Unraveling Multiscale Spatiotemporal Linkages of Groundwater Storage and Land Deformation in the North China Plain After the South-to-North Water Diversion Project
Abstract
Highlights
- Groundwater storage in the NCP showed a declining trend from 2018 to 2021, with a maximum subsidence rate reached −177 mm/a.
- Downscaled GWSA revealed contrasting groundwater variations across the northwest and southeast sides of the Shunyi fissure.
- A novel GRACE statistical downscaling algorithm integrating a weight allocation strategy and InSAR-derived GWS estimation is proposed.
- The multiscale analysis provides insights into groundwater storage and land deformation patterns in the NCP after SNWDP.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Gravity Recovery and Climate Experiment (GRACE)
2.2.2. Hydrometeorological Data
2.2.3. Synthetic Aperture Radar (SAR) and Auxiliary Data
2.2.4. In Situ Groundwater Level (GWL) Measurements and Borehole Data
2.3. Methodology
2.3.1. Deriving Groundwater Storage (GWS)
2.3.2. Land Deformation Derived from PSI
2.3.3. Groundwater Storage Anomaly (GWSA) Derived from InSAR Technology
2.3.4. Statistical Downscaling Approach with Weight Allocation Strategies
2.3.5. Uncertainty Analysis
3. Results
3.1. Validation
3.2. Analysis of GWSA and Land Subsidence Variations in the NCP
3.2.1. Characteristics of GWSA in the NCP
3.2.2. Characteristics of Land Deformation in the NCP
3.3. Downscaling of GRACE-Derived GWSA
4. Discussion
4.1. Advantages and Limitations of the GRACE Downscaling
4.2. Analysis of Surface Deformation Differences on Both Sides of Ground Fissures Based on GRACE Downscaling Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khorrami, B.; Arik, F.; Gunduz, O. Land deformation and sinkhole occurrence in response to the fluctuations of groundwater storage: An integrated assessment of GRACE gravity measurements, ICESat/ICESat-2 altimetry data, and hydrologic models. GISci. Remote Sens. 2021, 58, 1518–1542. [Google Scholar] [CrossRef]
- Zhong, X.; Gong, H.; Chen, B.; Zhou, C.; Xu, M. Study on the evolution of shallow groundwater levels and its spatiotemporal response to precipitation in the Beijing Plain of China based on variation points. Ecol. Indic. 2024, 166, 112466. [Google Scholar] [CrossRef]
- Rezaei, A.; Mousavi, Z. Characterization of land deformation, hydraulic head, and aquifer properties of the Gorgan confined aquifer, Iran, from InSAR observations. J. Hydrol. 2019, 579, 124196. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Y.; Cheng, J.; Ding, K.; Luo, Y.; Zheng, K.; Xian, Y.; Lin, Y. A Novel Framework for Heterogeneity Decomposition and Mechanism Inference in Spatiotemporal Evolution of Groundwater Storage: Case Study in the North China Plain. Water Resour. Res. 2024, 60, e2023WR036102. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Lei, K.; Li, J.; Zhou, C.; Gao, M.; Guan, H.; Lv, W. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 54–67. [Google Scholar] [CrossRef]
- Shi, M.; Gong, H.; Gao, M.; Chen, B.; Zhang, S.; Zhou, C. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sens. 2020, 12, 3579. [Google Scholar] [CrossRef]
- Chen, J.; Knight, R.; Zebker, H.A.; Schreüder, W.A. Confined aquifer head measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resour. Res. 2016, 52, 3623–3636. [Google Scholar] [CrossRef]
- Castellazzi, P.; Schmid, W.; Fu, G. Exploring the potential for groundwater-related ground deformation in Southern New South Wales, Australia. Sci. Total Environ. 2023, 895, 165167. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhang, C.; Gong, H.; Yeh, P.J.-F.; Shen, Y.; Guo, Y.; Huang, Z.; Li, X. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett. 2017, 44, 190–199. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain. J. Hydrol. 2020, 585, 124849. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, Y.; Liu, S.; Xu, G.; Xiao, C.; Wu, X.; Xie, B.; Li, Z.; Shum, C.K. Hydrogeodesy Facilitates the Accurate Assessment of Extreme Drought Events. J. Earth Sci. 2025, 36, 347–350. [Google Scholar] [CrossRef]
- Castellazzi, P.; Longuevergne, L.; Martel, R.; Rivera, A.; Brouard, C.; Chaussard, E. Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach. Remote Sens. Environ. 2018, 205, 408–418. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peck, R.B.; Mesri, G.J.S.S. Soil Mechanics in Engineering Practice; Wiley-Interscience: Hoboken, NJ, USA, 1996; Volume 68. [Google Scholar]
- Ghobadi-Far, K.; Werth, S.; Shirzaei, M.; Bürgmann, R. Spatiotemporal Groundwater Storage Dynamics and Aquifer Mechanical Properties in the Santa Clara Valley Inferred From InSAR Deformation Over 2017–2022. Geophys. Res. Lett. 2023, 50, e2023GL105157. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, Z.; Wang, J.; Qin, F.; Wang, J.; Zhang, R.; Wang, L.; Wu, W.; Huang, L. Enhancing the groundwater storage estimates by integrating MT-InSAR, GRACE/GRACE-FO, and hydraulic head measurements in Henan Plain (China). Int. J. Appl. Earth Obs. Geoinf. 2024, 131, 103993. [Google Scholar] [CrossRef]
- Li, M.; Sun, J.; Xue, L.; Shen, Z.-K.; Li, Y.; Zhao, B.; Hu, L. Characterizing Aquifer Properties and Groundwater Storage at North China Plain Using Geodetic and Hydrological Measurements. Water Resour. Res. 2025, 61, e2024WR037425. [Google Scholar] [CrossRef]
- Khorrami, B.; Ali, S.; Gündüz, O. An appraisal of the local-scale spatio-temporal variations of drought based on the integrated GRACE/GRACE-FO observations and fine-resolution FLDAS model. Hydrol. Process. 2023, 37, e15034. [Google Scholar] [CrossRef]
- Khorrami, B.; Ali, S.; Gündüz, O. Investigating the Local-scale Fluctuations of Groundwater Storage by Using Downscaled GRACE/GRACE-FO JPL Mascon Product Based on Machine Learning (ML) Algorithm. Water Resour. Manag. 2023, 37, 3439–3456. [Google Scholar] [CrossRef]
- Khorrami, B.; Gorjifard, S.; Ali, S.; Feizizadeh, B. Local-scale monitoring of evapotranspiration based on downscaled GRACE observations and remotely sensed data: An application of terrestrial water balance approach. Earth Sci. Inf. 2023, 16, 1329–1345. [Google Scholar] [CrossRef]
- Khorrami, B.; Pirasteh, S.; Ali, S.; Sahin, O.G.; Vaheddoost, B. Statistical downscaling of GRACE TWSA estimates to a 1-km spatial resolution for a local-scale surveillance of flooding potential. J. Hydrol. 2023, 624, 129929. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, K.; Xue, X.; Hong, Z.; Hong, Y.; Gourley, J.J. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States. Water Resour. Res. 2015, 51, 6485–6499. [Google Scholar] [CrossRef]
- Yin, W.; Han, S.-C.; Zheng, W.; Yeo, I.-Y.; Hu, L.; Tangdamrongsub, N.; Ghobadi-Far, K. Improved water storage estimates within the North China Plain by assimilating GRACE data into the CABLE model. J. Hydrol. 2020, 590, 125348. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Meng, D.; Chen, B.; Gong, H.; Zhang, S.; Ma, R.; Zhou, C.; Lei, K.; Xu, L.; Wang, X. Land subsidence and rebound response to groundwater recovery in the Beijing Plain: A new hydrological perspective. J. Hydrol. Reg. Stud. 2025, 57, 102127. [Google Scholar] [CrossRef]
- Shi, M.; Gao, M.; Chen, Z.; Lyu, M.; Gong, H.; Zhai, Y.; Pan, Y. Land subsidence in Beijing: Response to the joint influence of the South-to-North Water Diversion Project and ecological water replenishment, observed by satellite radar interferometry. GISci. Remote Sens. 2024, 61, 2315708. [Google Scholar] [CrossRef]
- Chen, L.; He, Q.; Liu, K.; Li, J.; Jing, C. Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model. Remote Sens. 2019, 11, 2979. [Google Scholar] [CrossRef]
- Yang, R.; Zhong, Y.; Zhang, X.; Maimaitituersun, A.; Ju, X. A Comparative Study of Downscaling Methods for Groundwater Based on GRACE Data Using RFR and GWR Models in Jiangsu Province, China. Remote Sens. 2025, 17, 493. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S.-C. Statistical Downscaling of GRACE-Derived Groundwater Storage Using ET Data in the North China Plain. J. Geophys. Res.-Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Su, G.; Wu, Y.; Zhan, W.; Zheng, Z.; Chang, L.; Wang, J. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China plain during the past six decades. J. Hydrol. 2021, 600, 126678. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Blum, H. A panel analysis of groundwater use in California. J. Clean. Prod. 2021, 326, 129357. [Google Scholar] [CrossRef]
- Liu, R.; Zhong, B.; Li, X.; Zheng, K.; Liang, H.; Cao, J.; Yan, X.; Lyu, H. Analysis of groundwater changes (2003–2020) in the North China Plain using geodetic measurements. J. Hydrol. Reg. Stud. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Loomis, B.D.; Luthcke, S.B.; Sabaka, T.J. Regularization and error characterization of GRACE mascons. J. Geod. 2019, 93, 1381–1398. [Google Scholar] [CrossRef]
- Yang, X.; You, W.; Tian, S.; Jiang, Z.; Wan, X. A Two-Step Linear Model to Fill the Data Gap Between GRACE and GRACE-FO Terrestrial Water Storage Anomalies. Water Resour. Res. 2023, 59, e2022WR034139. [Google Scholar] [CrossRef]
- Müller Schmied, H.; Cáceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Peiris, T.A.; Popat, E.; Portmann, F.T.; Reinecke, R.; et al. The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci. Model Dev. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- Guoliang, C. Evalution of Groundwater System in the North China Plain Using Groundwater Modeling. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- Liu, P.-W.; Famiglietti, J.S.; Purdy, A.J.; Adams, K.H.; McEvoy, A.L.; Reager, J.T.; Bindlish, R.; Wiese, D.N.; David, C.H.; Rodell, M. Groundwater depletion in California’s Central Valley accelerates during megadrought. Nat. Commun. 2022, 13, 7825. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Wang, T. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In Proceedings of the ISRSE 2010, Sidney, Australia, 10–15 April 2011. [Google Scholar]
- NASA. Shuttle Radar Topography Mission 1-Arc Second Global. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C1220567890-USGS_LTA.html (accessed on 25 September 2025).
- Castellazzi, P.; Arroyo-Domínguez, N.; Martel, R.; Calderhead, A.I.; Normand, J.C.L.; Gárfias, J.; Rivera, A. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102–111. [Google Scholar] [CrossRef]
- Jones, D.R. A Taxonomy of Global Optimization Methods Based on Response Surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Cao, Y.; Nan, Z.; Cheng, G. GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the Arid Land of Northwestern China. Remote Sens. 2015, 7, 1021–1047. [Google Scholar] [CrossRef]
- Agarwal, V.; Akyilmaz, O.; Shum, C.K.; Feng, W.; Yang, T.-Y.; Forootan, E.; Syed, T.H.; Haritashya, U.K.; Uz, M. Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California. Sci. Total Environ. 2023, 865, 161138. [Google Scholar] [CrossRef]
- Ali, S.; Ran, J.; Luan, Y.; Khorrami, B.; Xiao, Y.; Tangdamrongsub, N. The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain. Sci. Total Environ. 2024, 908, 168239. [Google Scholar] [CrossRef]
- Chen, Z.; Nie, Z.; Zhang, Z.; Qi, J.; Nan, Y. Isotopes and sustainability of ground water resources, North China Plain. Groundwater 2005, 43, 485–493. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Gong, H.; Lei, K.; Zhou, C.; Lu, Z.; Zhao, D. Inversion of Groundwater Storage Variations Considering Lag Effect in Beijing Plain, from RadarSat-2 with SBAS-InSAR Technology. Remote Sens. 2022, 14, 991. [Google Scholar] [CrossRef]
- Ochoa-González, G.H.; Carreón-Freyre, D.; Franceschini, A.; Cerca, M.; Teatini, P. Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: A 3D deformation and stress analysis. Eng. Geol. 2018, 245, 192–206. [Google Scholar] [CrossRef]
- Lundgren, P.; Liu, Z.; Ali, S.T. San Andreas Fault Stress Change Due To Groundwater Withdrawal in California’s Central Valley, 1860–2010. Geophys. Res. Lett. 2022, 49, e2021GL095975. [Google Scholar] [CrossRef]
- Hu, X.; Bürgmann, R. Aquifer deformation and active faulting in Salt Lake Valley, Utah, USA. Earth Planet. Sci. Lett. 2020, 547, 116471. [Google Scholar] [CrossRef]
Track | Frame | Swath | Period | Master Image Date | Number of SAR Data |
---|---|---|---|---|---|
40 | 112 | 1, 2, 3 | 8 January 2018–7 October 2021 | 27 February 2020 | 113 |
40 | 117 | 2, 3 | 8 January 2018–7 October 2021 | 27 February 2020 | 113 |
69 | 119 | 1, 2 | 10 January 2018–21 October 2021 | 17 February 2020 | 112 |
69 | 124 | 1, 2, 3 | 10 January 2018–21 October 2021 | 17 February 2020 | 112 |
142 | 116 | 1, 2, 3 | 3 January 2018–14 October 2021 | 22 February 2020 | 113 |
142 | 121 | 1, 2, 3 | 3 January 2018–14 October 2021 | 22 February 2020 | 113 |
142 | 126 | 2, 3 | 3 January 2018–14 October 2021 | 22 February 2020 | 113 |
Borehole | Clay Layer Thickness (m) | Position |
---|---|---|
B1 | 40.20 | Northwest of the Shunyi ground fissure |
B2 | 87.18 | Southeast of the Shunyi ground fissure |
Data | Change Rate (mm/a) | Change Rate (km3/a) | Volume Change (km3) | R | RMSE (cm) |
---|---|---|---|---|---|
GRACE-GLDAS | −22.50 ± 3.12 | −3.81 ± 0.53 | −13.64 ± 2.02 | 0.19 | 10.85 |
InSAR | −7.91 ± 2.32 | −1.34 ± 0.39 | −5.11 ± 1.49 | 0.97 | 7.31 |
Downscaling | −9.10 ± 4.68 | −1.54 ± 0.79 | −5.87 ± 3.01 | 0.75 | 2.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, B.; Ma, Z.; Gong, H.; Ma, R.; Zhou, C.; Meng, D.; Zhang, S.; Zhang, C.; Lei, K.; et al. Unraveling Multiscale Spatiotemporal Linkages of Groundwater Storage and Land Deformation in the North China Plain After the South-to-North Water Diversion Project. Remote Sens. 2025, 17, 3336. https://doi.org/10.3390/rs17193336
Wang X, Chen B, Ma Z, Gong H, Ma R, Zhou C, Meng D, Zhang S, Zhang C, Lei K, et al. Unraveling Multiscale Spatiotemporal Linkages of Groundwater Storage and Land Deformation in the North China Plain After the South-to-North Water Diversion Project. Remote Sensing. 2025; 17(19):3336. https://doi.org/10.3390/rs17193336
Chicago/Turabian StyleWang, Xincheng, Beibei Chen, Ziyao Ma, Huili Gong, Rui Ma, Chaofan Zhou, Dexin Meng, Shubo Zhang, Chong Zhang, Kunchao Lei, and et al. 2025. "Unraveling Multiscale Spatiotemporal Linkages of Groundwater Storage and Land Deformation in the North China Plain After the South-to-North Water Diversion Project" Remote Sensing 17, no. 19: 3336. https://doi.org/10.3390/rs17193336
APA StyleWang, X., Chen, B., Ma, Z., Gong, H., Ma, R., Zhou, C., Meng, D., Zhang, S., Zhang, C., Lei, K., Wang, H., & Zhang, J. (2025). Unraveling Multiscale Spatiotemporal Linkages of Groundwater Storage and Land Deformation in the North China Plain After the South-to-North Water Diversion Project. Remote Sensing, 17(19), 3336. https://doi.org/10.3390/rs17193336