Association between Fasting Ketonuria and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease Patients without Prediabetes and Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assessment of Clinical and Laboratory Variables
2.3. Assessment of Fatty Liver and Probability of Advanced Fibrosis
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Univariate Analysis for Ketonuria in Patients with NAFLD
3.3. Association between Fasting Ketonuria and Intermediate–High Probability of Advanced Liver Fibrosis Defined by NFS
3.4. Association between Fasting Ketonuria and Intermediate–High Probability of Advanced Liver Fibrosis Defined by Fibrosis-4
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Lee, H.W.; Yoo, J.J.; Cho, Y.; Kim, S.U.; Lee, T.H.; Jang, B.K.; Kim, S.G.; Ahn, S.B.; Kim, H.; et al. KASL clinical practice guidelines: Management of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2021, 27, 363–401. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2019, 4, 389–398. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e310. [Google Scholar] [CrossRef] [Green Version]
- Ekstedt, M.; Hagstrom, H.; Nasr, P.; Fredrikson, M.; Stal, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [Green Version]
- Henson, J.B.; Simon, T.G.; Kaplan, A.; Osganian, S.; Masia, R.; Corey, K.E. Advanced fibrosis is associated with incident cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2020, 51, 728–736. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.K.; Park, J.G. Low Skeletal Muscle Mass Is a Risk Factor for Subclinical Atherosclerosis in Patients with Nonalcoholic Fatty Liver Disease. Diagnostics 2021, 11, 854. [Google Scholar] [CrossRef]
- Evans, M.; Cogan, K.E.; Egan, B. Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J. Physiol. 2017, 595, 2857–2871. [Google Scholar] [CrossRef] [Green Version]
- Musa-Veloso, K.; Likhodii, S.S.; Cunnane, S.C. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am. J. Clin. Nutr. 2002, 76, 65–70. [Google Scholar] [CrossRef]
- Shah, P.; Isley, W.L. Ketoacidosis during a low-carbohydrate diet. N. Engl. J. Med. 2006, 354, 97–98. [Google Scholar] [CrossRef] [Green Version]
- Veech, R.L. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat. Acids 2004, 70, 309–319. [Google Scholar] [CrossRef]
- Crabtree, C.D.; Kackley, M.L.; Buga, A.; Fell, B.; LaFountain, R.A.; Hyde, P.N.; Sapper, T.N.; Kraemer, W.J.; Scandling, D.; Simonetti, O.P.; et al. Comparison of Ketogenic Diets with and without Ketone Salts versus a Low-Fat Diet: Liver Fat Responses in Overweight Adults. Nutrients 2021, 13, 966. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Pinto, A.; Ienca, R.; Coppola, G.; Sirianni, G.; Di Lorenzo, G.; Parisi, V.; Serrao, M.; Spagnoli, A.; Vestri, A.; et al. A Randomized Double-Blind, Cross-Over Trial of very Low-Calorie Diet in Overweight Migraine Patients: A Possible Role for Ketones? Nutrients 2019, 11, 1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, N.S.; Lee, D.J.; Kim, K.M.; Kim, B.T.; Kim, C.W.; Kim, K.N.; Kim, S.M. Ketonuria after fasting may be related to the metabolic superiority. J. Korean Med. Sci. 2010, 25, 1771–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.; Lee, S.G.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Ferrannini, E.; Lee, Y.H.; Cho, N.H. Spontaneous ketonuria and risk of incident diabetes: A 12 year prospective study. Diabetologia 2019, 62, 779–788. [Google Scholar]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.M.; Hakkarainen, A.; Lehtimaki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Jarvinen, H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef] [Green Version]
- Hazlehurst, J.M.; Woods, C.; Marjot, T.; Cobbold, J.F.; Tomlinson, J.W. Non-alcoholic fatty liver disease and diabetes. Metabolism 2016, 65, 1096–1108. [Google Scholar] [CrossRef] [Green Version]
- Wijarnpreecha, K.; Aby, E.S.; Ahmed, A.; Kim, D. Evaluation and management of extrahepatic manifestations of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2021, 27, 221–235. [Google Scholar] [CrossRef]
- Kim, D.; Cholankeril, G.; Loomba, R.; Ahmed, A. Prevalence of Nonalcoholic Fatty Liver Disease and Hepatic Fibrosis Among US Adults with Prediabetes and Diabetes, NHANES 2017–2018. J. Gen. Intern. Med. 2021, in press. [Google Scholar] [CrossRef]
- Mahendran, Y.; Vangipurapu, J.; Cederberg, H.; Stancakova, A.; Pihlajamaki, J.; Soininen, P.; Kangas, A.J.; Paananen, J.; Civelek, M.; Saleem, N.K.; et al. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men. Diabetes 2013, 62, 3618–3626. [Google Scholar] [CrossRef] [Green Version]
- Saasa, V.; Beukes, M.; Lemmer, Y.; Mwakikunga, B. Blood Ketone Bodies and Breath Acetone Analysis and Their Correlations in Type 2 Diabetes Mellitus. Diagnostics 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.K.; Park, J.G.; Lee, H.J.; Kim, M.C. Association of low skeletal muscle mass with advanced liver fibrosis in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2019, 34, 1633–1640. [Google Scholar] [CrossRef]
- Association, A.D. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin. Diabetes A Publ. Am. Diabetes Assoc. 2019, 37, 11. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.W. Obesity and metabolic syndrome in Korea. Diabetes Metab. J. 2011, 35, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016, 26, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.K.; Park, J.G.; Kim, M.C. Association between Atrial Fibrillation and Advanced Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Yonsei Med. J. 2020, 61, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, U.; Franzen, L.; Åselius, H.; Resjö, M.; Jacobsson, L.; Foberg, U.; Frydén, A.; Bodemar, G. Increased liver echogenicity at ultrasound examination reflects degree of steatosis but not of fibrosis in asymptomatic patients with mild/moderate abnormalities of liver transaminases. Dig. Liver Dis. 2002, 34, 516–522. [Google Scholar] [CrossRef]
- Wong, V.W.; Chan, W.K.; Chitturi, S.; Chawla, Y.; Dan, Y.Y.; Duseja, A.; Fan, J.; Goh, K.L.; Hamaguchi, M.; Hashimoto, E.; et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017—Part 1: Definition, risk factors and assessment. J. Gastroenterol. Hepatol. 2018, 33, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. beta-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017, 37, 51–76. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Garcia, E.; van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; Groothof, D.; Westenbrink, B.D.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Nonalcoholic fatty liver disease, circulating ketone bodies and all-cause mortality in a general population-based cohort. Eur. J. Clin. Invest. in press. 2021, e13627. [Google Scholar]
- Ikejima, K.; Kon, K.; Yamashina, S. Nonalcoholic fatty liver disease and alcohol-related liver disease: From clinical aspects to pathophysiological insights. Clin. Mol. Hepatol. 2020, 26, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazlauskaite, R.; Evans, A.T.; Mazzone, T.; Fogelfeld, L.A. Ethnic differences predicting ketonuria in patients with Type 2 diabetes. J. Diabetes Complicat. 2005, 19, 284–290. [Google Scholar] [CrossRef]
- Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metab. Res. Rev. 1999, 15, 412–426. [Google Scholar] [CrossRef]
- Coleman, M.D.; Nickols-Richardson, S.M. Urinary ketones reflect serum ketone concentration but do not relate to weight loss in overweight premenopausal women following a low-carbohydrate/high-protein diet. J. Am. Diet Assoc. 2005, 105, 608–611. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, Y.; Kwon, M.J.; Hong, Y.S.; Kim, M.K.; Sohn, W.; Cho, Y.K.; Shin, H.; Wild, S.H.; Byrne, C.D.; et al. Fasting Ketonuria and the Risk of Incident Nonalcoholic Fatty Liver Disease With and Without Liver Fibrosis in Nondiabetic Adults. Am. J. Gastroenterol. in press. 2021. [Google Scholar] [CrossRef]
- Buzzetti, E.; Lombardi, R.; de Luca, L.; Tsochatzis, E.A. Noninvasive Assessment of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Int. J. Endocrinol. 2015, 2015, 343828. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.K.; Baek, J.H.; Kweon, Y.O.; Tak, W.Y.; Jang, S.Y.; Lee, Y.R.; Hur, K.; Kim, G.; Lee, H.W.; Han, M.H.; et al. Association of Skeletal Muscle and Adipose Tissue Distribution with Histologic Severity of Non-Alcoholic Fatty Liver. Diagnostics 2021, 11, 1061. [Google Scholar] [CrossRef]
- Tucker, B.; Li, H.; Long, X.; Rye, K.A.; Ong, K.L. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 2019, 101, 153994. [Google Scholar] [CrossRef]
- Park, J.G.; Jung, J.; Verma, K.K.; Kang, M.K.; Madamba, E.; Lopez, S.; Qas Yonan, A.; Liu, A.; Bettencourt, R.; Sirlin, C.; et al. Liver stiffness by magnetic resonance elastography is associated with increased risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2021, 53, 1030–1037. [Google Scholar] [PubMed]
- Vilar-Gomez, E.; Athinarayanan, S.J.; Adams, R.N.; Hallberg, S.J.; Bhanpuri, N.H.; McKenzie, A.L.; Campbell, W.W.; McCarter, J.P.; Phinney, S.D.; Volek, J.S.; et al. Post hoc analyses of surrogate markers of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis in patients with type 2 diabetes in a digitally supported continuous care intervention: An open-label, non-randomised controlled study. BMJ Open 2019, 9, e023597. [Google Scholar] [CrossRef] [Green Version]
Variable | Ketonuria n = 360 (5.8%) | No Ketonuria n = 5842 (94.2%) | p-Value |
---|---|---|---|
Age (yr) | 41.1 ± 10.0 | 44.6 ± 11.2 | <0.001 |
Male, n (%) | 185 (51.4) | 2907 (49.8) | 0.585 |
BMI, kg/m2 | 23.3 ± 3.5 | 23.3 ± 3.1 | 0.835 |
WC (cm) | 79.6 ± 9.3 | 79.2 ± 8.5 | 0.508 |
Comorbidities | |||
Obesity, n (%) | 100 (27.8) | 1595 (27.3) | 0.892 |
Hypertension, n (%) | 32 (8.9) | 432 (7.4) | 0.346 |
Metabolic syndrome, n (%) | 15 (4.2) | 329 (5.6) | 0.289 |
Liver profiles | |||
AST, IU/L | 26.0 ± 22.0 | 23.8 ± 10.7 | 0.063 |
ALT, IU/L | 27.6 ± 24.1 | 24.1 ± 19.1 | 0.008 |
PLT, K/uL | 242.8 ± 53.1 | 243.3 ± 56.1 | 0.866 |
GGT, IU/L | 28.2 ± 32.0 | 27.5 ± 29.1 | 0.695 |
Albumin, g/dL | 4.8 ± 0.3 | 4.6 ± 0.3 | 0.001 |
Glucose profiles | |||
FPG, mg/dL | 87.2 ± 9.1 | 91.0 ± 8.1 | <0.001 |
Insulin level, microU/mL | 4.1 ± 2.3 | 6.2 ± 3.7 | <0.001 |
HOMA-IR | 1.0 ± 0.5 | 1.5 ± 0.9 | <0.001 |
Lipid profiles | |||
TC, mg/dL | 198.2 ± 35.3 | 199.2 ± 34.6 | 0.616 |
TG, mg/dL | 96.7 ± 64.6 | 121.2 ± 75.5 | <0.001 |
HDL, mg/dL | 59.2 ± 15.7 | 59.4 ± 15.2 | 0.775 |
LDL, mg/dL | 119.7 ± 34.3 | 115.5 ± 32.1 | 0.117 |
hsCRP, mg/dL | 0.11 ± 0.25 | 0.09 ± 0.17 | 0.143 |
Fibrosis scoring system | |||
NFS | −3.0 ± 1.0 | −2.8 ± 1.1 | <0.001 |
Fib-4 | 0.9 ± 0.4 | 1.0 ± 0.6 | <0.001 |
Variables | OR | 95% CI | p-Value |
---|---|---|---|
Age, years | 0.97 | 0.96–0.98 | <0.001 |
Females | 0.94 | 0.76–1.16 | 0.549 |
Obesity | 1.02 | 0.80–1.29 | 0.844 |
Hypertension | 1.22 | 0.82–1.75 | 0.296 |
Waist circumference, cm | 1.00 | 0.99–1.02 | 0.470 |
Aspartate aminotransferase, IU/L | 1.01 | 1.00–1.02 | 0.003 |
Alanine aminotransferase, IU/L | 1.00 | 1.00–1.01 | 0.002 |
Platelet count, K/µL | 1.08 | 0.74–1.45 | 0.866 |
Gamma-glutamyl transferase, IU/L | 1.08 | 0.74–1.45 | 0.669 |
Albumin, g/L | 1.89 | 1.31–2.72 | <0.001 |
Total cholesterol, mg/dL | 0.99 | 0.99–1.00 | 0.616 |
Triglyceride, mg/dL | 1.02 | 0.75–1.29 | 0.903 |
High density lipoprotein, mg/dL | 1.00 | 0.99–1.01 | 0.775 |
Low density lipoprotein, mg/dL | 1.00 | 0.99–1.01 | 0.017 |
hsCRP, mg/dL | 1.00 | 0.97–1.03 | 0.046 |
NFS | 0.83 | 0.75–0.91 | <0.001 |
Fib-4 | 0.65 | 0.50–0.84 | <0.001 |
Ketonuria | ||
---|---|---|
OR (95% CI) | p-Value | |
OR for Advanced Liver Fibrosis | ||
Unadjusted | 0.69 (0.46–1.03) | 0.032 |
Sex adjusted | 0.69 (0.46–1.03) | 0.039 |
Model 1 | 0.67 (0.45–1.01) | 0.045 |
Model 2 | 0.67 (0.46–1.01) | 0.044 |
Model 3 | 0.67 (0.45–1.01) | 0.044 |
Ketonuria | ||
---|---|---|
OR (95% CI) | p-Value | |
OR for Advanced Liver Fibrosis | ||
Unadjusted | 0.66 (0.49–0.89) | 0.006 |
Sex adjusted | 0.66 (0.49–0.89) | 0.006 |
Model 1 | 0.65 (0.48–0.87) | 0.005 |
Model 2 | 0.65 (0.48–0.88) | 0.004 |
Model 3 | 0.58 (0.40–0.84) | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, K.; Kang, M.; Park, J. Association between Fasting Ketonuria and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease Patients without Prediabetes and Diabetes Mellitus. Nutrients 2021, 13, 3400. https://doi.org/10.3390/nu13103400
Lim K, Kang M, Park J. Association between Fasting Ketonuria and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease Patients without Prediabetes and Diabetes Mellitus. Nutrients. 2021; 13(10):3400. https://doi.org/10.3390/nu13103400
Chicago/Turabian StyleLim, Kiyoung, Minkyu Kang, and Junggil Park. 2021. "Association between Fasting Ketonuria and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease Patients without Prediabetes and Diabetes Mellitus" Nutrients 13, no. 10: 3400. https://doi.org/10.3390/nu13103400
APA StyleLim, K., Kang, M., & Park, J. (2021). Association between Fasting Ketonuria and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease Patients without Prediabetes and Diabetes Mellitus. Nutrients, 13(10), 3400. https://doi.org/10.3390/nu13103400