Abstract
Nutrition is known to exert an undeniable impact on blood pressure with especially salt (sodium chloride), but also potassium, playing a prominent role. The aim of this review was to summarize meta-analyses studying the effect of different electrolytes on blood pressure or risk for hypertension, respectively. Overall, 32 meta-analyses evaluating the effect of sodium, potassium, calcium and magnesium on human blood pressure or hypertension risk were included after literature search. Most of the meta-analyses showed beneficial blood pressure lowering effects with the extent of systolic blood pressure reduction ranging between −0.7 (95% confidence interval: −2.6 to 1.2) to −8.9 (−14.1 to −3.7) mmHg for sodium/salt reduction, −3.5 (−5.2 to −1.8) to −9.5 (−10.8 to −8.1) mmHg for potassium, and −0.2 (−0.4 to −0.03) to −18.7 (−22.5 to −15.0) mmHg for magnesium. The range for diastolic blood pressure reduction was 0.03 (−0.4 to 0.4) to −5.9 (−9.7 to −2.1) mmHg for sodium/salt reduction, −2 (−3.1 to −0.9) to −6.4 (−7.3 to −5.6) mmHg for potassium, and −0.3 (−0.5 to −0.03) to −10.9 (−13.1 to −8.7) mmHg for magnesium. Moreover, sufficient calcium intake was found to reduce the risk of gestational hypertension.
Keywords:
sodium; potassium; calcium; magnesium; electrolytes; blood pressure; hypertension; meta-analysis 1. Introduction
Hypertension is the major leading risk factor for atherosclerosis and several diseases, especially renal and cardiovascular disorders, including myocardial infarction, stroke, and heart failure [1]. Blood pressure is influenced by various genetic and lifestyle factors including nutrition [2]. In this regard, sodium is an important mineral which, besides its functions in fluid balance, action potential generation, digestive secretions and absorption of many nutrients, also plays an important role in blood pressure regulation with a reduced sodium intake being associated with a reduction in systolic and diastolic blood pressure [3]. Therefore, independent of body weight, sex and age, too much dietary salt (sodium chloride) is regarded as an established risk factor for hypertension [4]. Concomitant to sodium reduction, higher potassium intake or supplementation has also been repeatedly shown to reduce the blood pressure of especially hypertensive persons (reviewed in [5]). Therefore, the American Heart Association recently proposed a dietary potassium intake of 3500–5000 mg/day, in addition to the well-known advice to reduce the consumption of dietary sodium (<1500 mg/day or at least 1000 mg/day decrement) for adults with normal and elevated blood pressure [6]. In addition, the WHO recommends that sodium consumption should be less than 2000 mg (5 g of salt) and potassium intake at least 3510 mg for adults per day [7].
In addition to the blood pressure lowering effects of sodium reduction or higher potassium intake also in several studies and meta-analyses calcium supplementation has been shown to exert beneficial effects on the risk for gestational hypertension [8,9], especially in women with low dietary calcium intake.
Furthermore, from the electrolytes, magnesium is also effective in reducing blood pressure, especially by acting as a natural calcium channel blocker, increasing nitric oxide levels and improving endothelial dysfunction [10,11].
Early studies from the 1980s suggest that also chloride has an independent effect on blood pressure (reviewed in [12]). In these studies it was shown that replacing chloride with bicarbonate, citrate or phosphate as the anion for sodium did not lead to increases in blood pressure in rats or humans compared to sodium chloride [13,14,15]. On the other hand, interestingly, lower serum chloride levels were associated with higher cardiovascular and all-cause mortality risk in epidemiological studies [16].
Sulphur enters the body primarily as a component of the amino acids cysteine and methionine, and, as a part of the gaseous signaling molecule hydrogen sulfide (H2S), it exerts antihypertensive effects in experimental models [17]. Also garlic, which contains several functional sulfur-containing components, has been consistently shown to exert blood pressure-lowering effects with an average of 8–9 mmHg in systolic blood pressure (SBP) and 6–7 mmHg in diastolic blood pressure (DBP) in hypertensive patients [18].
Dietary phosphorus has also been shown to be related to blood pressure [19]. For example, in the International Study of Macro and Micro-Nutrients and Blood Pressure (INTERMAP) it was shown that dietary phosphorus was inversely associated with blood pressure in a multiple regression model [20]. Also in 13,444 participants from the Atherosclerosis Risk in Communities cohort and the Multi-Ethnic Study of Atherosclerosis cohorts compared with individuals in the lowest quintile of phosphorus intake at baseline, those with the highest phosphorus intake showed lower systolic and diastolic blood pressures after adjustment for dietary and non-dietary confounders [21].
Hypertension remains a serious public health issue and found as one amongst the major risk factors, also including smoking, high blood glucose, and high body-mass index, all responsible for approximately 29 million deaths globally [22]. According to the World Heart Federation, hypertension is the most important risk factor for stroke which causes about 50% of ischaemic strokes [23]. Nutrition has an important impact on blood pressure with salt playing a prominent role. However, also especially potassium, in addition probably magnesium, and calcium, and possibly also chloride, sulphur and phosphorus exert at least some effects on blood pressure. Therefore, the objective of this review was to summarize meta-analyses studying the effect and associations of these electrolytes as supplements or diets on human blood pressure or risk for hypertension throughout the last years.
2. Materials and Methods
This review summarizes meta-analyses of publications studying the effect or association between electrolytes and blood pressure. In this regard, we conducted a search in PubMed, Scopus, and Google scholar databases by entering the search terms “(hypertension or blood pressure) and (sodium or potassium or calcium or magnesium or chloride or sulphur or sulphate or phosphorus or phosphate or salt) and (meta-analysis or metaanalysis)”. The literature search was conducted in June 2018 with a 10-year publication restriction in order to ensure more recent studies. Search results were limited to English language articles.
2.1. Eligibility Criteria
Meta-analyses of randomized controlled trials or observational studies were included in this review. The availability of (mean) blood pressure reductions and/or relative risk estimates e.g., risk ratios, odds ratios, weighted mean difference and confidence intervals were a prerequisite for the inclusion of the meta-analyses. Reviews and summaries of meta-analyses, meta-analysis not including the primary outcome, (e.g., blood pressure reduction or hypertension risk), or meta-analysis with combined effects of two minerals were excluded.
The initial search revealed a total of 2182 articles (Figure 1). After screening irrelevant, duplicate and other studies not meeting the inclusion criteria 32 meta-analyses were included in this review [8,11,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53].
Figure 1.
Flow chart of literature search to identify meta-analyses evaluating the effect of electrolytes on blood pressure or hypertension risk.
2.2. Data Extraction
Two reviewers (C.E and N.K) independently extracted the information from the papers. A third reviewer (S.I) rechecked the data and discrepancies were resolved through consensus. Study outcomes with defined number of trials/participants, study type/aims, patient characteristics, average study duration, minerals dosage (diet/supplements) and dietary modification were extracted from the selected meta-analyses. Also (mean) change in systolic and diastolic blood pressure (SBP and DBP), or relative risks (RR), odds ratios or effect sizes with 95% CI were extracted as main outcomes measures from the papers.
3. Results
We identified meta-analyses for sodium, potassium, calcium and magnesium. No meta-analyses were found for the electrolytes chloride, sulphur and phosphorus.
3.1. Effect of Dietary Sodium/Salt Intake/Reduction on Blood Pressure
Overall, fourteen meta-analyses of randomized control trials and observational studies analyzing the effect of sodium modification/reduction on blood pressure were selected [24,25,26,27,28,29,30,31,32,33,34,35,36,37].
The meta-analyses of randomized controlled studies (n = 12) included 5–177 numbers of trials with 12 to 23,858 participants (Table 1). The duration of trials varied between 4 days to 71 months with sodium intake being reduced from 1.2 to 5.7 g/day (52–250 mmol/day) and salt reduction was 2 to 9.6 g/day (34−164 mmol/day). The results showed that blood pressure lowering effects ranged from −0.7 (95% confidence interval: −2.6 to 1.2) mmHg for lowest and −8.9 (−14.1 to −3.7) mmHg for highest SBP reduction, respectively, while lowest to highest reduction for DBP was between 0.03 (−0.4 to 0.4) to −5.9 (−9.7 to −2.1) mmHg.
Table 1.
Effect of dietary sodium/salt reduction on blood pressure: A summary of meta-analyses of randomized (controlled) trials or observational studies.
Moreover, two meta-analyses included observational studies, including 10–18 trials with 8093–134,916 participants. The observational study of Talukder et al. [36] observed a mean difference in blood pressure of 0.1 (−0.2 to 0.3) mmHg for SBP and 0.2 (0.1 to 0.4) mmHg for DBP with exposure of 4–405 mg/L water sodium levels. Subasinghe et al. [37] showed effect sizes of 1.36 (1.24 to 1.48) and 1.28 (1.13 to 1.45) for high salt exposure (6.9 to 42.3 g/day) on hypertension risk in rural and urban populations of low-and-middle income countries, respectively.
3.2. Effect of Potassium Supplementation on Blood Pressure
Five meta-analyses of randomized controlled trials evaluated the effect of oral potassium supplements on blood pressure [38,39,40,41,42]. The meta-analyses included 10–33 trials and 556–1892 participants (Table 2). Oral potassium dosages in the supplements were between 6 and 250 mmol/day (0.23–9.7 g/day) with study durations of 4–52 weeks. The lowest to highest reduction in blood pressure was between –3.5 (95% confidence interval: −5.2 to −1.8) to −9.5 (−10.8 to −8.1) mmHg for SBP and −2 (−3.1 to −0.9) to −6.4 (−7.3 to −5.6) mmHg for DBP. In addition, potassium was found to be especially effective in in reducing blood pressure of high sodium consumers.
Table 2.
Effect of potassium supplementation on blood pressure: A summary of meta-analyses of randomized controlled trials.
3.3. Calcium Intake in Form of Supplements or Diets and Risk for Gestational Hypertension or Blood Pressure Lowering
We identified six meta-analyses which evaluated the association of dietary calcium intake on the risk for gestational hypertension [8,43,44,45] or the effect on blood pressure [46,47]. Five meta-analyses of randomized controlled trials with a range of 4–16 trials and 2947–36,806 participants were included. The follow up intervention period was between 8 weeks to 7 years and the calcium intake was found to be between 0.5 g/day to 2 g/day. The results showed RR ranging from 0.55 to 0.91 for gestational hypertension while, the meta-analysis of Cormick et al., [47] found a mean difference of −1.4 (95% confidence interval: −2.2 to −0.7) mmHg for SBP and −1 (−1.5 to −0.5) mmHg for DBP reduction in normotensive people.
Furthermore, we found one meta-analysis including 16 observational trials of 757–41,214 pregnant women showing a lower OR for gestational hypertension [OR: 0.63 (95% CI = 0.41–0.97)] for highest versus lowest category of calcium intake [45].
Most of the meta-analyses showed that calcium supplements were associated with a reduced risk of gestational hypertension (Table 3). Besides, based on the results from the meta-analysis of Wu and Sun [46] calcium plus vitamin D supplementation non-significantly slightly increased SBP with no effects on DBP.
Table 3.
Calcium intake in form of diets or supplements and risk for gestational hypertension or effect on blood pressure: a summary of meta-analyses of randomized controlled trials or observational studies.
3.4. Effect of Magnesium on Blood Pressure or Hypertension Risk
Eight meta-analyses of randomized control trials (n = 5) and observational studies (n = 3) were included to summarize the effects of magnesium on blood pressure or association with hypertension risk, respectively [11,45,48,49,50,51,52,53] The randomized control trials included 7–28 number trials with 135–1694 of participants with the trial durations varying between 3–24 weeks. Magnesium intake ranged between 120–1006 mg/day. The summary showed SBP reductions in the range of −0.2 (95% confidence interval: −0.4 to −0.03) mmHg and −18.7 (−22.5 to −15.0) mmHg, and DBP reductions between −0.3 (−0.5 to −0.03) and −10.9 (−13.1 to −8.7) mmHg (Table 4). However, the meta-analysis of Rosanoff and Plesset (2013) [51], which showed the largest effects, only included a small sample of treated hypertensive patients, which probably responded highly to magnesium. When omitting this meta-analysis, the blood pressure lowering effects of magnesium would switch to a rather low to moderate level.
Table 4.
Effect magnesium on blood pressure or association with hypertension risk: A summary of meta-analyses of randomized controlled trials and observational studies.
4. Discussion
The major findings of this review were especially that sodium (salt) reduction and a higher intake of potassium have convincing blood pressure lowering effects. In addition, higher magnesium intake is suggested to possibly reduce blood pressure, especially in patients with hypertension. Moreover, sufficient calcium intake confers a protective effect regarding the risk for gestational hypertension.
There are several mechanistical explanations for the association between high sodium intake and blood pressure like enhanced reabsorption and retention of filtered sodium through the renal tubules [54], or activation of the brain renin–angiotensin–aldosterone system (RAAS), which is suggested to increase blood pressure through angiotensin II and aldosterone promoting locally oxidative stress and activating the sympathetic nervous system [55]. Furthermore, based on the “vasodysfunction theory” of salt induced hypertension, salt loading results in subnormal decreases in systemic vascular resistance leading to an increase in blood pressure [56]. In this regard salt sensitivity, which varies among individuals, is suggested to play an important role [3,55].
In addition to blood pressure, in a recent systematic review and meta-analysis of randomized controlled trials it was analyzed that restriction of dietary sodium intake can reduce arterial stiffness, as expressed by carotid-femoral pulse wave velocity [57].
In addition to sodium modification, several studies and meta-analysis showed that potassium supplements reduce blood pressure and also the risk of hypertension [58]. Suggested mechanisms of the blood pressure lowering effects of potassium are (reviewed in [5]): improvement of endothelial function and NO release, vasodilatation by lowering cytosolic smooth muscle cell calcium, increasing natriuresis, and lowering the activity of the sympathetic nervous system. Furthermore the supportive blood pressure reducing effects of sodium modification in combination with potassium is well-documented [59].
Besides the interdependent effect of sodium and potassium, calcium and magnesium have also been implicated in the regulation of blood pressure [60]. Based on our results, magnesium showed a moderate blood pressure reducing effect in general, while the effects of calcium were primarily restricted to the prevention of gestational hypertension. The potential antihypertensive effects of magnesium are for example suggested to be related to calcium channel blockage, increases in nitric oxide, and better endothelial function [10]. In vascular smooth muscle cells, magnesium antagonizes Ca2+ by inhibiting transmembrane calcium transport and calcium entry with low magnesium levels causing an increase in intracellular free Ca2+ concentration and subsequently vascular contraction [61].
On the other hand, low dietary calcium intake is shown to be a risk factor for the development of hypertension especially for women with a history of gestational hypertension [62]. In this regard the World Health Organization recommends daily calcium supplementation of 1.5–2.0 g oral elemental calcium for pregnant women in populations with low dietary calcium intake to reduce the risk of pre-eclampsia and related complications [63].
Lifestyle modifications including weight loss, exercise, and healthy diets are proved to be important predictors to lower blood pressure or the risk for hypertension, respectively. For example, the Canadian hypertension education program guidelines (2016) proposed health behavior management for the prevention of hypertension such as physical exercise, weight management, limited alcohol consumption, stress management, reduce sodium intake and recommended dietary modification as the preferred method of increasing potassium intake (in patients who are not at risk of hyperkalemia) to get additional nutritional benefits of whole foods over prescribed supplements [64]. Similarly, the study findings of a systematic review and meta-analysis of randomized control trials showed that healthy dietary patterns including the dietary approaches to stop hypertension (DASH) diet, Nordic diet, and Mediterranean diet significantly lowered systolic and diastolic blood pressure [65].
5. Conclusions and Future Perspectives
Our brief exploration of meta-analyses showed that lowering sodium and increasing potassium intake would exert convincing blood pressure lowering effects, especially in hypertensive patients. The maximum extent of systolic blood pressure lowering was approximately in the order of 8 to 9 mmHg, which roughly equals a monotherapy with an antihypertensive drug [66]. This reflects the significant importance of healthy nutrition, in this case salt reduction and increase of dietary potassium intake, on blood pressure. Our summary of meta-analytic reviews also suggests that higher magnesium intake may exert beneficial effects on blood pressure, although the results were rather moderate. However, in some (treated) hypertensive patients (“high-responders”) higher magnesium intake might result in larger effects. So, increasing/optimizing dietary magnesium intake could also be a helpful recommendation in patients with hypertension. Furthermore, there is convincing evidence that increasing/optimizing calcium intake can lower the risk for gestational hypertension, especially in women with initial low calcium intake.
We did not find any meta-analyses summarizing the effects of chloride, phosphorus and sulphur on blood pressure or hypertension risk. In general, few studies are available, which assessed the effect of these electrolytes on blood pressure. There are indications from observational studies that there might be some effects, however robust evidence is missing. For example, a very recent systematic review from McClure et al. (2019) did not detected a consistent association between total dietary phosphorus intake and blood pressure [67].
Relating to earlier studies replacing the chloride component of salt with other anions like bicarbonate or citrate might be a certain strategy, which could not only beneficially affect blood pressure but could show co-benefits regarding a (western) diet induced metabolic acid load [68]. Obviously, randomized (controlled) trials are necessary to study this assumption. Also, future clinical trials could determine the effect of different electrolytes on blood pressure by patients’ self-assessment of blood pressure with new validated mHealth devices, like a previous study in obese individuals has shown [69].
Author Contributions
Conceptualization, C.E.; methodology, C.E., S.I.; literature search, N.K.; C.E.; validation, S.I.; original draft preparation, S.I.; review and editing, C.E.; supervision, C.E.
Funding
This work was supported by the Higher Education Commission Pakistan (PD/OSS-II/Batch-VI/Austria/2016/73769) for S.I.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Rahimi, K.; Emdin, C.A.; Macmahon, S. The Epidemiology of Blood Pressure and Its Worldwide Management. Circ. Res. 2015, 116, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Qi, Y.; Zheng, Z.; Wang, Y.; Zhang, X.; Li, H.; Liu, H.; Zhang, X.-T.; Du, J.; Liu, J. Dietary factors associated with hypertension. Nat. Rev. Cardiol. 2011, 8, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Rust, P.; Ekmekcioglu, C. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension. Adv. Exp. Med. Biol. 2017, 956, 61–84. [Google Scholar] [PubMed]
- Ekmekcioglu, C.; Blasche, G.; Dorner, T.E. Too much salt and how we can get rid of it. Forsch. Komplementmed. 2013, 20, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, C.; Elmadfa, I.; Meyer, A.L.; Moeslinger, T. The role of dietary potassium in hypertension and diabetes. J. Physiol. Biochem. 2016, 72, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Flack, J.M.; Calhoun, D.; Schiffrin, E.L. The New ACC/AHA Hypertension Guidelines for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. Am. J. Hypertens. 2018, 31, 133–135. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Issues New Guidance on Dietary Salt and Potassium. Available online: https://www.who.int/mediacentre/news/notes/2013/salt_potassium_20130131/en/ (accessed on 14 June 2019).
- Imdad, A.; Jabeen, A.; Bhutta, Z.A. Role of calcium supplementation during pregnancy in reducing risk of developing gestational hypertensive disorders: A meta-analysis of studies from developing countries. BMC Public Health 2011, 11, S18. [Google Scholar] [CrossRef] [PubMed]
- Khanam, F.; Hossain, B.; Mistry, S.K.; Mitra, D.K.; Raza, W.A.; Rifat, M.; Afsana, K.; Rahman, M. The association between daily 500 mg calcium supplementation and lower pregnancy-induced hypertension risk in Bangladesh. BMC Pregnancy Childbirth 2018, 18, 406. [Google Scholar] [CrossRef] [PubMed]
- Houston, M. The role of magnesium in hypertension and cardiovascular disease. J. Clin. Hypertens. 2011, 13, 843–847. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Del Gobbo, L.C.; Rosanoff, A.; Wang, J.; Zhang, W.; Song, Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension 2016, 68, 324–333. [Google Scholar] [CrossRef]
- McCallum, L.; Lip, S.; Padmanabhan, S. The hidden hand of chloride in hypertension. Pflugers Arch. Eur. J. Physiol. 2015, 467, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, T.W.; Morris, R.C. Dietary Chloride as a Determinant of “Sodium-Dependent” Hypertension. Science 1983, 222, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, T.W.; Al-Bander, H.A.; Morris, R.C. “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N. Engl. J. Med. 1987, 317, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Markandu, N.D.; MacGregor, G.A. A randomized crossover study to compare the blood pressure response to sodium loading with and without chloride in patients with essential hypertension. J. Hypertens. 1988, 6, 613–617. [Google Scholar] [CrossRef] [PubMed]
- De Bacquer, D.; De Backer, G.; De Buyzere, M.; Kornitzer, M. Is low serum chloride level a risk factor for cardiovascular mortality? J. Cardiovasc. Risk 1998, 5, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Van Goor, H.; Van Den Born, J.C.; Hillebrands, J.L.; Joles, J.A. Hydrogen sulfide in hypertension. Curr. Opin. Nephrol. Hypertens. 2016, 25, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ried, K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. J. Nutr. 2016, 146, 389S–396S. [Google Scholar] [CrossRef] [PubMed]
- Chan, Q.; Stamler, J.; Griep, L.M.O.; Daviglus, M.L.; Van Horn, L.; Elliott, P. An update on nutrients and blood pressure: Summary of INTERMAP Study findings. J. Atheroscler. Thromb. 2016, 23, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Kesteloot, H.; Appel, L.J.; Dyer, A.R.; Ueshima, H.; Chan, Q.; Brown, I.J.; Zhao, L.; Stamler, J. Dietary Phosphorus and Blood Pressure: International Study of Macro- and Micro-Nutrients and Blood Pressure. Hypertension 2008, 51, 669–675. [Google Scholar] [CrossRef]
- Alonso, A.; Nettleton, J.A.; Ix, J.H.; de Boer, I.H.; Folsom, A.R.; Bidulescu, A.; Kestenbaum, B.R.; Chambless, L.E.; Jacobs, D.R. Dietary phosphorus, blood pressure and incidence of hypertension in the Atherosclerosis Risk in Communities (ARIC) Study and the Multi-Ethnic Study of Atherosclerosis (MESA). Hypertension 2010, 55, 776–784. [Google Scholar] [CrossRef]
- The Lancet. GBD 2017: A fragile world. Lancet 2018, 392, 1683. [Google Scholar] [CrossRef]
- World Heart Foundation. Fact Sheet: Cardiovascular Disease Risk Factors—World Heart Federation. Available online: https://www.world-heart-federation.org/resources/risk-factors/?cats=29 (accessed on 14 June 2019).
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Taylor, F.; Martin, N.; Gottlieb, S.; Taylor, R.; Ebrahim, S. Reduced dietary salt for the prevention of cardiovascular disease (Review). Cochrane Database Syst. Rev. 2014, CD009217. [Google Scholar] [CrossRef]
- Graudal, N.; Hubeck-Graudal, T.; Jürgens, G.; McCarron, D.A. The Significance of Duration and Amount of Sodium Reduction Intervention in Normotensive and Hypertensive Individuals: A Meta-Analysis. Adv. Nutr. 2015, 6, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.; Jürgens, G. The blood pressure sensitivity to changes in sodium intake is similar in Asians, Blacks and Whites. An analysis of 92 randomized controlled trials. Front. Physiol. 2015, 6, 157. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gay, H.C.; Rao, S.G.; Vaccarino, V.; Ali, M.K. Effects of Different Dietary Interventions on Blood Pressure; Systematic Review and Meta-Analysis of Randomized Controlled Trials. Hypertension 2016, 67, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Review). Cochrane Database Syst. Rev. 2017, 2017, CD004022. [Google Scholar]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef]
- He, F.J.; MacGregor, G.A. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef]
- Kelly, J.; Khalesi, S.; Dickinson, K.; Hines, S.; Coombes, J.S.; Todd, A.S. The effect of dietary sodium modification on blood pressure in adults with systolic blood pressure less than 140 mmHg: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2016, 14, 196–237. [Google Scholar] [CrossRef]
- Peng, Y.; Li, W.; Wen, X.; Li, Y.; Hu, J.; Zhao, L. Effects of salt substitutes on blood pressure: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Ashton, K.E.; Moxham, T.; Hooper, L.; Ebrahim, S. Reduced dietary salt for the prevention of cardiovascular disease: A meta-analysis of randomized controlled trials (cochrane review). Am. J. Hypertens. 2011, 24, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Moran, A.E.; Liu, J.; Qi, Y.; Xie, W.; Tzong, K.; Zhao, D. A Meta-Analysis of Effect of Dietary Salt Restriction on Blood Pressure in Chinese Adults. Glob. Heart 2015, 10, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.R.R.; Rutherford, S.; Huang, C.; Phung, D.; Islam, M.Z.; Chu, C. Drinking water salinity and risk of hypertension: A systematic review and meta-analysis. Arch. Environ. Occup. Heal. 2017, 72, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Subasinghe, A.K.; Arabshahi, S.; Busingye, D.; Evans, R.G.; Walker, K.Z.; Riddell, M.A.; Thrift, A.G. Association between salt and hypertension in rural and urban populations of low to middle income countries: A systematic review and meta-analysis of population based studies. Asia Pac. J. Clin. Nutr. 2016, 25, 402–413. [Google Scholar]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef]
- Filippini, T.; Violi, F.; D’Amico, R.; Vinceti, M. The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 230, 127–135. [Google Scholar] [CrossRef]
- Poorolajal, J.; Zeraati, F.; Soltanian, A.R.; Sheikh, V.; Hooshmand, E.; Maleki, A. Oral potassium supplementation for management of essential hypertension: A meta-analysis of randomized controlled trials. PLoS ONE 2017, 12, e0174967. [Google Scholar] [CrossRef]
- Bommel, E.V.; Cleophas, T. Potassium treatment for hypertension in patients with high salt intake: A meta-analysis. Int. J. Clin. Pharmacol. Ther. 2012, 50, 478–482. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, Á.N.; Duley, L.; Torloni, M.R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems (Review). Cochrane Database Syst. Rev. 2014, CD001059. [Google Scholar] [CrossRef]
- An, L.; Li, W.; Xie, T.; Peng, X.; Li, B.; Xie, S.; Xu, J.; Zhou, X.; Guo, S. Calcium supplementation reducing the risk of hypertensive disorders of pregnancy and related problems: A meta-analysis of multicentre randomized controlled trials. Int. J. Nurs. Pract. 2015, 21, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Schoenaker, D.A.J.M.; Soedamah-muthu, S.S.; Mishra, G.D. The association between dietary factors and gestational hypertension and pre-eclampsia: A systematic review and meta-analysis of observational studies. BMC Med. 2014, 12, 157. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D. Effects of calcium plus Vitamin D supplementation on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Hum. Hypertens. 2017, 31, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizán, J.M. Calcium supplementation for prevention of primary hypertension (Review). Cochrane Database Syst. Rev. 2015, CD010037. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Xun, P.; Song, Y.; Rosanoff, A.; Shechter, M.; He, K. The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 106, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.; Garg, R. Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk factors: A systematic review and meta-analysis. J. Hum. Nutr. Diet. 2017, 30, 621–633. [Google Scholar] [CrossRef]
- Kass, L.; Weekes, J.; Carpenter, L. Effect of magnesium supplementation on blood pressure: A meta-analysis. Eur. J. Clin. Nutr. 2012, 66, 411–418. [Google Scholar] [CrossRef]
- Rosanoff, A.; Plesset, M.R. Oral magnesium supplements decrease high blood pressure (SBP > 155mmHg) in hypertensive subjects on anti-hypertensive medications: A targeted meta-analysis. Magnes. Res. 2013, 26, 93–99. [Google Scholar]
- Han, H.; Fang, X.; Wei, X.; Liu, Y.; Jin, Z.; Chen, Q.; Fan, Z.; Aaseth, J.; Hiyoshi, A.; He, J.; et al. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: A systematic review and meta-analysis of prospective cohort studies. Nutr. J. 2017, 16, 26. [Google Scholar] [CrossRef]
- Wu, J.; Xun, P.; Tang, Q.; Cai, W.; He, K. Circulating magnesium levels and incidence of coronary heart diseases, hypertension, and type 2 diabetes mellitus: A meta-analysis of prospective cohort studies. Nutr. J. 2017, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Adrogué, H.J.; Madias, N.E. Sodium and Potassium in the Pathogenesis of Hypertension. N. Engl. J. Med. 2007, 356, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Yoshika, M.; Komiyama, Y.; Nishimura, M. The central mechanism underlying hypertension: A review of the roles of sodium ions, epithelial sodium channels, the renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens. Res. 2011, 34, 1147–1160. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.C.; Schmidlin, O.; Sebastian, A.; Tanaka, M.; Kurtz, T.W. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension. Circulation 2016, 133, 881–893. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, L.; Galletti, F.; La Fata, E.; Sabino, P.; Strazzullo, P. Effect of dietary sodium restriction on arterial stiffness: Systematic review and meta-analysis of the randomized controlled trials. J. Hypertens. 2018, 36, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Houston, M.C. The Importance of potassium in managing hypertension. Curr. Hypertens. Rep. 2011, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Murao, S.; Takata, Y.; Yasuda, M.; Osawa, H.; Kohi, F. The Influence of Sodium and Potassium Intake and Insulin Resistance on Blood Pressure in Normotensive Individuals Is More Evident in Women. Am. J. Hypertens. 2018, 31, 876–885. [Google Scholar] [CrossRef]
- Feyh, A.; Bracero, L.; Lakhani, H.V.; Santhanam, P.; Shapiro, J.; Khitan, Z.; Sodhi, K. Role of Dietary Components in Modulating Hypertension. J. Clin. Exp. Cardiol. 2016, 7, 433. [Google Scholar] [CrossRef]
- Sontia, B.; Touyz, R.M. Role of magnesium in hypertension. Arch. Biochem. Biophys. 2007, 458, 33–39. [Google Scholar] [CrossRef]
- Egeland, G.M.; Skurtveit, S.; Sakshaug, S.; Daltveit, A.K.; Vikse, B.E.; Haugen, M. Low Calcium Intake in Midpregnancy Is Associated with Hypertension Development within 10 Years after Pregnancy: The Norwegian Mother and Child Cohort Study. J. Nutr. 2017, 147, 1757–1763. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendation: Calcium Supplementation during Pregnancy for the Prevention of Pre-eclampsia and Its Complications. Available online: https://apps.who.int/iris/bitstream/handle/10665/277235/9789241550451-eng.pdf?ua=1 (accessed on 14 June 2019).
- Leung, A.A.; Nerenberg, K.; Daskalopoulou, S.S.; McBrien, K.; Zarnke, K.B.; Dasgupta, K.; Cloutier, L.; Gelfer, M.; Lamarre-Cliche, M.; Milot, A.; et al. Hypertension Canada’s 2016 Canadian Hypertension Education Program Guidelines for Blood Pressure Measurement, Diagnosis, Assessment of Risk, Prevention, and Treatment of Hypertension. Can. J. Cardiol. 2016, 32, 569–588. [Google Scholar] [CrossRef] [PubMed]
- Ndanuko, R.N.; Tapsell, L.C.; Charlton, K.E.; Neale, E.P.; Batterham, M.J. Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2016, 7, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Agnoletti, D.; Safar, M.E.; Blacher, J. Effect of antihypertensive agents on blood pressure variability: The natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension 2011, 58, 155–160. [Google Scholar] [CrossRef] [PubMed]
- McClure, S.T.; Rebholz, C.M.; Medabalimi, S.; Hu, E.A.; Xu, Z.; Selvin, E.; Appel, L.J. Dietary phosphorus intake and blood pressure in adults: A systematic review of randomized trials and prospective observational studies. Am. J. Clin. Nutr. 2019, 109, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Pizzorno, J.; Frassetto, L.A.; Katzinger, J. Diet-induced acidosis: Is it real and clinically relevant? Br. J. Nutr. 2010, 103, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Mazoteras-Pardo, V.; Becerro-De-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; López-López, D.; Palomo-López, P.; Rodríguez-Sanz, D.; Calvo-Lobo, C. The QardioArm Blood Pressure App for Self-Measurement in an Obese Population: Validation Study Using the European Society of Hypertension International Protocol Revision 2010. JMIR Mhealth Uhealth 2018, 6, e11632. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).