Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,693)

Search Parameters:
Keywords = plant virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5247 KB  
Article
Transcriptome-Wide Profiling of RNA M6A Modifications in Soybean Reveals Shared and Specific Mechanisms of Resistance to Viral and Bacterial Infections
by Guoqing Peng, Jianan Zou, Honghao Dong, Jing Wang, Qiuyu Wang, Dawei Xin, Qingshan Chen and Zhaoming Qi
Agronomy 2026, 16(2), 208; https://doi.org/10.3390/agronomy16020208 - 15 Jan 2026
Viewed by 38
Abstract
Bacterial and viral diseases significantly reduce soybean (Glycine max) yield and quality. RNA modifications, particularly N6-methyladenosine (m6A), are increasingly recognized as having a regulatory role in plant–pathogen interactions, but the m6A methylome of soybean during [...] Read more.
Bacterial and viral diseases significantly reduce soybean (Glycine max) yield and quality. RNA modifications, particularly N6-methyladenosine (m6A), are increasingly recognized as having a regulatory role in plant–pathogen interactions, but the m6A methylome of soybean during viral and bacterial infection has not yet been characterized. Here, we performed transcriptome sequencing and MeRIP-seq (methylated RNA immunoprecipitation followed by high-throughput sequencing) of soybean leaves infected with Soybean mosaic virus (SMV) and/or Pseudomonas syringae pv. glycinea (Psg). In general, m6A peaks were highly enriched near stop codons and in 3′-UTR regions of soybean transcripts, and m6A methylation was negatively correlated with transcript abundance. Multiple genes showed differential methylation between infected and control plants: 1122 in Psg-infected plants, 539 in SMV-infected plants, and 2269 in co-infected plants; 195 (Psg), 84 (SMV), and 354 (Psg + SMV) of these transcripts were both differentially methylated and differentially expressed. Interestingly, viral infection was predominantly associated with hypermethylation and downregulation, whereas bacterial infection was predominantly associated with hypomethylation and upregulation. GO and KEGG enrichment analysis revealed shared processes likely affected by changes in m6A methylation during bacterial and viral infection, including ATP-dependent RNA helicase activity, RNA binding, and endonuclease activity, as well as specific processes affected by only one pathogen. Our findings shed light on the role of m6A modifications during pathogen infection and highlight potential targets for epigenetic editing to increase the broad-spectrum disease resistance of soybean. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 851 KB  
Article
Partially Observed Two-Phase Point Processes
by Olivier Jacquet, Walguen Oscar and Jean Vaillant
Axioms 2026, 15(1), 59; https://doi.org/10.3390/axioms15010059 - 15 Jan 2026
Viewed by 48
Abstract
In this paper, a two-phase spatio-temporal point process (STPP) defined on a countable metric space and characterized by a conditional intensity function is introduced. In the first phase, the process is memoryless, generating completely random point patterns. In the second phase, the location [...] Read more.
In this paper, a two-phase spatio-temporal point process (STPP) defined on a countable metric space and characterized by a conditional intensity function is introduced. In the first phase, the process is memoryless, generating completely random point patterns. In the second phase, the location and occurrence time of each event depend on the spatial configuration of previous events, thereby inducing spatio-temporal correlation. Theoretical results that characterize the distributional properties of the process are established, enabling both efficient numerical simulation and Bayesian inference. A statistical inference framework is developed, for the setting in which the STPP is observed at discrete calendar dates while the spatial locations of events are recorded, their exact occurrence times are unobserved, i.e., interval-censored. This partial observation scheme commonly arises in ecological and epidemiological applications, such as the monitoring of plant disease or insect pest spread across a spatial grid over time. The methodology is illustrated through an analysis of the spatio-temporal spread of sugarcane yellow leaf virus (SCYLV) in an initially disease-free sugarcane plot in Guadeloupe, FrenchWest Indies. Full article
(This article belongs to the Special Issue Probability Theory and Stochastic Processes: Theory and Applications)
Show Figures

Figure 1

20 pages, 3202 KB  
Article
Discovery of a Marine Beauveria bassiana Polysaccharide with Antiviral Activity Against Tobacco Mosaic Virus
by Xu Qiu, Lihang Jiao, Jingjing Xue, Guangxin Xu and Xixiang Tang
Mar. Drugs 2026, 24(1), 39; https://doi.org/10.3390/md24010039 - 13 Jan 2026
Viewed by 162
Abstract
Tobacco mosaic virus (TMV) threatens crop yield and quality, while chemical antivirals offer limited efficacy and potential environmental hazards. Marine fungal polysaccharides are promising eco-friendly alternatives due to their biocompatibility and biodegradability. Here, extracellular polysaccharides (EPSs) from the deep-sea fungus Beauveria bassiana T2-2 [...] Read more.
Tobacco mosaic virus (TMV) threatens crop yield and quality, while chemical antivirals offer limited efficacy and potential environmental hazards. Marine fungal polysaccharides are promising eco-friendly alternatives due to their biocompatibility and biodegradability. Here, extracellular polysaccharides (EPSs) from the deep-sea fungus Beauveria bassiana T2-2 was isolated, characterized, and produced under optimized conditions (28 °C, 200 rpm, 9 days, pH 8, inoculum 4%) using an L9 (34) orthogonal medium, yielding 3.42 g/L, which is a 48% increase over unoptimized culture. EPSs were glucose-rich, with a molecular weight of 3.56 × 104 Da, containing 90.05% total sugar, 0.28% protein, 1.15% uronic acid, and 1.18% sulfate. In a Nicotiana benthamiana–TMV model, EPSs alleviated viral symptoms, maintained chlorophyll content, enhanced antioxidant enzymes (SOD, POD, CAT), reduced malondialdehyde, and upregulated defense genes in SA, ET, ROS, and phenylpropanoid pathways. EPSs, alone or combined with Ribavirin, activated multi-pathway antiviral immunity, highlighting its potential as a sustainable plant-protective agent. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Figure 1

22 pages, 783 KB  
Review
Plant Viral Vectors for Vaccine Development
by Mehdi Shahgolzari, Afagh Yavari, Srividhya Venkataraman, Mehrin Faija and Kathleen Hefferon
Vaccines 2026, 14(1), 81; https://doi.org/10.3390/vaccines14010081 - 12 Jan 2026
Viewed by 185
Abstract
Plant viruses are useful tools for quickly and easily producing recombinant proteins in plants. Compared to systems that use genetically modified plants, viral vectors are easier to work with and can produce recombinant proteins faster and in larger amounts. Recently, there has been [...] Read more.
Plant viruses are useful tools for quickly and easily producing recombinant proteins in plants. Compared to systems that use genetically modified plants, viral vectors are easier to work with and can produce recombinant proteins faster and in larger amounts. Recently, there has been growing interest in using plant viruses as vectors to make vaccines, either as whole proteins or as small parts displayed on plant virus particles. The best examples for this purpose are tobacco mosaic virus, cowpea mosaic virus and potato virus X. Vaccines made using these viruses target various human and animal diseases and have often triggered immune responses and provided protection against infections. This review looks at the benefits of using plant virus vectors, the progress in developing different viral vector systems, and immune studies that support the idea of vaccines made from plant viruses. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Graphical abstract

14 pages, 1227 KB  
Article
Cytokinin–Ethylene Crosstalk Mediates Bottle Gourd Rootstock-Induced Vigor in Grafted Melon
by Wen Han, Mei Ai, Sishi Song, Xinyang Xu, Yanjun He, Weisong Shou, Jia Shen and Zhe Wu
Horticulturae 2026, 12(1), 82; https://doi.org/10.3390/horticulturae12010082 - 10 Jan 2026
Viewed by 200
Abstract
Grafting is a pivotal horticultural technique for enhancing vegetable crop productivity; however, the specific molecular mechanisms governing rootstock-induced vigor remain insufficiently elucidated. This study deciphers how bottle gourd rootstock augments growth in melon scions through an integrated approach combining physiology, transcriptomics, phytohormone profiling, [...] Read more.
Grafting is a pivotal horticultural technique for enhancing vegetable crop productivity; however, the specific molecular mechanisms governing rootstock-induced vigor remain insufficiently elucidated. This study deciphers how bottle gourd rootstock augments growth in melon scions through an integrated approach combining physiology, transcriptomics, phytohormone profiling, and functional genetics. Phenotypic analysis confirmed a significant increase in plant height, fresh weight, and stem diameter in heterografted scions compared to controls. Transcriptome sequencing of scion apices identified 663 core differentially expressed genes (DEGs) specifically modulated by the bottle gourd rootstock. These DEGs were prominently enriched in carbohydrate metabolism and plant hormone signal transduction pathways. Consistent with this, hormonal assays revealed a specific elevation in cytokinin and ethylene levels in the scion, accompanied by the upregulation of key pathway genes, including MELO3C016881 (LOG) and MELO3C007769 (ERF060). Crucially, virus-induced gene silencing of either gene completely abolished the rootstock-conferred growth advantage. Our findings preliminarily unveil the secret behind scion vigor, providing a foundational mechanistic framework for how rootstocks reprogram scion development. The identified genes, MELO3C016881 and MELO3C007769, offer direct molecular targets for the precision breeding of superior scions in melon. Full article
Show Figures

Figure 1

17 pages, 2704 KB  
Article
Plant-Based Production and Immunogenicity Evaluation of a GCN4pII-Fused PCV2d Cap Protein in Mice
by Thuong Thi Ho, Hoai Thu Tran, Hien Thi Thu Nguyen, My Tra Le, Ha Hoang Chu, Ngoc Bich Pham and Van Thi Pham
Appl. Sci. 2026, 16(2), 662; https://doi.org/10.3390/app16020662 - 8 Jan 2026
Viewed by 152
Abstract
Porcine circovirus 2 (PCV2) is a DNA virus that is classified in the genus Circovirus of the Circoviridae family, which is a causative agent of Porcine Circovirus-Associated disease (PCVAD). PCVAD continues to cause substantial losses in global pig farming, with PCV2d being the [...] Read more.
Porcine circovirus 2 (PCV2) is a DNA virus that is classified in the genus Circovirus of the Circoviridae family, which is a causative agent of Porcine Circovirus-Associated disease (PCVAD). PCVAD continues to cause substantial losses in global pig farming, with PCV2d being the prevalent genotype worldwide, including in Vietnam. In this study, we focused on generating a recombinant PCV2d Cap protein fused to the GCN4pII motif (Cap2d-pII) in a plant-based system and evaluating its immunogenicity. The Cap2d-pII gene was cloned into a plant expression vector and introduced into Agrobacterium tumefaciens for transient expression in Nicotiana benthamiana leaves. Western blot analysis confirmed the high accumulation of the Cap2d-pII protein, which was purified by Immobilized affinity chromatography and used for immunizing mice. ELISA and immunoperoxidase monolayer assay results demonstrated that immunization with the recombinant protein elicited robust humoral and cellular immune responses. At 56 days after immunization, mice vaccinated with the Cap2d-pII protein generated PCV2d-specific IgG titers and IFN-γ responses that were consistent with those in mice receiving the commercial inactivated vaccine. These observations confirm that the plant-expressed Cap2d-pII antigen effectively activates both antibody- and T cell-mediated immune pathways. Collectively, this study identifies the Cap2d-pII protein as a promising plant-derived vaccine candidate for the development of effective and affordable PCV2d subunit vaccines. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

16 pages, 1003 KB  
Article
Direct and Indirect Effects of a Glyphosate-Based Herbicide on Spodoptera frugiperda Multiple Nucleopolyhedrovirus (Baculoviridae) on Diet, Maize Plants and Soil
by Juan S. Gómez-Díaz, Arely Y. Cubas, Mara J. Arias-Robledo and Trevor Williams
Insects 2026, 17(1), 73; https://doi.org/10.3390/insects17010073 - 8 Jan 2026
Viewed by 243
Abstract
Glyphosate is a broad-spectrum, systemic herbicide that has attracted concern over its non-target effects, environmental persistence, and the presence of residues in food. The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a major invasive pest of maize that can be controlled by application [...] Read more.
Glyphosate is a broad-spectrum, systemic herbicide that has attracted concern over its non-target effects, environmental persistence, and the presence of residues in food. The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a major invasive pest of maize that can be controlled by application of its homologous nucleopolyhedrovirus (SfMNPV), an occluded virus in the family Baculoviridae. We examined the effects of a glyphosate-based herbicide on S. frugiperda growth and survival and on virus occlusion bodies (OBs) exposed to product label-recommended concentrations of the herbicide. Larval growth, time to pupation, pupal weight, duration of the pupal stage and sex ratio were not affected by exposure to the herbicide (1% v/v solution) applied to the surface of semi-synthetic diet. Exposure to 1–2% herbicide solution had no effect on the median lethal concentration (LC50) of OBs, the susceptibility of second instar larvae to virus infection, or the production of OBs in virus-killed larvae. Virus acquisition did not vary significantly when larvae fed on virus-sprayed maize plants at 1 and 6 days after they had been treated with herbicide, compared to healthy plants. Finally, the presence of 2% herbicide solution did not influence the persistence of OBs in non-sterilized soil samples over a 6-week greenhouse experiment. Although the laboratory and greenhouse experiments indicated that the glyphosate-based herbicide tested was unlikely to influence the transmission or persistence of SfMNPV OBs, future studies should verify these findings across a range of field conditions, soil types and different herbicide formulations. Full article
Show Figures

Figure 1

23 pages, 9112 KB  
Article
Genomic Organization of the Newly Discovered Cassava Congo Cheravirus Reveals a Unique Maf/HAM1 Motif in the C-Terminal Region of the RNA1 Polyprotein and Suggests the Presence of Two Protein Domains Upstream of the Putative Helicase Domain
by Yves Bisimwa Kwibuka, Stephan Winter, Espoir Basengere Bisimwa, Kumar Vasudevan, Hélène Sanfaçon, Hervé Vanderschuren and Sébastien Massart
Viruses 2026, 18(1), 84; https://doi.org/10.3390/v18010084 - 8 Jan 2026
Viewed by 910
Abstract
Cassava (Manihot esculenta) is a staple crop in sub-Saharan Africa threatened by several viral diseases. Here, we describe the genome sequence of a novel bipartite cheravirus (family Secoviridae) infecting cassava in the Democratic Republic of Congo and Tanzania. We designate [...] Read more.
Cassava (Manihot esculenta) is a staple crop in sub-Saharan Africa threatened by several viral diseases. Here, we describe the genome sequence of a novel bipartite cheravirus (family Secoviridae) infecting cassava in the Democratic Republic of Congo and Tanzania. We designate the new virus “cassava Congo cheravirus”. Each RNA segment encodes a single polyprotein (P1 and P2 for RNA1 and RNA2, respectively), embedded with various putative cleavage sites (six and three in P1 and P2, respectively), consistent with members of the genus Cheravirus. We note two new features in the P1: (i) the presence of two domains, X1 and X2, upstream of the putative helicase region, which we also predict in other cheraviruses and (ii) the presence of a Maf/HAM1-like inosine triphosphatase (ITPase) domain, a rare motif among viruses only previously detected in three potyviruses and a torradovirus, all of which infect plants from the Euphorbia family. Phylogenetic analyses placed the virus firmly within the genus Cheravirus, with amino acid identities in the Pro-Pol and coat protein regions well below existing ICTV species thresholds, supporting its classification as a virus belonging to a new species in the Cheravirus genus. Spatially distinct isolates from Bas-Congo, South-Kivu, and Tanzania form three genetic clusters, with evidence of recombination in both RNA segments. These results expand the known diversity of cassava viruses and suggest possible adaptation to the cassava host via ITPase acquisition. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

13 pages, 1447 KB  
Article
Longitudinal Wastewater-Based Epidemiology Reveals the Spatiotemporal Dynamics and Genotype Diversity of Diarrheal Viruses in Urban Guangdong, China
by Shuling Li, Jiadian Cao, Yuxi Yan, Wenwen Deng, Yuwei He, Siling Xiang, Chuting Zeng, Heshi Long, Shuxian Li, Qiao Yao, Biao Zeng, Baisheng Li, Song Tang and Jing Lu
Viruses 2026, 18(1), 83; https://doi.org/10.3390/v18010083 - 8 Jan 2026
Viewed by 228
Abstract
Following the normalization of the COVID-19 pandemic, the focus of wastewater-based epidemiology (WBE) must be broadened from SARS-CoV-2 to encompass surveillance of other major infectious diseases, particularly for pathogens where conventional clinical monitoring systems exhibit inherent surveillance gaps. In this study, we conducted [...] Read more.
Following the normalization of the COVID-19 pandemic, the focus of wastewater-based epidemiology (WBE) must be broadened from SARS-CoV-2 to encompass surveillance of other major infectious diseases, particularly for pathogens where conventional clinical monitoring systems exhibit inherent surveillance gaps. In this study, we conducted a continuous two-year WBE study (January 2023 to December 2024) across three high-population-density cities in Guangdong, China to establish epidemiological baselines for enteric diarrheal viruses. We analyzed monthly raw wastewater samples from major treatment plants using advanced molecular methods, including digital PCR (ddPCR) for viral load quantification and targeted high-throughput sequencing (tNGS) for genotypic analysis. Our findings revealed diverse circulation patterns among the monitored enteric viruses. Astrovirus (AstV) had the highest detection rate (100%), reflecting its broad endemic distribution, while Norovirus genogroup II (NoV GII) exhibited relatively high viral loads (median 4 × 104 copies/mL) and presented explosive seasonal peaks (significant upward trend in spring.), highlighting its epidemic potential. Furthermore, distinct spatiotemporal patterns were observed, with Sapovirus showing a significant summer peak in Foshan city, contrasting with the winter/spring peaks in the other cities. The tNGS results demonstrated similar sensitivity to RT-PCR in virus detection, and sequencing analyses uncovered the co-circulation and periodic shifts in dominant viral genotypes, such as the emergence of multiple NoV and AstV lineages. This longitudinal WBE surveillance successfully established critical baseline data and demonstrated significant regional heterogeneity in viral circulation, providing essential, complementary data to inform public health strategies for preventing diarrheal outbreaks in urban settings. Full article
Show Figures

Graphical abstract

15 pages, 1782 KB  
Article
Impact of Meteorological Conditions on the Bird Cherry–Oat Aphid (Rhopalosiphum padi L.) Flights Recorded by Johnson Suction Traps
by Kamila Roik, Sandra Małas, Paweł Trzciński and Jan Bocianowski
Agriculture 2026, 16(2), 152; https://doi.org/10.3390/agriculture16020152 - 7 Jan 2026
Viewed by 298
Abstract
Due to its abundance, bird cherry–oat aphid is the most important vector in Poland of the complex of viruses causing barley yellow dwarf virus (BYDV). These viruses infect all cereals. During the growing season, cereal plants are exposed to many species of agrophages, [...] Read more.
Due to its abundance, bird cherry–oat aphid is the most important vector in Poland of the complex of viruses causing barley yellow dwarf virus (BYDV). These viruses infect all cereals. During the growing season, cereal plants are exposed to many species of agrophages, which can limit their growth, development and yield. As observed for many years, global warming contributes to changes in the development of many organisms. Aphids (Aphidoidea), which are among the most important pests of agricultural crops, respond very dynamically to these changes. Under favorable conditions, their populations can increase several-fold within a few days. The bird cherry–oat aphid (Rhopalosiphum padi L.) is a dioecious species that undergoes a seasonal host shift during its life cycle. Its primary hosts are trees and shrubs (Prunus padus L.), while secondary hosts include cereals and various grass species. R. padi feeds directly on bird cherry tree, reducing its ornamental value, and on cereals, where it contributes to yields losses. The species can also damage plants indirectly by transmitting harmful viruses. Indirect damage is generally more serious than direct feeding injury. Monitoring aphid flights with a Johnson suction trap (JST) is useful for plant protection, which enables early detection of their presence in the air and then on cereal crops. To provide early detection of R. padi migrations and to study the dynamics of abundance, flights were monitored in 2020–2024 with Johnson suction traps at two localities: Winna Góra (Greater Poland Province) and Sośnicowice (Silesia Province). The aim of the research conducted in 2020–2024 was to study the dynamics of the bird cherry–oat aphid (Rhopalosiphum padi L.) population in relation to meteorological conditions as recorded by a Johnson suction trap. Over five years of research, a total of 129,638 R. padi individuals were captured using a Johnson suction trap at two locations (60,426 in Winna Góra and 69,212 in Sośnicowice). In Winna Góra, the annual counts were as follows: 5766 in 2020, 6498 in 2021, 36,452 in 2022, 5598 in 2023, and 6112 in 2024. In Sośnicowice, the numbers were as follows: 6954 in 2020, 9159 in 2021, 49,120 in 2022, 3855 in 2023, and 124 in 2024. The year 2022 was particularly notable for the exceptionally high abundance of R. padi, especially in the autumn. Monitoring crops for the presence of pests is the basis of integrated plant protection. Climate change, modern cultivation technologies, and increasing restrictions on chemical control are the main factors contributing to the development and spread of aphids. Therefore, measures based on monitoring the level of threat and searching for control solutions are necessary. Full article
Show Figures

Figure 1

51 pages, 7185 KB  
Review
Antiviral Phytoremediation for Sustainable Wastewater Treatment
by Diaiti Zure, Aleksandra Drizo, Meng-Hau Sung, Amanuel Mehari, Eko Maiguo and David H-W Kuo
Sustainability 2026, 18(1), 523; https://doi.org/10.3390/su18010523 - 5 Jan 2026
Viewed by 444
Abstract
Enteric viruses in wastewater remain a persistent public health threat. Conventional treatments often achieve only modest viral log10 reductions and can generate toxic disinfection byproducts, but high-energy advanced processes are often unaffordable. Antiviral phytoremediation, which involves virus removal mediated by plants and [...] Read more.
Enteric viruses in wastewater remain a persistent public health threat. Conventional treatments often achieve only modest viral log10 reductions and can generate toxic disinfection byproducts, but high-energy advanced processes are often unaffordable. Antiviral phytoremediation, which involves virus removal mediated by plants and their rhizosphere microbiota, offers a low-cost, low-energy alternative; however, it has scarcely been studied. A bibliometric analysis of ~23,000 wastewater treatment studies (1976–2025) identified only 30 virus-targeted records within plant-based treatment branches, representing ~0.13% of the total corpus. This critical review structures antiviral phytoremediation into a four-barrier framework: (i) sorption/filtration, (ii) rhizosphere-mediated inactivation, (iii) plant internalization, and (iv) intracellular degradation. Pilot and full-scale studies provide strong support for the first two barriers, whereas evidence for internalization and intracellular degradation is limited, mainly laboratory-based, and often inferred from molecular rather than infectivity assays. Standalone constructed wetlands typically achieve ~1–3 log10 virus reductions, but hybrid configurations that combine wetlands with complementary processes achieve ~3–7 log10 reductions, with performance varying between enveloped and non-enveloped viruses and across climates. This review distills design principles for cost-effective hybrid systems and identifies methodological and governance priorities, positioning rigorously designed phytoremediation as a scalable part of climate- and pandemic-resilient wastewater infrastructure. Full article
Show Figures

Figure 1

17 pages, 3864 KB  
Article
Physiological, Biochemical, and Transcriptome Analyses Reveal the Potential Role of ABA in Dufulin-Induced Tomato Resistance to Tomato Brown Rugose Fruit Virus (ToBRFV)
by Jinfeng Wang, Shijun Xing, Tao Li, Peiyan Zhao, Jian-Wei Guo, Yuqi Xia, Yating Liu and Shibo Wu
Horticulturae 2026, 12(1), 60; https://doi.org/10.3390/horticulturae12010060 - 4 Jan 2026
Viewed by 296
Abstract
As an important plant immune inducer, Dufulin has long been thought to enhance plant resistance to multiple plant viruses through activating the salicylic acid (SA) pathway. However, whether this immune inducer responds to tomato brown rugose fruit virus (ToBRFV) infection in the same [...] Read more.
As an important plant immune inducer, Dufulin has long been thought to enhance plant resistance to multiple plant viruses through activating the salicylic acid (SA) pathway. However, whether this immune inducer responds to tomato brown rugose fruit virus (ToBRFV) infection in the same way remains uncertain. In this study, we systematically analyzed the multiple effects of Dufulin treatment on the physiological, biochemical and gene expression patterns in tomato under ToBRFV infection. The results showed that the application of Dufulin could significantly increase the chlorophyll content; elevate the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); reduce the ToBRFV viral load; and enhance plant growth. Moreover, we found that Dufulin treatment could increase both SA and abscisic acid (ABA) contents. However, SA-related genes were not strongly activated as the genes involved in ABA biosynthesis and signal transduction pathways. This suggested that ABA likely plays an unrecognized role in the formation of this induced resistance. Through weighted gene co-expression network analysis (WGCNA) and cis-element analysis of the target gene promoters, we identified that SlABI5-like and SlWRKY4 might be the key potential transcription factor genes for Dufulin-induced tomato resistance to ToBRFV, and constructed their molecular regulatory network. We also conducted qRT-PCR assay to verify the gene expression patterns involved in this study. These findings potentially provide new insights into the mechanism of Dufulin-induced antiviral resistance, and enlarge important molecular targets for ToBRFV prevention and control. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

21 pages, 10923 KB  
Article
Genome-Wide Analysis of the GH3 Gene Family in Nicotiana benthamiana and Its Role in Plant Defense Against Tomato Yellow Leaf Curl Virus
by Xueting Zhong, Xiuyan Fang, Yuan Sun, Ye Zeng, Zaihang Yu, Jiapeng Li and Zhanqi Wang
Agronomy 2026, 16(1), 115; https://doi.org/10.3390/agronomy16010115 - 1 Jan 2026
Viewed by 403
Abstract
The Gretchen Hagen 3 (GH3) gene family, a key component of the early auxin-responsive gene family, plays a pivotal role in regulating plant growth, development, and stress responses. However, to date, a comprehensive genome-wide analysis of the GH3 gene family and [...] Read more.
The Gretchen Hagen 3 (GH3) gene family, a key component of the early auxin-responsive gene family, plays a pivotal role in regulating plant growth, development, and stress responses. However, to date, a comprehensive genome-wide analysis of the GH3 gene family and its potential role in plant defense against viruses, such as tomato yellow leaf curl virus (TYLCV), has not been conducted in Nicotiana benthamiana. Here, the GH3 gene family was thoroughly examined in N. benthamiana using a comprehensive genome-wide bioinformatic approach. A total of 25 potential GH3 genes were discovered in N. benthamiana. Phylogenetic analysis classified these NbGH3s into three different clades. Chromosomal distribution and synteny analyses revealed that NbGH3s are unevenly distributed across 14 chromosomes, with 20 segmental and one tandem duplication pairs. Promoter analysis suggested their involvement in phytohormone signaling and stress responses. Quantitative PCR showed that several NbGH3s are transcriptionally responsive to TYLCV infection, with five of them significantly upregulated in infected leaves. Furthermore, virus-induced gene silencing revealed that the suppression of NbGH3-3 and NbGH3-9 markedly increased host susceptibility to TYLCV, underscoring their critical roles in plant antiviral defense mechanisms. This research establishes a framework for understanding the functions of NbGH3s in plant growth and their response to TYLCV infection. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 2945 KB  
Article
Deciphering the Origins of Commercial Sweetpotato Genotypes Using International Genebank Data
by Alexandre F. S. Mello, Ronald Robles, Genoveva R. M. de Simon, Giovani O. da Silva, Sonia M. N. M. Montes, Maria U. C. Nunes, Jose L. Pereira, Erich Y. T. Nakasu, Rainer Vollmer, David Ellis, Verónica Valencia-Límaco and Vânia C. R. Azevedo
Biology 2026, 15(1), 91; https://doi.org/10.3390/biology15010091 - 1 Jan 2026
Viewed by 356
Abstract
Sweetpotato genotypes, often known by regional names, are easily propagated via cuttings, which can lead to mixing and misidentification of cultivars. This complicates traceability and commercialization. Accurate characterization of common genotypes would support their formal registration and strengthen the sweetpotato value chain. Sweetpotato [...] Read more.
Sweetpotato genotypes, often known by regional names, are easily propagated via cuttings, which can lead to mixing and misidentification of cultivars. This complicates traceability and commercialization. Accurate characterization of common genotypes would support their formal registration and strengthen the sweetpotato value chain. Sweetpotato is a staple crop in Brazil, and in this study, four states, representing different geographic regions in Brazil, were selected. A total of 37 samples were collected in these states, and the samples were evaluated by SSR molecular markers and morphological traits. The samples were cleaned of virus and compared to the global sweetpotato collection held at the International Potato Center under the International Treaty on Plant Genetic Resources for Food and Agriculture. SSR markers effectively distinguished among accessions. The genotype locally known as “Canadense” matched closely both genetically and morphologically to the CIP accession ‘Blesbok’. This alignment paves the way for formalizing cuttings and root production of “Canadense”/‘Blesbok’ for commercial use. In contrast, several accessions marketed in Sergipe as “white skin sweetpotato” did not correspond to any known CIP accession, suggesting that they may be unique regional genotypes or acquired from other sources, since sweetpotato is an exotic crop in Brazil. Overall, the research identified key genotypes, supporting their official registration with Brazil’s Ministry of Agriculture, Livestock, and Supply, thereby enhancing the legal commercialization of cuttings and roots. Additionally, the clear molecular and trait-based classification will assist sweetpotato crop improvement programs in selecting appropriate parent lines for future crosses. Full article
(This article belongs to the Special Issue Molecular Biology of Plants)
Show Figures

Figure 1

16 pages, 7449 KB  
Article
Silencing of the Mycorrhiza-Inducible Phosphate Transporter TaPT3-2D in Wheat Enhances Pathogen Susceptibility and Impairs Arbuscular Mycorrhizal Symbiosis
by Yi Zhang, Danfeng Wang, Yuchen Ma, Xueqing Wang, Kedong Xu, Xiaoli Li, Xinxin Shangguan, Haohao Cao, Guozhang Kang and Chengwei Li
Plants 2026, 15(1), 118; https://doi.org/10.3390/plants15010118 - 1 Jan 2026
Viewed by 334
Abstract
The interplay between phosphate (Pi) signaling and defense pathways is crucial for plant fitness, yet its molecular basis, particularly in wheat, remains poorly understood. Here, we functionally characterized the plasma membrane-localized high-affinity phosphate transporter TaPT3-2D and demonstrated its essential roles in Pi uptake, [...] Read more.
The interplay between phosphate (Pi) signaling and defense pathways is crucial for plant fitness, yet its molecular basis, particularly in wheat, remains poorly understood. Here, we functionally characterized the plasma membrane-localized high-affinity phosphate transporter TaPT3-2D and demonstrated its essential roles in Pi uptake, arbuscular mycorrhizal (AM) symbiosis, and fungal disease resistance. Quantitative analyses showed that TaPT3-2D expression was strongly induced by AM colonization (165-fold increase) and by infection with Bipolaris sorokiniana (54-fold increase) and Gaeumannomyces tritici (15-fold increase). In contrast, virus-induced gene silencing (VIGS) of TaPT3-2D reduced Pi uptake and mycorrhizal colonization. Moreover, TaPT3-2D-silenced plants exhibited increased susceptibility to biotrophic, hemibiotrophic, and necrotrophic fungi, accompanied by reduced expression of pathogen-related genes. The simultaneous impairment of Pi uptake, AM symbiosis, and defense responses in silenced plants indicates that TaPT3-2D functionally couples these processes. Functional complementation assays in low-Pi medium further revealed that TaPT3-2D partially rescued defective Pi uptake in mutant MB192 yeast, supporting its role as a high-affinity phosphate transporter. Collectively, these results identify TaPT3-2D as both a key regulator of individual pathways and as a molecular link connecting Pi homeostasis, symbiotic signaling, and disease resistance in wheat. Full article
(This article belongs to the Special Issue Fungal–Plant Interactions: From Symbiosis to Pathogenesis)
Show Figures

Figure 1

Back to TopTop