Plant-Based Dietary Practices and Socioeconomic Factors That Influence Anemia in India
Abstract
:1. Introduction
2. Iron Deficiency Anemia: The Indian Context
2.1. Dietary Trends
2.2. The Contribution of Cooking Practices to Iron Deficiency Anemia in India
2.3. Socioeconomic Etiologies
2.4. Consequences of Iron Deficiency in Pregnancy
2.5. The Contribution of Infant Complementary Feeding Practices to Iron Deficiency Anemia in India
2.6. The Relationship between Iron Deficiency and Lead Toxicity
2.7. Laboratory Diagnostic Biomarkers and On-Field Practices
3. Management Strategies
3.1. Government Iron Supplementation Programs
3.2. Food-Based Approaches
4. Modulators of Iron Bioavailability
4.1. Dietary Inhibitors of Iron Absorption
4.2. Dietary Promoters of Iron Absorption
4.3. Influence of Physiologic Factors on Iron Absorption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonides, A.; Schoonderwoerd, A.C.; Scholz, G.; Berg, B.M.; Nordquist, R.E.; van der Staay, F.J. Pre-Weaning Dietary Iron Deficiency Impairs Spatial Learning and Memory in the Cognitive Holeboard Task in Piglets. Front. Behav. Neurosci. 2015, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, J.R.; de las Cagigas, A.; Rodríguez, R. Micronutrient Deficiencies in Developing and Affluent Countries. Eur. J. Clin. Nutr. 2003, 57, S70–S72. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (U.S.) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Zimmermann, M.B.; Hurrell, R.F. Nutritional Iron Deficiency. Lancet 2007, 370, 511–520. [Google Scholar] [CrossRef]
- Camaschella, C. Iron Deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The Global Prevalence of Anaemia in 2011; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Dubé, C.; Rostom, A.; Sy, R.; Cranney, A.; Saloojee, N.; Garritty, C.; Sampson, M.; Zhang, L.; Yazdi, F.; Mamaladze, V.; et al. The Prevalence of Celiac Disease in Average-Risk and at-Risk Western European Populations: A Systematic Review. Gastroenterology 2005, 128, S57–S67. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and Its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Semba, R.D.; Bloem, M.W. The Anemia of Vitamin A Deficiency: Epidemiology and Pathogenesis. Eur. J. Clin. Nutr. 2002, 56, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, M.A.; Melamed, M.L.; Kumar, J.; Roy, C.N.; Miller, E.R.; Furth, S.L.; Fadrowski, J.J. Vitamin D, Race, and Risk for Anemia in Children. J. Pediatr. 2014, 164, 153–158.e1. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.J.; Lac, P.T.; Liu, I.L.A.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D Deficiency and Anemia: A Cross-Sectional Study. Ann. Hematol. 2010, 89, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Plessow, R.; Arora, N.K.; Brunner, B.; Tzogiou, C.; Eichler, K.; Brügger, U.; Wieser, S. Social Costs of Iron Deficiency Anemia in 6–59-Month-Old Children in India. PLoS ONE 2015, 10, e0136581. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Ghosh, S.; Varghese, J.S.; Sachdev, H.S.; Kurpad, A.V.; Thomas, T. Dietary Iron Intake and Anemia Are Weakly Associated, Limiting Effective Iron Fortification Strategies in India. J. Nutr. 2019, 149, 831–839. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Swaminathan, M.S. Hunger in Africa: The Link between Unhealthy People and Unhealthy Soils. Lancet 2005, 365, 442–444. [Google Scholar] [CrossRef]
- Iips, I. National Family Health Survey (NFHS-4) 2015-2016; International Institute for Population Sciences (IIPS): Mumbai, India, 2017; pp. 791–846. [Google Scholar]
- International Institute for Population Sciences (IIPS). National Family Health Survey (NFHS-3) 2005-2006, Volume 1; Government of India, IIPS: Mumbai, India, 2007.
- Meenakshi, J.V. Trends and Patterns in the Triple Burden of Malnutrition in India. Agric. Econ. 2016, 47, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and Child Undernutrition: Global and Regional Exposures and Health Consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Donahue Angel, M.; Rohner, F. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients 2016, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Abe, S.K.; Rahman, M.S.; Kanda, M.; Narita, S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal Anemia and Risk of Adverse Birth and Health Outcomes in Low- and Middle-Income Countries: Systematic Review and Meta-Analysis1,2. Am. J. Clin. Nutr. 2016, 103, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Indian Council of Medical Research; Public Health Foundation of India; Institute for Health Metrics and Evaluation. India: Health of the Nation’s States: The India State-Level Disease Burden Initiative: Disease Burden Trends in the States of India, 1990 to 2016; ICMR: New Delhi, India; PHFI: New Delhi, India; IHME: New Delhi, India, 2017.
- Edelstein, S. Food Science: An Ecological Approach; Jones & Bartlett Publishers: Burlington, MA, USA, 2014. [Google Scholar]
- Office of the Registrar General and Census Commissioner of India, Sample Registration System Baseline Survey. 2014. Available online: https://www.censusindia.gov.in/vital_statistics/baseline%20TABLES07062016.pdf (accessed on 4 July 2020).
- Agrawal, S.; Millett, C.J.; Dhillon, P.K.; Subramanian, S.; Ebrahim, S. Type of Vegetarian Diet, Obesity and Diabetes in Adult Indian Population. Nutr. J. 2014, 13, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, K. Nutritional Anemia; Sight and Life Press: Basel, Switzerland, 2007. [Google Scholar]
- Baech, S.B.; Hansen, M.; Bukhave, K.; Jensen, M.; Sørensen, S.S.; Kristensen, L.; Purslow, P.P.; Skibsted, L.H.; Sandström, B. Nonheme-Iron Absorption from a Phytate-Rich Meal Is Increased by the Addition of Small Amounts of Pork Meat. Am. J. Clin. Nutr. 2003, 77, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Navas-Carretero, S.; Pérez-Granados, A.M.; Sarriá, B.; Carbajal, A.; Pedrosa, M.M.; Roe, M.A.; Fairweather-Tait, S.J.; Vaquero, M.P. Oily Fish Increases Iron Bioavailability of a Phytate Rich Meal in Young Iron Deficient Women. J. Am. Coll Nutr. 2008, 27, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, K.M.; Iyengar, V. Iron Content, Bioavailability & Factors Affecting Iron Status of Indians. Indian J. Med. Res. 2009, 130, 634–645. [Google Scholar]
- Venderley, A.M.; Campbell, W.W. Vegetarian Diets: Nutritional Considerations for Athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef]
- Hunt, J.R. Bioavailability of Iron, Zinc, and Other Trace Minerals from Vegetarian Diets. Am. J. Clin. Nutr. 2003, 78, 633S–639S. [Google Scholar] [CrossRef] [PubMed]
- Meyers, L.D.; Pitzi Hellwig, J.; Otten, J.J. (Eds.) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Dixit, A.A.; Azar, K.M.J.; Gardner, C.D.; Palaniappan, L.P. Incorporation of Whole, Ancient Grains into a Modern Asian Indian Diet: Practical Strategies to Reduce the Burden of Chronic Disease. Nutr. Rev. 2011, 69, 479–488. [Google Scholar] [CrossRef]
- National Sample Survey Office. Nutritional Intake in India, 2011–2012, NSS 68th Round; Report No. 560; Ministry of Statistics and Programme Implementation, Government of India: New Delhi, India, 2014.
- OECD; FAO. Agricultural Outlook 2018–2027 OECD/FAO Agricultural Statistics (2018); OECD Publishing: Paris, France; FAO: Rome, Italy, 2018. [Google Scholar]
- Yen, C.-E.; Yen, C.-H.; Huang, M.-C.; Cheng, C.-H.; Huang, Y.-C. Dietary Intake and Nutritional Status of Vegetarian and Omnivorous Preschool Children and Their Parents in Taiwan. Nutr. Res. 2008, 28, 430–436. [Google Scholar] [CrossRef]
- Kim, M.-H.; Bae, Y.J. Postmenopausal Vegetarians’ Low Serum Ferritin Level May Reduce the Risk for Metabolic Syndrome. Biol Trace Elem. Res. 2012, 149, 34–41. [Google Scholar] [CrossRef]
- Leonard, A.J.; Chalmers, K.A.; Collins, C.E.; Patterson, A.J. The Effect of Nutrition Knowledge and Dietary Iron Intake on Iron Status in Young Women. Appetite 2014, 81, 225–231. [Google Scholar] [CrossRef]
- Alexander, D.; Ball, M.J.; Mann, J. Nutrient Intake and Haematological Status of Vegetarians and Age-Sex Matched Omnivores. Eur. J. Clin. Nutr. 1994, 48, 538–546. [Google Scholar]
- Reddy, S.; Sanders, T.A. Haematological Studies on Pre-Menopausal Indian and Caucasian Vegetarians Compared with Caucasian Omnivores. Br. J. Nutr. 1990, 64, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambol, S.; Štimac, D.; Orlić, Ž.; Guina, T. Haematological, Biochemical and Bone Density Parameters in Vegetarians and Non-Vegetarians. West. Indian Med. J. 2009, 58, 512. [Google Scholar]
- Deriemaeker, P.; Aerenhouts, D.; De Ridder, D.; Hebbelinck, M.; Clarys, P. Health Aspects, Nutrition and Physical Characteristics in Matched Samples of Institutionalized Vegetarian and Non-Vegetarian Elderly (>65yrs). Nutr. Metab. 2011, 8, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latta, D.; Liebman, M. Iron and Zinc Status of Vegetarian and Nonvegetarian Males. Nutr. Rep. Int. 1984, 14, 141–148. [Google Scholar]
- Anderson, B.M.; Gibson, R.S.; Sabry, J.H. The Iron and Zinc Status of Long-Term Vegetarian Women. Am. J. Clin. Nutr. 1981, 34, 1042–1048. [Google Scholar] [CrossRef] [Green Version]
- National Nutrition Monitoring Bureau. Diet & Nutritional Status of Population and Prevalence of Hypertension among Adults in Rural Areas; Technical Report No. 24; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, India, 2006.
- Rao, N.D.; Min, J.; DeFries, R.; Ghosh-Jerath, S.; Valin, H.; Fanzo, J. Healthy, Affordable and Climate-Friendly Diets in India. Glob. Environ. Chang. 2018, 49, 154–165. [Google Scholar] [CrossRef]
- Nair, K.P.M.; Augustine, L.F. Country-Specific Nutrient Requirements & Recommended Dietary Allowances for Indians: Current Status & Future Directions. Indian J. Med. Res. 2018, 148, 522–530. [Google Scholar]
- Gómez, M.I.; Barrett, C.B.; Raney, T.; Pinstrup-Andersen, P.; Meerman, J.; Croppenstedt, A.; Carisma, B.; Thompson, B. Post-Green Revolution Food Systems and the Triple Burden of Malnutrition. Food Policy 2013, 42, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Pingali, P.L. Green Revolution: Impacts, Limits, and the Path Ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.D.; Welch, R.M. Food System Strategies for Preventing Micronutrient Malnutrition. Food Policy 2013, 42, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Prinsen Geerligs, P.D.; Brabin, B.J.; Hart, D.J.; Fairweather-Tait, S.J. Iron Contents of Malawian Foods When Prepared in Iron Cooking Pots. Int. J. Vitam Nutr. Res. 2004, 74, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.A.; Ekbote, V.H.; Sonawane, A.; Jeyakumar, A.; Chiplonkar, S.A.; Khadilkar, A.V. Beneficial Effect of Iron Pot Cooking on Iron Status. Indian J. Pediatr 2013, 80, 985–989. [Google Scholar] [CrossRef]
- Adish, A.A.; Esrey, S.A.; Gyorkos, T.W.; Jean-Baptiste, J.; Rojhani, A. Effect of Consumption of Food Cooked in Iron Pots on Iron Status and Growth of Young Children: A Randomised Trial. Lancet 1999, 353, 712–716. [Google Scholar] [CrossRef]
- Brittin, H.C.; Nossaman, C.E. Iron Content of Food Cooked in Iron Utensils. J. Am. Diet. Assoc. 1986, 86, 897–901. [Google Scholar] [PubMed]
- Cheng, Y.J.; Brittin, H.C. Iron in Food: Effect of Continued Use of Iron Cookware. J. Food Sci. 1991, 56, 584–585. [Google Scholar] [CrossRef]
- Drover, D.P.; Maddocks, I. Iron Content of Native Foods. PNG Med. J. 1975, 18, 15–17. [Google Scholar]
- Martinez, F.E.; Vannucchi, H. Bioavailability of Iron Added to the Diet by Cooking Food in an Iron Pot. Nutr. Res. 1986, 6, 421–428. [Google Scholar] [CrossRef]
- Charles, C.V.; Dewey, C.E.; Daniell, W.E.; Summerlee, A.J.S. Iron-Deficiency Anaemia in Rural Cambodia: Community Trial of a Novel Iron Supplementation Technique. Eur. J. Public Health 2011, 21, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Arcanjo, F.P.N.; Macêdo, D.R.R.; Santos, P.R.; Arcanjo, C.P.C. Iron Pots for the Prevention and Treatment of Anemia in Preschoolers. Indian J. Pediatr. 2018, 85, 625–631. [Google Scholar] [CrossRef]
- Borigato, E.V.; Martinez, F.E. Iron Nutritional Status Is Improved in Brazilian Preterm Infants Fed Food Cooked in Iron Pots. J. Nutr. 1998, 128, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Kröger-Ohlsen, M.V.; Trúgvason, T.; Skibsted, L.H.; Michaelsen, K.F. Release of Iron into Foods Cooked in an Iron Pot: Effect of PH, Salt, and Organic Acids. J. Food Sci. 2002, 67, 3301–3303. [Google Scholar] [CrossRef]
- Talley, L.; Woodruff, B.A.; Seal, A.; Tripp, K.; Mselle, L.S.; Abdalla, F.; Bhatia, R.; Mirghani, Z. Evaluation of the Effectiveness of Stainless Steel Cooking Pots in Reducing Iron-Deficiency Anaemia in Food Aid-Dependent Populations. Public Health Nutr. 2010, 13, 107–115. [Google Scholar] [CrossRef]
- Kollipara, U.K.; Brittin, H.C. Increased Iron Content of Some Indian Foods Due to Cookware. J. Am. Diet. Assoc. 1996, 96, 508–510. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.; Lakshmi, A.J.; Prakash, J. Iron Bioavailability in Green Leafy Vegetables Cooked in Different Utensils. Food Chem. 2004, 86, 217–222. [Google Scholar] [CrossRef]
- Geerligs, P.P.; Brabin, B.; Mkumbwa, A.; Broadhead, R.; Cuevas, L.E. Acceptability of the Use of Iron Cooking Pots to Reduce Anaemia in Developing Countries. Public Health Nutr. 2002, 5, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geerligs, P.D.P.; Brabin, B.J.; Omari, A.A. Food Prepared in Iron Cooking Pots as an Intervention for Reducing Iron Deficiency Anaemia in Developing Countries: A Systematic Review. J. Hum. Nutr. Diet. 2003, 16, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Singh, A.; Garg, R.; Hosmane, G.B. Biomass Fuel Exposure and Respiratory Diseases in India. BioSci. Trends 2012, 6, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Page, C.M.; Patel, A.; Hibberd, P.L. Does Smoke from Biomass Fuel Contribute to Anemia in Pregnant Women in Nagpur, India? A Cross-Sectional Study. PLoS ONE 2015, 10, e0127890. [Google Scholar] [CrossRef] [Green Version]
- Dutta, A.; Ray, M.R.; Banerjee, A. Systemic Inflammatory Changes and Increased Oxidative Stress in Rural Indian Women Cooking with Biomass Fuels. Toxicol. Appl. Pharmacol. 2012, 261, 255–262. [Google Scholar] [CrossRef]
- Bharati, P.; Shome, S.; Chakrabarty, S.; Bharati, S.; Pal, M. Burden of Anemia and Its Socioeconomic Determinants among Adolescent Girls in India. Food Nutr. Bull. 2009, 30, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Galloway, R.; Dusch, E.; Elder, L.; Achadi, E.; Grajeda, R.; Hurtado, E.; Favin, M.; Kanani, S.; Marsaban, J.; Meda, N.; et al. Women’s Perceptions of Iron Deficiency and Anemia Prevention and Control in Eight Developing Countries. Soc. Sci. Med. 2002, 55, 529–544. [Google Scholar] [CrossRef]
- Gupta, S.; Pingali, P.; Pinstrup-Andersen, P. Women’s Empowerment and Nutrition Status: The Case of Iron Deficiency in India. Food Policy 2019, 88, 101763. [Google Scholar] [CrossRef]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization (WHO): Geneva, Switzerland; United Nations Children’s Fund (UNICEF): New York, NY, USA, 2017; p. 110. [Google Scholar]
- Weiss, G.; Goodnough, L.T. Anemia of Chronic Disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.J.; Ronnenberg, A.; King, J.C.; Cousins, R.J.; Dunns, J.T.; Burk, R.F.; Levander, O.A. Modern nutrition in health and disease. In Lippincott’s Illustrated Reviews Biochemistry; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2005; pp. 248–270. [Google Scholar]
- McMahon, L.P. Iron Deficiency in Pregnancy. Obs. Med. 2010, 3, 17–24. [Google Scholar] [CrossRef]
- Umbreit, J. Iron Deficiency: A Concise Review. Am. J. Hematol. 2005, 78, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.L.; Nemeth, E. Iron Homeostasis during Pregnancy. Am. J. Clin. Nutr. 2017, 106, 1567S–1574S. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Ramji, S. Effect of Delayed Cord Clamping on Iron Stores in Infants Born to Anemic Mothers: A Randomized Controlled Trial. Indian Pediatr. 2002, 39, 130–135. [Google Scholar]
- Farrar, D.; Airey, R.; Law, G.R.; Tuffnell, D.; Cattle, B.; Duley, L. Measuring Placental Transfusion for Term Births: Weighing Babies with Cord Intact. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.M.; Neufeld, L.M.; Tena Alavez, G.; Eguia-Líz Cedillo, R.; Dewey, K.G. Effect of Timing of Umbilical Cord Clamping on Iron Status in Mexican Infants: A Randomised Controlled Trial. Lancet 2006, 367, 1997–2004. [Google Scholar] [CrossRef]
- Chaparro, C.M. Timing of Umbilical Cord Clamping: Effect on Iron Endowment of the Newborn and Later Iron Status. Nutr. Rev. 2011, 69 (Suppl. S1), S30–S36. [Google Scholar] [CrossRef]
- Ministry of Health and Family Welfare, Government of India. Intensified National Iron Plus Initiative (I-NIPI)-Operational Guidelines for Programme Managers. 2018. Available online: https://anemiamuktbharat.info/wp-content/uploads/2019/09/Anemia-Mukt-Bharat-Brochure_English.pdf (accessed on 30 March 2020).
- Scholl, T.O. Iron Status during Pregnancy: Setting the Stage for Mother and Infant. Am. J. Clin. Nutr. 2005, 81, 1218S–1222S. [Google Scholar] [CrossRef]
- Steer, P.J. Maternal Hemoglobin Concentration and Birth Weight. Am. J. Clin. Nutr. 2000, 71, 1285S–1287S. [Google Scholar] [CrossRef]
- United Nations Children’s Fund; United Nations University; World Health Organization. Iron Deficiency Anemia: Assessment, Prevention, and Control. A Guide for Programme Managers; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Scholl, T.O. Maternal Iron Status: Relation to Fetal Growth, Length of Gestation, and Iron Endowment of the Neonate: Nutrition Reviews©, Vol. 69, No. S1. Nutr. Rev. 2011, 69, S23–S29. [Google Scholar] [CrossRef] [Green Version]
- Scholl, T.O.; Hediger, M.L.; Fischer, R.L.; Shearer, J.W. Anemia vs Iron Deficiency: Increased Risk of Preterm Delivery in a Prospective Study. Am. J. Clin. Nutr. 1992, 55, 985–988. [Google Scholar] [CrossRef]
- Toteja, G.S.; Singh, P.; Dhillon, B.S.; Saxena, B.N.; Ahmed, F.U.; Singh, R.P.; Prakash, B.; Vijayaraghavan, K.; Singh, Y.; Rauf, A.; et al. Prevalence of Anemia among Pregnant Women and Adolescent Girls in 16 Districts of India. Food Nutr. Bull. 2006, 27, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora, T.G.; Guiang, S.F.; Widness, J.A.; Georgieff, M.K. Iron Is Prioritized to Red Blood Cells over the Brain in Phlebotomized Anemic Newborn Lambs. Pediatr. Res. 2016, 79, 922–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozoff, B.; Beard, J.; Connor, J.; Barbara, F.; Georgieff, M.; Schallert, T. Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy. Nutr. Rev. 2006, 64, S34–S43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieff, M.K. Iron Assessment to Protect the Developing Brain. Am. J. Clin. Nutr. 2017, 106, 1588S–1593S. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.; Sreelasya, K.; Krishna, C.; Shivalingappa, D.B. Prevalence of Anemia in Pregnancy and Its Outcome in Rural Tertiary Care Centre in India. Indian J. Obstet. Gynecol. Res. 2019, 5, 104–108. [Google Scholar]
- Venkatachalam, P.S. Iron Metabolism and Iron Deficiency in India. Am. J. Clin. Nutr. 1968, 21, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Cacho, N.T.; Lawrence, R.M. Innate Immunity and Breast Milk. Front. Immunol. 2017, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. UNICEF Indicators for Assessing Infant and Young Child Feeding Practices; Part 1: Definitions; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Allowances, R.D. Nutrient Requirements and Recommended Dietary Allowances for Indians; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, India, 2009.
- Rao, R.; Georgieff, M.K. Iron Therapy for Preterm Infants. Clin. Perinatol. 2009, 36, 27–42. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Infant and Young Child Feeding: Model Chapter for Textbooks for Medical Students and Allied Health Professionals; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Canfield, R.L.; Henderson, C.R.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual Impairment in Children with Blood Lead Concentrations below 10 Μg per Deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Childhood Lead Poisoning; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Menon, A.V.; Chang, J.; Kim, J. Mechanisms of Divalent Metal Toxicity in Affective Disorders. Toxicology 2016, 339, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Lanphear, B.P.; Hornung, R.; Ho, M.; Howard, C.R.; Eberly, S.; Knauf, K.; Eberle, S. Environmental Lead Exposure during Early Childhood. J. Pediatr. 2002, 140, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.B.; Laden, F.; Guller, U.; Shankar, A.; Kazani, S.; Garshick, E. Relation between Blood Lead Levels and Childhood Anemia in India. Am. J. Epidemiol. 2005, 161, 968–973. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.B.; Williams, S.V.; Frumkin, H.; Kondawar, V.K.; Glick, H.; Ganju, A.K. Blood Lead in Children and Its Determinants in Nagpur, India. Int. J. Occup. Environ. Health 2001, 7, 119–126. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Muthayya, S.; Moretti, D.; Kurpad, A.; Hurrell, R.F. Iron Fortification Reduces Blood Lead Levels in Children in Bangalore, India. Pediatrics 2006, 117, 2014–2021. [Google Scholar] [CrossRef]
- Kalra, V.; Chitralekha, K.T.; Dua, T.; Pandey, R.M.; Gupta, Y. Blood Lead Levels and Risk Factors for Lead Toxicity in Children from Schools and an Urban Slum in Delhi. J. Trop. Pediatr. 2003, 49, 121–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichani, V.; Li, W.-I.; Smith, M.A.; Noonan, G.; Kulkarni, M.; Kodavor, M.; Naeher, L.P. Blood Lead Levels in Children after Phase-out of Leaded Gasoline in Bombay, India. Sci. Total Environ. 2006, 363, 95–106. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations. In Vitamin and Mineral Nutrition Information System; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Wieringa, F.T.; Dijkhuizen, M.A.; West, C.E.; Northrop-Clewes, C.A. Muhilal Estimation of the Effect of the Acute Phase Response on Indicators of Micronutrient Status in Indonesian Infants. J. Nutr. 2002, 132, 3061–3066. [Google Scholar] [CrossRef] [Green Version]
- Berlin, T.; Meyer, A.; Rotman-Pikielny, P.; Natur, A.; Levy, Y. Soluble Transferrin Receptor as a Diagnostic Laboratory Test for Detection of Iron Deficiency Anemia in Acute Illness of Hospitalized Patients. Isr. Med. Assoc. J. 2011, 13, 96–98. [Google Scholar] [PubMed]
- Andrews, N.C. Disorders of Iron Metabolism. N. Engl. J. Med. 1999, 341, 1986–1995. [Google Scholar] [CrossRef]
- Cook, J.D. Diagnosis and Management of Iron-Deficiency Anaemia. Best Pract. Res. Clin. Haematol. 2005, 18, 319–332. [Google Scholar] [CrossRef]
- WHO. CDC WHO|Assessing the Iron Status of Populations; Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level (2004: Geneva, Switzerland); World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Wians, F.H.; Urban, J.E.; Keffer, J.H.; Kroft, S.H. Discriminating Between Iron Deficiency Anemia and Anemia of Chronic Disease Using Traditional Indices of Iron Status vs Transferrin Receptor Concentration. Am. J. Clin. Pathol. 2001, 115, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C. Iron-Deficiency Anemia. N. Engl. J. Med. 2015, 372, 1832–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuy, P.V.; Berger, J.; Davidsson, L.; Khan, N.C.; Lam, N.T.; Cook, J.D.; Hurrell, R.F.; Khoi, H.H. Regular Consumption of NaFeEDTA-Fortified Fish Sauce Improves Iron Status and Reduces the Prevalence of Anemia in Anemic Vietnamese Women. Am. J. Clin. Nutr. 2003, 78, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Muthayya, S.; Thankachan, P.; Hirve, S.; Amalrajan, V.; Thomas, T.; Lubree, H.; Agarwal, D.; Srinivasan, K.; Hurrell, R.F.; Yajnik, C.S.; et al. Iron Fortification of Whole Wheat Flour Reduces Iron Deficiency and Iron Deficiency Anemia and Increases Body Iron Stores in Indian School-Aged Children. J. Nutr. 2012, 142, 1997–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, J.A.; Shamah, T.; Villalpando, S.; Monterrubio, E. Effectiveness of a Large-Scale Iron-Fortified Milk Distribution Program on Anemia and Iron Deficiency in Low-Income Young Children in Mexico. Am. J. Clin. Nutr. 2010, 91, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D.; Zimmermann, M.B.; Muthayya, S.; Thankachan, P.; Lee, T.-C.; Kurpad, A.V.; Hurrell, R.F. Extruded Rice Fortified with Micronized Ground Ferric Pyrophosphate Reduces Iron Deficiency in Indian Schoolchildren: A Double-Blind Randomized Controlled Trial. Am. J. Clin. Nutr. 2006, 84, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Ballot, D.E.; MacPhail, A.P.; Bothwell, T.H.; Gillooly, M.; Mayet, F.G. Fortification of Curry Powder with NaFe(111)EDTA in an Iron-Deficient Population: Report of a Controlled Iron-Fortification Trial. Am. J. Clin. Nutr. 1989, 49, 162–169. [Google Scholar] [CrossRef]
- Viteri, F.E.; García-Ibañez, R.; Torún, B. Sodium Iron NaFeEDTA as an Iron Fortification Compound in Central America. Absorption Studies. Am. J. Clin. Nutr. 1978, 31, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Viteri, F.E.; Alvarez, E.; Batres, R.; Torún, B.; Pineda, O.; Mejía, L.A.; Sylvi, J. Fortification of Sugar with Iron Sodium Ethylenediaminotetraacetate (FeNaEDTA) Improves Iron Status in Semirural Guatemalan Populations. Am. J. Clin. Nutr. 1995, 61, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, I.; Paul, P.; Talib, V.H.; Ranga, S. The Effect of Iron Therapy on the Growth of Iron-replete and Iron-deplete Children. J. Trop. Pediatr. 2003, 49, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Idjradinata, P.; Watkins, W.E.; Pollitt, E. Adverse Effect of Iron Supplementation on Weight Gain of Iron-Replete Young Children. Lancet 1994, 343, 1252–1254. [Google Scholar] [CrossRef]
- Jaeggi, T.; Kortman, G.A.M.; Moretti, D.; Chassard, C.; Holding, P.; Dostal, A.; Boekhorst, J.; Timmerman, H.M.; Swinkels, D.W.; Tjalsma, H.; et al. Iron Fortification Adversely Affects the Gut Microbiome, Increases Pathogen Abundance and Induces Intestinal Inflammation in Kenyan Infants. Gut 2015, 64, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Black, R.E.; Ramsan, M.; Chwaya, H.M.; Stoltzfus, R.J.; Dutta, A.; Dhingra, U.; Kabole, I.; Deb, S.; Othman, M.K.; et al. Effects of Routine Prophylactic Supplementation with Iron and Folic Acid on Admission to Hospital and Mortality in Preschool Children in a High Malaria Transmission Setting: Community-Based, Randomised, Placebo-Controlled Trial. Lancet 2006, 367, 133–143. [Google Scholar] [CrossRef]
- Soofi, S.; Cousens, S.; Iqbal, S.P.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.M.; Bhutta, Z.A. Effect of Provision of Daily Zinc and Iron with Several Micronutrients on Growth and Morbidity among Young Children in Pakistan: A Cluster-Randomised Trial. Lancet 2013, 382, 29–40. [Google Scholar] [CrossRef]
- Mithra, P.; Unnikrishnan, B.; Rekha, T.; Nithin, K.; Mohan, K.; Kulkarni, V.; Kulkarni, V.; Agarwal, D. Compliance with Iron-Folic Acid (IFA) Therapy among Pregnant Women in an Urban Area of South India. Afr. Health Sci. 2013, 13, 880–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supreme Court of India People’s Union for Civil Liberties vs. Union of India & Ors (CWP 196/2001). 2001. Available online: https://www.escr-net.org/caselaw/2006/peoples-union-civil-liberties-v-union-india-ors-supreme-court-india-civil-original (accessed on 18 April 2020).
- Khera, R. Mid-Day Meals: Looking Ahead. Econ. Political Wkly. 2013, 48, 12–14. [Google Scholar]
- Jayaraman, R.; Simroth, D. The Impact of School Lunches on Primary School Enrollment: Evidence from India’s Midday Meal Scheme. Scand. J. Econ. 2015, 117, 1176–1203. [Google Scholar] [CrossRef] [Green Version]
- Afridi, F. The Impact of School Meals on School Participation: Evidence from Rural India. J. Dev. Stud. 2011, 47, 1636–1656. [Google Scholar] [CrossRef]
- World Health Organization Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006.
- Copenhagen Consensus Center, Copenhagen Consensus: The Results. 2004. Available online: https://www.copenhagenconsensus.com/publication/copenhagen-consensus-final-results (accessed on 7 March 2020).
- Baltussen, R.; Knai, C.; Sharan, M. Iron Fortification and Iron Supplementation Are Cost-Effective Interventions to Reduce Iron Deficiency in Four Subregions of the World. J. Nutr. 2004, 134, 2678–2684. [Google Scholar] [CrossRef] [Green Version]
- Food Safety and Standards Authority of India Gazette Notification on Food Safety and Standards (Prohibition and Restrictions on Sales) Second Amendment Regulations, 2019 Relating to Revision in Sub-Regulation 2.3.12: Restriction on Sale of Common Salt.; 2019; REGD. NO. D. L.-33004/99. Available online: https://fssai.gov.in/upload/uploadfiles/files/Gazette_Notification_Common_Salt_04_07_2019.pdf (accessed on 25 September 2021).
- Gayer, J.; Smith, G. Micronutrient Fortification of Food in Southeast Asia: Recommendations from an Expert Workshop. Nutrients 2015, 7, 646–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations; WHO. Preventing Iron Deficiency in Women and Children: Background and Consensus on Key Technical Issues and Resources for Advocacy, Planning and Implementing National Programmes; INF: Boston, MA, USA; WHO: Geneva, Switzerland, 1999. [Google Scholar]
- G, R.; Gupta, A. Fortification of Foods with Vitamin D in India. Nutrients 2014, 6, 3601–3623. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.D.; Rahn, M.; Venkatramanan, S.; Marquis, G.S.; Wenger, M.J.; Murray-Kolb, L.E.; Wesley, A.S.; Reinhart, G.A. Double-Fortified Salt Is Efficacious in Improving Indicators of Iron Deficiency in Female Indian Tea Pickers. J. Nutr. 2014, 144, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Thankachan, P.; Muthayya, S.; Goud, R.B.; Kurpad, A.V.; Hurrell, R.F.; Zimmermann, M.B. Dual Fortification of Salt with Iodine and Iron: A Randomized, Double-Blind, Controlled Trial of Micronized Ferric Pyrophosphate and Encapsulated Ferrous Fumarate in Southern India. Am. J. Clin. Nutr. 2008, 88, 1378–1387. [Google Scholar]
- Varma, J.L.; Das, S.; Sankar, R.; Mannar, M.G.V.; Levinson, F.J.; Hamer, D.H. Community-Level Micronutrient Fortification of a Food Supplement in India: A Controlled Trial in Preschool Children Aged 36–66 Mo. Am. J. Clin. Nutr. 2007, 85, 1127–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Food Programme WFP India. Improving Child Nutrition Through Rice Fortification in Gajapati; WFP: New Delhi, India, 2016. [Google Scholar]
- Hussain, S.Z.; Singh, B.; Rather, A.H. Efficacy of Micronutrient Fortified Extruded Rice in Improving the Iron and Vitamin A Status in Indian Schoolchildren. Int. J. Agric. Food Sci. Technol. 2014, 5, 227–238. [Google Scholar]
- Thankachan, P.; Muthayya, S.; Sierksma, A.; Eilander, A.; Thomas, T.; Duchateau, G.S.; Frenken, L.G.J.; Kurpad, A.V. Helicobacter Pylori Infection Does Not Influence the Efficacy of Iron and Vitamin B 12 Fortification in Marginally Nourished Indian Children. Eur. J. Clin. Nutr. 2010, 64, 1101–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thankachan, P.; Selvam, S.; Surendran, D.; Chellan, S.; Pauline, M.; Abrams, S.A.; Kurpad, A.V. Efficacy of a Multi Micronutrient-Fortified Drink in Improving Iron and Micronutrient Status among Schoolchildren with Low Iron Stores in India: A Randomised, Double-Masked Placebo-Controlled Trial. Eur. J. Clin. Nutr. 2013, 67, 36–41. [Google Scholar] [CrossRef]
- Sazawal, S.; Dhingra, P.; Dhingra, U.; Gupta, S.; Iyengar, V.; Menon, V.P.; Sarkar, A.; Black, R.E. Compliance with Home-Based Fortification Strategies for Delivery of Iron and Zinc: Its Effect on Haematological and Growth Markers among 6–24 Months Old Children in North India. J. Health Popul. Nutr. 2014, 32, 217–226. [Google Scholar]
- Food Safety and Standards Authority of India. Large-Scale Food Fortification in India: The Journey so Far and Road Ahead; 2017. Available online: https://archive.fssai.gov.in/dam/jcr:c746d723-ebb1-47cf-8091-cdb2e7285632/Large_scale_Food_Fortification.pdf (accessed on 20 February 2019).
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A New Tool to Reduce Micronutrient Malnutrition. Food Nutr. Bull. 2011, 32, S31–S40. [Google Scholar] [CrossRef]
- Meenakshi, J.V.; Johnson, N.L.; Manyong, V.M.; DeGroote, H.; Javelosa, J.; Yanggen, D.R.; Naher, F.; Gonzalez, C.; García, J.; Meng, E. How Cost-Effective Is Biofortification in Combating Micronutrient Malnutrition? An Ex Ante Assessment. World Dev. 2010, 38, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.J.; Meenakshi, J.V.; Qaim, M.; Nestel, P.; Sachdev, H.P.S.; Bhutta, Z.A. Potential Impacts of Iron Biofortification in India. Soc. Sci. Med. 2008, 66, 1797–1808. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, J.L.; Mehta, S.; Udipi, S.A.; Ghugre, P.S.; Luna, S.V.; Wenger, M.J.; Murray-Kolb, L.E.; Przybyszewski, E.M.; Haas, J.D. A Randomized Trial of Iron-Biofortified Pearl Millet in School Children in India. J. Nutr. 2015, 145, 1576–1581. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.P.; Murray-Kolb, L.E.; Wenger, M.J.; Udipi, S.A.; Ghugre, P.S.; Boy, E.; Haas, J.D. Cognitive Performance in Indian School-Going Adolescents Is Positively Affected by Consumption of Iron-Biofortified Pearl Millet: A 6-Month Randomized Controlled Efficacy Trial. J. Nutr. 2018, 148, 1462–1471. [Google Scholar] [CrossRef]
- Press Information Bureau, Government of India, Ministry of Women and Child Development. Poshan Abhiyaan. 2020. Available online: https://pib.gov.in/newsite/PrintRelease.aspx?relid=199916 (accessed on 12 May 2020).
- Press Information Bureau, Government of India, Ministry of Women and Child Development. POSHAN Abhiyaan to Address Malnutrition through Convergence, Use of Technology and a Targeted Approach. 2018. Available online: https://pib.gov.in/newsite/PrintRelease.aspx?relid=177746 (accessed on 12 May 2020).
- Smriti, I. Poshan Abhiyaan Promises to Revive Traditional Food Systems across the Country While Addressing Malnutrition. Indian Express 2019. Available online: https://indianexpress.com/article/opinion/columns/a-jan-aandolan-for-nutrition-6124546/ (accessed on 12 May 2020).
- Niti Aayog. Transforming Nutrition in India: Poshan Abhiyaan. 2019. Available online: https://www.niti.gov.in/sites/default/files/2020-02/POSHAN_Abhiyaan_first_progress_report_6_Feb_2019.pdf (accessed on 12 May 2020).
- Parada, J.; Aguilera, J.M. Food Microstructure Affects the Bioavailability of Several Nutrients. J. Food Sci. 2007, 72, R21–R32. [Google Scholar] [CrossRef]
- Hurrell, R.F. Iron Fortification Practices and Implications for Iron Addition to Salt. J. Nutr. 2021, 151, 3S–14S. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minihane, A.M.; Rimbach, G. Iron Absorption and the Iron Binding and Anti-Oxidant Properties of Phytic Acid. Int. J. Food Sci. Technol. 2002, 37, 741–748. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Juillerat, M.A.; Barclay, D.; Hurrell, R.F. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feeding. J. Food Sci. 2002, 67, 3484–3488. [Google Scholar] [CrossRef]
- Sharma, K.K. Improving Bioavailability of Iron in Indian Diets through Food-Based Approaches for the Control of Iron Deficiency Anaemia. Food Nutr. Agric. 2003, 32, 51–61. [Google Scholar]
- Khan, N.; Zaman, R.; Elahi, M. Effect of Heat Treatments on the Phytic Acid Content of Maize Products. J. Sci. Food Agric. 1991, 54, 153–156. [Google Scholar] [CrossRef]
- Agte, V.V. Effect of Traditional Food Processing on Phytate Degradation in Wheat and Millets. J. Agric. Food Chem. 1997, 45, 1659–1661. [Google Scholar] [CrossRef]
- Thankachan, P.; Muthayya, S.; Walczyk, T.; Kurpad, A.V.; Hurrell, R.F. An Analysis of the Etiology of Anemia and Iron Deficiency in Young Women of Low Socioeconomic Status in Bangalore, India. Food Nutr. Bull. 2007, 28, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Al Hasan, S.M.; Hassan, M.; Saha, S.; Islam, M.; Billah, M.; Islam, S. Dietary Phytate Intake Inhibits the Bioavailability of Iron and Calcium in the Diets of Pregnant Women in Rural Bangladesh: A Cross-Sectional Study. BMC Nutr. 2016, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.P.; Fenwick, G.R. Phytate Content of Indian Foods and Intakes by Vegetarian Indians of Hisar Region, Haryana State. J. Agric. Food Chem. 1994, 42, 2440–2444. [Google Scholar] [CrossRef]
- National Institute of Nutrition (ICMR). Annual Report 2005–2006; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, India, 2006.
- Thingnganing, L.; Rajendran, A.; Bhaskar, K.; Venkaiah, K. Indian Food Composition Tables; National Institute of Nutrition: Hyderabad, India, 2017.
- Persson, D.P.; Hansen, T.H.; Laursen, K.H.; Schjoerring, J.K.; Husted, S. Simultaneous Iron, Zinc, Sulfur and Phosphorus Speciation Analysis of Barley Grain Tissues Using SEC-ICP-MS and IP-ICP-MS. Metallomics 2009, 1, 418. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; Abd El-Salam, S.M.; Omran, A.A. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties. PLoS ONE 2011, 6, e25512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lestienne, I.; Icard-Vernière, C.; Mouquet, C.; Picq, C.; Trèche, S. Effects of Soaking Whole Cereal and Legume Seeds on Iron, Zinc and Phytate Contents. Food Chem. 2005, 89, 421–425. [Google Scholar] [CrossRef]
- Kataria, A.; Chauhan, B.M.; Gandhi, S. Effect of Domestic Processing and Cooking on the Antinutrients of Black Gram. Food Chem. 1988, 30, 149–156. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Siegenberg, D.; Baynes, R.D.; Bothwell, T.H.; Macfarlane, B.J.; Lamparelli, R.D.; Car, N.G.; MacPhail, P.; Schmidt, U.; Tal, A.; Mayet, F. Ascorbic Acid Prevents the Dose-Dependent Inhibitory Effects of Polyphenols and Phytates on Nonheme-Iron Absorption. Am. J. Clin. Nutr. 1991, 53, 537–541. [Google Scholar] [CrossRef]
- Petry, N. Chapter 24-Polyphenols and Low Iron Bioavailability. In Polyphenols in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 311–322. [Google Scholar]
- Hurrell, R.F.; Reddy, M.; Cook, J.D. Inhibition of Non-Haem Iron Absorption in Man by Polyphenolic-Containing Beverages. Br. J. Nutr. 1999, 81, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Statista Research Department Tea Market in India 2021-Statistics & Facts. Available online: https://www.statista.com/topics/4652/tea-market-in-india/ (accessed on 18 September 2021).
- Gaur, S.D.D. Miller Is Indian Tea (Chai) Detrimental to Dietary Iron Absorption? Int. Food Res. J. 2015, 22, 997–1001. [Google Scholar]
- Tuntipopipat, S.; Zeder, C.; Siriprapa, P.; Charoenkiatkul, S. Inhibitory Effects of Spices and Herbs on Iron Availability. Int. J. Food Sci. Nutr. 2009, 60, 43–55. [Google Scholar] [CrossRef]
- Tuntipopipat, S.; Judprasong, K.; Zeder, C.; Wasantwisut, E.; Winichagoon, P.; Charoenkiatkul, S.; Hurrell, R.; Walczyk, T. Chili, but Not Turmeric, Inhibits Iron Absorption in Young Women from an Iron-Fortified Composite Meal. J. Nutr. 2006, 136, 2970–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, G.P.; Radek, M.; Savage, G.P. Oxalates in Some Indian Green Leafy Vegetables. Int. J. Food Sci. Nutr. 2008, 59, 246–260. [Google Scholar]
- Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Timoshnikov, V.A.; Kobzeva, T.V.; Polyakov, N.E.; Kontoghiorghes, G.J. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone. Int. J. Mol. Sci. 2020, 21, 3967. [Google Scholar] [CrossRef]
- Kim, E.-Y.; Ham, S.-K.; Bradke, D.; Ma, Q.; Han, O. Ascorbic Acid Offsets the Inhibitory Effect of Bioactive Dietary Polyphenolic Compounds on Transepithelial Iron Transport in Caco-2 Intestinal Cells12. J. Nutr. 2011, 141, 828–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Li, X.; Ding, K.; Li, Y.; Li, W. Ascorbic Acid Can Reverse the Inhibition of Phytic Acid, Sodium Oxalate and Sodium Silicate on Iron Absorption in Caco-2 Cells. Int. J. Vitam Nutr. Res. 2018, 88, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, L.; Brune, M.; Rossander, L. Iron Absorption in Man: Ascorbic Acid and Dose-Dependent Inhibition by Phytate. Am. J. Clin. Nutr. 1989, 49, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Thankachan, P.; Walczyk, T.; Muthayya, S.; Kurpad, A.V.; Hurrell, R.F. Iron Absorption in Young Indian Women: The Interaction of Iron Status with the Influence of Tea and Ascorbic Acid. Am. J. Clin. Nutr. 2008, 87, 881–886. [Google Scholar] [CrossRef]
- Walczyk, T.; Muthayya, S.; Wegmüller, R.; Thankachan, P.; Sierksma, A.; Frenken, L.G.J.; Thomas, T.; Kurpad, A.; Hurrell, R.F. Inhibition of Iron Absorption by Calcium Is Modest in an Iron-Fortified, Casein- and Whey-Based Drink in Indian Children and Is Easily Compensated for by Addition of Ascorbic Acid. J. Nutr. 2014, 144, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, S.; Shah, A.; Bhade, S. Haematologic Response of Anaemic Preschool Children to Ascorbic Acid Supplementation. Hum. Nutr. Appl. Nutr. 1985, 39, 151–154. [Google Scholar] [PubMed]
- Sharma, D.C.; Mathur, R. Correction of Anemia and Iron Deficiency in Vegetarians by Administration of Ascorbic Acid. Indian J. Physiol. Pharm. 1995, 39, 403–406. [Google Scholar]
- Gautam, S.; Platel, K.; Srinivasan, K. Higher Bioaccessibility of Iron and Zinc from Food Grains in the Presence of Garlic and Onion. J. Agric. Food Chem. 2010, 58, 8426–8429. [Google Scholar] [CrossRef]
- Gautam, S.; Platel, K.; Srinivasan, K. Promoting Influence of Combinations of Amchur, β-Carotene-Rich Vegetables and Allium Spices on the Bioaccessibility of Zinc and Iron from Food Grains. Int. J. Food Sci. Nutr. 2011, 62, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Shah, Y.M.; Matsubara, T.; Ito, S.; Yim, S.-H.; Gonzalez, F.J. Intestinal Hypoxia-Inducible Transcription Factors Are Essential for Iron Absorption Following Iron Deficiency. Cell Metab. 2009, 9, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Mesías, M.; Seiquer, I.; Navarro, M.P. Iron Nutrition in Adolescence. Crit. Rev. Food Sci. Nutr. 2013, 53, 1226–1237. [Google Scholar] [CrossRef]
- Beard, J.L. Iron Requirements in Adolescent Females. J. Nutr. 2000, 130, 440S–442S. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T.; Nemeth, E. Iron Sequestration and Anemia of Inflammation. Semin. Hematol. 2009, 46, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemeth, E.; Rivera, S.; Gabayan, V.; Keller, C.; Taudorf, S.; Pedersen, B.K.; Ganz, T. IL-6 Mediates Hypoferremia of Inflammation by Inducing the Synthesis of the Iron Regulatory Hormone Hepcidin. J. Clin. Investig. 2004, 113, 1271–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrighting, D.M.; Andrews, N.C. Interleukin-6 Induces Hepcidin Expression through STAT3. Blood 2006, 108, 3204–3209. [Google Scholar] [CrossRef]
- Northrop-Clewes, C.A. Interpreting Indicators of Iron Status during an Acute Phase Response–Lessons from Malaria and Human Immunodeficiency Virus. Ann. Clin. Biochem. 2008, 45, 18–32. [Google Scholar] [CrossRef] [PubMed]
Iron-Deficiency Anemia | Anemia of Inflammation | |
---|---|---|
Anemia classification | Microcytic | Normocytic |
Hemoglobin | ||
Serum iron | ||
Ferritin | ||
Transferrin saturation | —R | |
Total iron binding capacity | ||
Mean corpuscular volume | —R | |
Soluble transferrin receptor | —R | |
Soluble transferrin receptor to ferritin ratio | R | |
Erythrocyte zinc protoporphyrin | ||
Reticulocyte hemoglobin | ||
Hepcidin |
Staple | Iron Source | Fortification Level (per Kg) |
---|---|---|
Rice | Sodium iron (III) ethylenediaminetetraacetate trihydrate (Na Fe EDTA) Ferric pyrophosphate | 14–21.25 mg 28–42.50 mg |
Atta (wheat) | Sodium iron (III) ethylenediaminetetraacetate trihydrate (Na Fe EDTA) Iron–Ferrous citrate or ferrous lactate or ferrous sulfate or ferric pyrophosphate or electrolytic iron or ferrous fumarate or Ferrous bisglycinate | 14–21.25 mg 28–42.50 mg |
Salt | Ferrous sulfate or ferrous fumarate | 850–1100 mg |
Staple Foods | Iron Content (mg/100 g dw) | Phytic Acid Content (g/100 g dw) | |||
---|---|---|---|---|---|
Whole Grain | Milled | Milled | Soaked (12–16 h) | Germinated (24 h) | |
Sorghum | 7.65 | 3.95 | 1.08 | 1.09 | 1.08 |
Soybean | 7.19 | 3.63 | 1.40 | 1.36 | 1.44 |
Kidney bean | 8.60 | 6.30 | 1.08 | 1.21 | 1.22 |
Millet | 11.10 | 6.42 | 0.83 | 0.72 | 0.71 |
Cowpea | 6.60 | 5.50 | 0.66 | 0.61 | 0.66 |
Green gram | 4.89 | 3.93 | 0.83 | 0.89 | 0.79 |
Lentil | 7.57 | 7.06 | 1.15 | 1.12 | 1.12 |
Chickpea | 6.78 | 6.08 | 0.48 | 0.41 | 0.51 |
Black gram | 5.97 | 4.67 | 0.65 | 0.44 | 0.44 |
Pigeon pea | 5.37 | 3.90 | 0.63 | 0.62 | 0.57 |
Barley | 5.00 | 1.56 | 1.01 | 0.95 | 0.86 |
Wheat | 3.97 | 1.77 | 1.03 | 1.04 | 1.12 |
Maize | 2.49 | 1.10 | 1.15 | 1.14 | 1.16 |
Rice | 1.02 | 0.65 | 0.88 | 0.62 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatnagar, R.S.; Padilla-Zakour, O.I. Plant-Based Dietary Practices and Socioeconomic Factors That Influence Anemia in India. Nutrients 2021, 13, 3538. https://doi.org/10.3390/nu13103538
Bhatnagar RS, Padilla-Zakour OI. Plant-Based Dietary Practices and Socioeconomic Factors That Influence Anemia in India. Nutrients. 2021; 13(10):3538. https://doi.org/10.3390/nu13103538
Chicago/Turabian StyleBhatnagar, Rohil S., and Olga I. Padilla-Zakour. 2021. "Plant-Based Dietary Practices and Socioeconomic Factors That Influence Anemia in India" Nutrients 13, no. 10: 3538. https://doi.org/10.3390/nu13103538
APA StyleBhatnagar, R. S., & Padilla-Zakour, O. I. (2021). Plant-Based Dietary Practices and Socioeconomic Factors That Influence Anemia in India. Nutrients, 13(10), 3538. https://doi.org/10.3390/nu13103538