, O.; Godin, J.; Cahill, L.; Rockwood, K. Association of fatty acid consumption with frailty and mortality among middle-aged and older adults. Nutrition 2020, 70, 110610. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Tintle, N.L.; Imamura, F.; Qian, F.; Korat, A.V.A.; Marklund, M.; Djoussé, L.; Bassett, J.K.; Carmichael, P.H.; Chen, Y.Y.; et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat. Commun. 2021, 12, 2329. [Google Scholar] [CrossRef]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Bäck, M.; Bruzelius, M.; Mason, A.M.; Burgess, S.; Larsson, S. Plasma Phospholipid Fatty Acids, FADS1 and Risk of 15 Cardiovascular Diseases: A Mendelian Randomisation Study. Nutrients 2019, 11, 3001. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Si, S.; Li, Y.; Li, W.; Chen, X.; Liu, C.; Li, J.; Wang, B.; Hou, L.; Liu, Y.; et al. Roles for circulating polyunsaturated fatty acids in ischemic stroke and modifiable factors: A Mendelian randomization study. Nutr. J. 2020, 19, 70. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.; Kim, Y.; Lee, Y.; Kang, M.; Kim, K.; Kim, Y.; Han, S.; Lee, H.; Lee, J.; et al. Causal Effects of Serum Levels of n-3 or n-6 Polyunsaturated Fatty Acids on Coronary Artery Disease: Mendelian Randomization Study. Nutrients 2021, 13, 1490. [Google Scholar] [CrossRef]
- Ma, M.; Yang, F.; Wang, Z.; Bao, Q.; Shen, J.; Xie, X. Association of plasma polyunsaturated fatty acids with arterial blood pressure: A Mendelian randomization study. Medicine 2021, 100, e24359. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, J.V.; Schooling, C.M. The associations of plasma phospholipid arachidonic acid with cardiovascular diseases: A Mendelian randomization study. EBioMedicine 2021, 63, 103189. [Google Scholar] [CrossRef] [PubMed]
- May-Wilson, S.; Sud, A.; Law, P.J.; Palin, K.; Tuupanen, S.; Gylfe, A.; Hanninen, U.A.; Cajuso, T.; Tanskanen, T.; Kondelin, J.; et al. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. Eur. J. Cancer 2017, 84, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.M.; Jylhävä, J.; Pedersen, N.L.; Hägg, S. A Frailty Index for UK Biobank Participants. J. Gerontol. A: Biol. Sci. Med. Sci. 2019, 74, 582–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Lemaitre, R.N.; Manichaikul, A.; Guan, W.; Tanaka, T.; Foy, M.; Kabagambe, E.K.; Djousse, L.; Siscovick, D.; Fretts, A.M.; et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: Results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ. Cardiovasc. Genet. 2013, 6, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Steffen, B.T.; Lemaitre, R.N.; Wu, J.H.Y.; Tanaka, T.; Manichaikul, A.; Foy, M.; Rich, S.S.; Wang, L.; Nettleton, J.A.; et al. Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. Circ. Cardiovasc. Genet. 2014, 7, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Lemaitre, R.N.; Tanaka, T.; Tang, W.; Manichaikul, A.; Foy, M.; Kabagambe, E.K.; Nettleton, J.A.; King, I.B.; Weng, L.C.; Bhattacharya, S.; et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: A meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 2011, 7, e1002193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyanage, U.E.; Law, M.H.; Ong, J.S.; Cust, A.E.; Mann, G.J.; Ward, S.V.; Gharahkhani, P.; Iles, M.M.; MacGregor, S. Polyunsaturated fatty acids and risk of melanoma: A Mendelian randomisation analysis. Int. J. Cancer 2018, 143, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr. 2008, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iggman, D.; Risérus, U. Role of different dietary saturated fatty acids for cardiometabolic risk. Clin. Lipidol. 2011, 6, 209–223. [Google Scholar] [CrossRef]
- Verspoor, E.; Voortman, T.; van Rooij, F.J.A.; Rivadeneira, F.; Franco, O.H.; Kiefte-de Jong, J.C.; Schoufour, J.D. Macronutrient intake and frailty: The Rotterdam Study. Eur. J. Nutr. 2020, 59, 2919–2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghi, N.; Yaghi, C.; Abifadel, M.; Boulos, C.; Feart, C. Dietary Patterns and Risk Factors of Frailty in Lebanese Older Adults. Nutrients 2021, 13, 2188. [Google Scholar] [CrossRef]
- León-Muñoz, L.M.; García-Esquinas, E.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. Major dietary patterns and risk of frailty in older adults: A prospective cohort study. BMC Med. 2015, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Mazidi, M.; Mikhailidis, D.P.; Sattar, N.; Toth, P.P.; Judd, S.; Blaha, M.J.; Hernandez, A.V.; Penson, P.E.; Banach, M. Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,164,029 participants. Clin. Nutr. 2020, 39, 3677–3686. [Google Scholar] [CrossRef]
- Mozaffari, H.; Djafarian, K.; Mofrad, M.D.; Shab-Bidar, S. Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: A systematic review and meta-analysis of observational studies. Osteoporos Int. 2018, 29, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Barnard, N.D.; Bunner, A.E.; Agarwal, U. Saturated and trans fats and dementia: A systematic review. Neurobiol. Aging 2014, 35 (Suppl. S2), S65–S73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Lemming, E.W.; Michaëlsson, K.; Larsson, S.C. Plasma phospholipid fatty acids, bone mineral density and fracture risk: Evidence from a Mendelian randomization study. Clin. Nutr. 2020, 39, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Praagman, J.; Vissers, L.E.T.; Mulligan, A.A.; Laursen, A.S.D.; Beulens, J.W.J.; van der Schouw, Y.T.; Wareham, N.J.; Hansen, C.P.; Khaw, K.T.; Jakobsen, M.U.; et al. Consumption of individual saturated fatty acids and the risk of myocardial infarction in a UK and a Danish cohort. Int. J. Cardiol. 2019, 279, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aglago, E.K.; Murphy, N.; Huybrechts, I.; Nicolas, G.; Casagrande, C.; Fedirko, V.; Weiderpass, E.; Rothwell, J.A.; Dahm, C.C.; Olsen, A.; et al. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Int. J. Cancer 2021, 149, 865–882. [Google Scholar] [CrossRef]
- Fretts, A.M.; Mozaffarian, D.; Siscovick, D.S.; King, I.B.; McKnight, B.; Psaty, B.M.; Rimm, E.B.; Sitlani, C.; Sacks, F.M.; Song, X.; et al. Associations of Plasma Phospholipid SFAs with Total and Cause-Specific Mortality in Older Adults Differ According to SFA Chain Length. J. Nutr. 2016, 146, 298–305. [Google Scholar] [CrossRef] [Green Version]
- van Rooijen, M.A.; Mensink, R.P. Palmitic Acid Versus Stearic Acid: Effects of Interesterification and Intakes on Cardiometabolic Risk Markers—A Systematic Review. Nutrients 2020, 12, 615. [Google Scholar] [CrossRef] [Green Version]
Effect Allele | Other Allele | Fatty Acids a | Frailty Index b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Traits | SNPs | Chr | EAF | β | SE | p | β | SE | p | ||
PA, 16:0 | rs2391388 | 1 | C | A | 0.45 | 0.178 | 0.027 | 2.72 × 10−11 | −0.011 | 0.017 | 0.518 |
SA, 18:0 | rs6675668 | 1 | G | T | 0.51 | 0.165 | 0.019 | 2.16 × 10−18 | 0.016 | 0.017 | 0.360 |
rs11119805 | 1 | T | A | 0.88 | 0.168 | 0.028 | 2.80 × 10−9 | −0.023 | 0.026 | 0.371 | |
rs102275 | 11 | T | C | 0.68 | 0.180 | 0.019 | 1.33 × 10−20 | 0.070 | 0.018 | 1.00 × 10−4 | |
POA, 16:1n−7 | rs780093 | 2 | T | C | 0.41 | 0.020 | 0.003 | 9.80 × 10−10 | 0.045 | 0.018 | 0.011 |
rs6722456 | 2 | G | A | 0.98 | 0.048 | 0.009 | 4.12 × 10−8 | −0.028 | 0.058 | 0.629 | |
rs603424 | 10 | G | A | 0.81 | 0.033 | 0.004 | 5.69 × 10−15 | −0.049 | 0.023 | 0.033 | |
rs7099965 | 10 | G | A | 0.22 | 0.023 | 0.004 | 6.96 × 10−9 | −0.041 | 0.021 | 0.048 | |
rs102275 | 11 | C | T | 0.33 | 0.024 | 0.003 | 6.60 × 10−13 | −0.070 | 0.018 | 1.00 × 10−4 | |
OA, 18:1n−9 | rs102275 | 11 | C | T | 0.33 | 0.230 | 0.019 | 2.19 × 10−32 | −0.070 | 0.018 | 1.00 × 10−4 |
LA, 18:2n6 | rs10740118 | 10 | G | C | 0.56 | 0.248 | 0.043 | 8.08 × 10−9 | 0.065 | 0.017 | 2.00 × 10−4 |
rs174547 | 11 | C | T | 0.32 | 1.474 | 0.042 | 4.98 × 10−274 | −0.070 | 0.018 | 1.00 × 10−4 | |
rs16966952 | 16 | G | A | 0.69 | 0.351 | 0.044 | 1.23 × 10−15 | −0.023 | 0.019 | 0.223 | |
AA, 20:4n6 | rs174547 | 11 | T | C | 0.68 | 1.691 | 0.025 | 3.00 × 10−971 | 0.070 | 0.018 | 1.00 × 10−4 |
rs16966952 | 16 | G | A | 0.69 | 0.199 | 0.031 | 2.43 × 10−10 | −0.023 | 0.019 | 0.223 | |
ALA, 18:3n3 | rs174547 | 11 | C | T | 0.33 | 0.016 | 0.001 | 3.47 × 10−64 | −0.070 | 0.018 | 1.00 × 10−4 |
EPA, 20:5n3 | rs3798713 | 6 | C | G | 0.43 | 0.035 | 0.005 | 1.93 × 10−12 | 0.014 | 0.017 | 0.434 |
rs174538 | 11 | G | A | 0.72 | 0.083 | 0.005 | 5.37 × 10−58 | 0.066 | 0.019 | 4.00 × 10−4 | |
DPA, 22:5n3 | rs780094 | 2 | T | C | 0.41 | 0.017 | 0.003 | 9.04 × 10−9 | 0.044 | 0.018 | 0.012 |
rs3734398 | 6 | C | T | 0.43 | 0.040 | 0.003 | 9.61 × 10−44 | 0.011 | 0.017 | 0.516 | |
rs174547 | 11 | T | C | 0.67 | 0.075 | 0.003 | 3.79 × 10−154 | 0.070 | 0.018 | 1.00 × 10−4 | |
DHA, 22:6n3 | rs2236212 | 6 | G | C | 0.57 | 0.113 | 0.014 | 1.26 × 10−15 | −0.010 | 0.017 | 0.571 |
Effect Allele | Other Allele | Fatty Acids a | Frailty Index b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Traits | SNPs | Chr | EAF | β | SE | p | β | SE | p | ||
SA, 18:0 | rs6675668 | 1 | G | T | 0.51 | 0.165 | 0.019 | 2.16 × 10−18 | 0.016 | 0.017 | 0.360 |
rs1803468 c | 1 | G | A | 0.88 | 0.170 | 0.029 | 3.681 × 10−9 | −0.012 | 0.028 | 0.666 | |
rs102275 | 11 | T | C | 0.68 | 0.180 | 0.019 | 1.33 × 10−20 | 0.070 | 0.018 | 1.00 × 10−4 | |
LA, 18:2n6 | rs10761741 c | 10 | G | T | 0.56 | 0.251 | 0.044 | 8.77 × 10−9 | 0.066 | 0.019 | 4.00 × 10−4 |
rs174547 | 11 | C | T | 0.32 | 1.474 | 0.042 | 4.98 × 10−274 | −0.070 | 0.018 | 1.00 × 10−4 | |
rs16966952 | 16 | G | A | 0.69 | 0.351 | 0.044 | 1.23 × 10−15 | −0.023 | 0.019 | 0.223 | |
EPA, 20:5n3 | rs4713165 c | 6 | C | T | 0.42 | 0.037 | 0.006 | 4.84 × 10−11 | 0.006 | 0.019 | 0.753 |
rs174538 | 11 | G | A | 0.72 | 0.083 | 0.005 | 5.37 × 10−58 | 0.066 | 0.019 | 4.00 × 10−4 |
MR | Multivariate MR a | |||||||
---|---|---|---|---|---|---|---|---|
β | (95%CI) | p | β | (95%CI) | p | |||
Non-PUFAs | ||||||||
Saturated fatty acids | ||||||||
Palmitic acid (16:0) | −0.063 | (−0.255, 0.129) | 0.518 | 0.288 | (0.128, 0.447) | <0.001 | ||
Stearic acid (18:0) | 0.178 | (0.050, 0.307) | 0.007 | 0.361 | (0.155, 0.567) | 0.001 | ||
Mono-unsaturated fatty acids | ||||||||
Palmitoleic acid (16:1n-7) | −1.127 | (−1.868, −0.387) | 0.003 | 0.026 | (−1.083, 1.135) | 0.963 | ||
Oleic acid (18:1n-9) | −0.304 | (−0.458, −0.150) | <0.001 | −0.086 | (−0.330, 0.158) | 0.488 | ||
PUFAs | ||||||||
n-6 PUFAs | ||||||||
Linoleic acid (18:2n6) | −0.039 | (−0.063, −0.016) | 0.001 | 1.075 | (−1.549, 3.698) | 0.422 | ||
Arachidonic acid (20:4n6) | 0.039 | (0.018, 0.060) | <0.001 | −0.266 | (−0.937, 0.406) | 0.438 | ||
n-3 PUFAs | ||||||||
α-Linolenic acid (18:3n3) | −4.379 | (−6.615, −2.143) | <0.001 | −44.36 | (−186.03, 97.32) | 0.539 | ||
Eicosapentaenoic acid (20:5n3) | 0.722 | (0.323, 1.122) | <0.001 | −7.865 | (−50.28, 34.55) | 0.716 | ||
Docosapentaenoic acid (22:5n3) | 0.849 | (0.442, 1.255) | <0.001 | 23.09 | (−51.07, 97.25) | 0.542 | ||
Docosahexaenoic acid (22:6n3) | −0.088 | (−0.390, 0.215) | 0.571 | 4.482 | (−5.569, 14.533) | 0.382 |
MR | Multivariate MR a | |||||
---|---|---|---|---|---|---|
β | (95%CI) | p | β | (95%CI) | p | |
Stearic acid (18:0) | 0.177 | (0.049, 0.305) | 0.007 | 0.360 | (0.154, 0.566) | 0.001 |
Linoleic acid (18:2n6) | −0.039 | (−0.062, −0.016) | 0.001 | −0.046 | (−0.927, 0.835) | 0.919 |
Eicosapentaenoic acid (20:5n3) | 0.658 | (0.263, 1.054) | 0.001 | 9.832 | (−3.754, 23.417) | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomata, Y.; Wang, Y.; Hägg, S.; Jylhävä, J. Fatty Acids and Frailty: A Mendelian Randomization Study. Nutrients 2021, 13, 3539. https://doi.org/10.3390/nu13103539
Tomata Y, Wang Y, Hägg S, Jylhävä J. Fatty Acids and Frailty: A Mendelian Randomization Study. Nutrients. 2021; 13(10):3539. https://doi.org/10.3390/nu13103539
Chicago/Turabian StyleTomata, Yasutake, Yunzhang Wang, Sara Hägg, and Juulia Jylhävä. 2021. "Fatty Acids and Frailty: A Mendelian Randomization Study" Nutrients 13, no. 10: 3539. https://doi.org/10.3390/nu13103539
APA StyleTomata, Y., Wang, Y., Hägg, S., & Jylhävä, J. (2021). Fatty Acids and Frailty: A Mendelian Randomization Study. Nutrients, 13(10), 3539. https://doi.org/10.3390/nu13103539