Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = insect-specific virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2669 KiB  
Article
Characterization of the Virome in Mosquitoes Across Distinct Habitats in the Yucatán Peninsula, Mexico
by Erika N. Hernández-Villegas, Hugo G. Castelán-Sánchez, Andres Moreira-Soto, Ana Laura Vigueras-Galván, Marco A. Jiménez-Rico, Oscar Rico-Chávez, Stephany Rodríguez-González, María José Tolsá-García, David Roiz, Paola Martínez-Duque, Roger Arana-Guardía, Omar García-Súarez, Moisés Zamora Jiménez, Luisa I. Falcón, Benjamin Roche, Rosa Elena Sarmiento-Silva, Audrey Arnal, Jan Felix Drexler and Gerardo Suzán
Viruses 2025, 17(6), 758; https://doi.org/10.3390/v17060758 - 26 May 2025
Viewed by 2213
Abstract
Human activities and land use changes have a major impact on the distribution and diversity of mosquito vectors and their associated viruses. This study describes the diversity and differential abundance of viruses associated with mosquito species from four habitats of the Yucatan Peninsula, [...] Read more.
Human activities and land use changes have a major impact on the distribution and diversity of mosquito vectors and their associated viruses. This study describes the diversity and differential abundance of viruses associated with mosquito species from four habitats of the Yucatan Peninsula, Mexico. Using next-generation sequencing (NGS), we analyzed 61 genomic libraries belonging to 20 mosquito species to characterize the viral community. A total of 16 viral species were identified, representing 14 different viral families. Most identified viruses were associated with insects, plants, and fungi. Additionally, vertebrate associated viral families, including Herpesviridae, Peribunyaviridae, Nairoviridae, and Arenaviridae, were detected in mosquitoes from urban habitats. Notably, insect-associated viruses like Hubei mosquito virus 4 and Hubei virga-like virus 2 were identified, along with the first report of Mercadeo virus in Mexico. Variations in viral community composition were primarily driven by mosquito species, with species of the same genus maintaining similar viromes despite occupying different habitats. These findings reinforce that intrinsic traits of mosquito species play a key role in shaping viral community composition. To our knowledge, this is the first study that describes the viral community in mosquitoes in Yucatan Peninsula, Mexico. This study provides essential baseline data for the surveillance of mosquitoes and associated viruses from a biodiverse tropical region that faces strong land use modifications. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

18 pages, 1451 KiB  
Systematic Review
Viruses in Simuliidae: An Updated Systematic Review of Arboviral Diversity and Vector Potential
by Alejandra Rivera-Martínez, S. Viridiana Laredo-Tiscareño, Jaime R. Adame-Gallegos, Erick de Jesús de Luna-Santillana, Carlos A. Rodríguez-Alarcón, Julián E. García-Rejón, Mauricio Casas-Martínez and Javier A. Garza-Hernández
Life 2025, 15(5), 807; https://doi.org/10.3390/life15050807 - 19 May 2025
Cited by 1 | Viewed by 945
Abstract
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular [...] Read more.
Black flies (Diptera: Simuliidae) are important vectors of pathogens, including filarial nematodes, protozoans, and arboviruses, which significantly impact human and animal health. Although their role in arbovirus transmission has not been as thoroughly studied as that of mosquitoes and ticks, advances in molecular tools, particularly metagenomics, have enabled the identification of non-cultivable viruses, significantly enhancing our understanding of black-fly-borne viral diversity and their public and veterinary health implications. However, these methods can also detect insect-specific viruses (i.e., viruses that are unable to replicate in vertebrate hosts), which may lead to the incorrect classification of black flies as potential vectors. This underscores the need for further research into their ecological and epidemiological roles. This systematic review, conducted following the PRISMA protocol, compiled and analyzed evidence on arbovirus detection in Simuliidae from scientific databases. Several arboviruses were identified in these insects, including vesicular stomatitis virus New Jersey serotype (VSVNJ), Venezuelan equine encephalitis virus (VEEV), and Rift Valley fever virus. Additionally, in vitro studies evaluating the vector competence of Simuliidae for arboviruses such as dengue virus, Murray Valley encephalitis virus, and Sindbis virus were reviewed. These findings provide critical insights into the potential role of black flies in arbovirus transmission cycles, emphasizing their importance as vectors in both public and veterinary health contexts. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

8 pages, 2215 KiB  
Brief Report
Genetic and Antiviral Potential Characterization of Four Insect-Specific Viruses Identified and Isolated from Mosquitoes in Yunnan Province
by Qinxuan Miao, Lulu Deng, Xiang Le, Qian Li, Yuting Ning, Yimeng Duan, Qi Liu, Yinzhu Tao, Binghui Wang and Xueshan Xia
Viruses 2025, 17(5), 596; https://doi.org/10.3390/v17050596 - 23 Apr 2025
Viewed by 451
Abstract
Mosquitoes, comprising over 300 species, are pivotal vectors for transmitting arthropod-borne viruses (arboviruses) to vertebrates via bites, posing a significant public health threat with approximately 700,000 annual deaths. In contrast, insect-specific viruses (ISVs) exclusively infect insects and have no direct impact on human [...] Read more.
Mosquitoes, comprising over 300 species, are pivotal vectors for transmitting arthropod-borne viruses (arboviruses) to vertebrates via bites, posing a significant public health threat with approximately 700,000 annual deaths. In contrast, insect-specific viruses (ISVs) exclusively infect insects and have no direct impact on human health. Yunnan Province in China, located in tropical and subtropical regions, provides an ideal environment for mosquito habitation and has the highest diversity of known mosquito-borne viruses. In this study, mosquito samples were collected from eight cities and states in Yunnan Province, totaling 15,099 specimens. Based on the collection sites and mosquito species, the samples were divided into 110 groups for virus isolation. Four insect-specific viruses (Tanay virus [TANV], Culex orthoflavivirus [CxFV], Aedes orthoflavivirus [AeFV], La Tina virus [LTNV]) were successfully isolated, and co-infection studies with dengue virus (DENV-2) were conducted in C6/36 cells. Preliminary results suggested that these four insect-specific viruses may reduce the viral titer of DENV-2 in C6/36 cells. Understanding the intricate interactions between insect-specific viruses and mosquito-borne viruses is crucial for elucidating the multifaceted role of mosquitoes in arboviral transmission dynamics. Insect-specific viruses exhibit considerable potential as innovative biocontrol agents, with promising capacity to attenuate mosquito-borne viral transmission through the targeted modulation of mosquito innate immunity and physiological adaptations. Full article
Show Figures

Figure 1

15 pages, 1237 KiB  
Article
β-1,3-Glucan Recognition Protein Can Inhibit the Proliferation of Bombyx mori Cytoplasmic Polyhedrosis Virus
by Yinong Zhang, Jiming Yan, Yukai Xie, Xiong Wang, Feifei Ren, Haixu Bian and Jingchen Sun
Insects 2025, 16(4), 431; https://doi.org/10.3390/insects16040431 - 19 Apr 2025
Viewed by 554
Abstract
Insects detect pathogens through their germ-line encoded pattern recognition receptors (PRRs). Among these, β-1,3-glucan recognition protein (βGRP) is a crucial PRR that specifically identifies pathogenic microorganisms and triggers innate immune signaling cascades. However, it remains unclear whether βGRP can detect viruses and protect [...] Read more.
Insects detect pathogens through their germ-line encoded pattern recognition receptors (PRRs). Among these, β-1,3-glucan recognition protein (βGRP) is a crucial PRR that specifically identifies pathogenic microorganisms and triggers innate immune signaling cascades. However, it remains unclear whether βGRP can detect viruses and protect the host from viral threats. In this study, using high-throughput sequencing technology, we observed a significant suppression of βGRP-3 in Bombyx mori during infection with the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). Moreover, overexpression of βGRP-3 in BmN cell lines resulted in a reduction of BmCPV proliferation, whereas knockdown of βGRP-3 in BmN cells promoted BmCPV proliferation. These findings suggest that the βGRP family functions not only as anti-bacterial, antifungal, and anti-yeast PRRs but also as protectors against various harmful viruses in insects. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

17 pages, 3351 KiB  
Article
Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies
by Dan Zhai, Hang Lu, Suyao Liu, Jialei Liu, Wanyu Zhang, Jingjing Wu, Jingjing Li, Rune Bai, Fengming Yan and Chenchen Zhao
Biomolecules 2025, 15(4), 593; https://doi.org/10.3390/biom15040593 - 16 Apr 2025
Cited by 1 | Viewed by 631
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such [...] Read more.
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides–insects–symbionts–viruses. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

19 pages, 1893 KiB  
Article
Reproductive Trade-Offs in Culex pipiens: Effects of CYV Infection and Delayed Mating
by Mareike Heinig-Hartberger, Fanny Hellhammer and Stefanie C. Becker
Insects 2025, 16(3), 252; https://doi.org/10.3390/insects16030252 - 1 Mar 2025
Viewed by 996
Abstract
Arbovirus control strategies often target vector reproductive dynamics, with insect-specific viruses (ISVs) like Culex Y virus (CYV) offering potential as eco-friendly approaches by influencing mosquito reproduction without affecting humans or animals. This study investigated the interplay between autogeny, anautogeny, nutrient availability, and viral [...] Read more.
Arbovirus control strategies often target vector reproductive dynamics, with insect-specific viruses (ISVs) like Culex Y virus (CYV) offering potential as eco-friendly approaches by influencing mosquito reproduction without affecting humans or animals. This study investigated the interplay between autogeny, anautogeny, nutrient availability, and viral infection and their effect on reproductive success in Culex pipiens biotype molestus and Culex pipiens quinquefasciatus. CYV infection had a minimal impact on mosquito reproductive parameters, even after a five-day incubation period. Autogeny enabled Cx. pipiens biotype molestus to produce eggs without blood meals, yet older females (3–5 days post-emergence) showed reduced reproductive success unrelated to nutrient deficiency, as blood-feeding did not restore their egg production. These findings demonstrate that age affects reproductive success in Cx. pipiens biotype molestus but not in Cx. pipiens quinquefasciatus and suggest that CYV has negligible direct effects on mosquito reproduction. This work enhances our understanding of ISV biology and vector ecology, supporting the development of innovative, sustainable arbovirus-control strategies. Full article
(This article belongs to the Special Issue Arthropod Reproductive Biology)
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Serum-Free Suspension Culture of the Aedes albopictus C6/36 Cell Line for Chimeric Orthoflavivirus Vaccine Production
by Joshua S. Dawurung, Jessica J. Harrison, Naphak Modhiran, Roy A. Hall, Jody Hobson-Peters and Henry de Malmanche
Viruses 2025, 17(2), 250; https://doi.org/10.3390/v17020250 - 12 Feb 2025
Cited by 1 | Viewed by 1590
Abstract
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To [...] Read more.
Chimeric orthoflaviviruses derived from the insect-specific Binjari virus (BinJV) offer a promising basis for safe orthoflavivirus vaccines. However, these vaccines have so far only been produced using adherent C6/36 Aedes albopictus mosquito cell cultures grown in serum-supplemented media, limiting their scalable manufacture. To address this, we adapted C6/36 cells for serum-free suspension culture using Sf900-III medium, achieving high peak cell densities (up to 2.5 × 107 cells/mL). Higher agitation rates reduced cell aggregation, and cryopreservation and direct-to-suspension revival were successful, confirming the adapted line’s stability for research and industrial applications. Despite this, BinJV-based chimeric orthoflaviviruses, including BinJV/WNVKUN, a candidate vaccine for West Nile virus, and similar vaccines (BinJV/DENV2 and BinJV/JEVNSW22) for dengue 2 virus and Japanese encephalitis virus, respectively, exhibited substantially reduced titres in C6/36 cultures infected in Sf900-III, a phenomenon attributed to the medium’s acidic pH. Switching to the more alkaline, serum-free CD-FortiCHO medium enhanced the replication of these chimeric viruses to peak titres between 1.7 × 107 and 7.6 × 109 infectious units per mL whilst preserving viral integrity. These findings suggest that suspension-adapted C6/36 cultures in CD-FortiCHO medium can support high-yield vaccine production for various orthoflaviviruses and highlight the important role of cell culture media pH for orthoflavivirus bioprocessing. This scalable mosquito cell-based system could reduce production costs and improve vaccine accessibility, supporting efforts to combat arbovirus-related public health challenges. Full article
(This article belongs to the Special Issue Arboviral Lifecycle 2025)
Show Figures

Figure 1

16 pages, 3299 KiB  
Article
Citrus Yellow Vein Clearing Virus Infection in Lemon Influences Host Preference of the Citrus Whitefly by Affecting the Host Metabolite Composition
by Yong-Duo Sun, Christopher M. Wallis, Rodrigo Krugner and Raymond Yokomi
Plants 2025, 14(2), 288; https://doi.org/10.3390/plants14020288 - 20 Jan 2025
Cited by 1 | Viewed by 1045
Abstract
Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether Citrus yellow vein clearing virus (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, Dialeurodes citri (Ashmead). Free choice assays showed that [...] Read more.
Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether Citrus yellow vein clearing virus (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, Dialeurodes citri (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants. Using chromatography techniques, we found that the levels of sugars were similar in leaves and stems of both plant groups, while the contents of several amino acids in leaf or stem samples and non-volatile phenolic compounds in the leaf samples of CYVCV-infected and healthy plants differ drastically. In addition, volatile terpenes/terpenoids decreased significantly in virus-infected plants compared to healthy controls. Several of the identified volatile compounds such as α-phellandrene, α-terpinolene, p-cymene, linalool, and citral are known for their whitefly repellent properties. Further Y-tube olfactometer bioassays revealed that emissions of volatile organic compounds (VOCs) from infected plants attracted more citrus whiteflies, but not alate spirea aphids, Aphis spiraecola Patch, than those from healthy plants, suggesting that the VOCs released from CYVCV-infected lemon plants may specifically affect citrus whiteflies. Therefore, we suggest that, in addition to the visual cue of yellow vein symptoms, the preference of citrus whiteflies that settled on CYVCV-infected lemon plants was attributed to a reduction in the levels of repellent volatile compounds. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

12 pages, 2311 KiB  
Article
Genomic Characterization of Laodelphax striatellus Permutotetra-like Virus and Self-Cleavage Function of Viral Capsid Protein
by Jun Piao, Jiarui Zhang, Lujie Zhang, Jingai Piao, Haitao Wang, Yilin Xie and Shuo Li
Microbiol. Res. 2025, 16(1), 9; https://doi.org/10.3390/microbiolres16010009 - 2 Jan 2025
Viewed by 865
Abstract
Laodelphax striatellus permutotetra-like virus (LsPLV) is a novel insect virus identified via small RNA deep sequencing. At present, there is a lack of awareness of LsPLV, restricting research on its utilization in biocontrol. In this paper, the full-length genome of LsPLV was cloned [...] Read more.
Laodelphax striatellus permutotetra-like virus (LsPLV) is a novel insect virus identified via small RNA deep sequencing. At present, there is a lack of awareness of LsPLV, restricting research on its utilization in biocontrol. In this paper, the full-length genome of LsPLV was cloned and analyzed, then viral capsid protein (CP) was expressed and prepared as an antibody, and CP property was tested. It was found that the LsPLV genome was 4667 nt in length, encoding two proteins, RNA-dependent RNA polymerase (RdRP) and CP, and the palm subdomain conserved region in RdRp was arranged in a “C–A–B” permutation pattern, exhibiting the typical characteristics of permutotetra-like viruses. Phylogenetic analysis suggested that LsPLV shared the highest homology (excluding LsPLV1) with a Nodaviridae virus (QLI47702.1), and their nucleotide identities of RdRP and CP were 55.4% and 59.2%, respectively. After expression, purified CP exhibited two bands of 60 kDa and 47 kDa, suggesting a potential cleavage in the protein. LsPLV CP in L. striatellus was detected by Western blot, and except for the complete CP band, the specific bands with molecular weights lower than CP were also detected, indicating that CP underwent cleavage. Detection of purified CP in vitro showed that the cleavage could occur independent of any protease, confirming that CP has self-cleavage characteristics. Full article
(This article belongs to the Special Issue Veterinary Microbiology and Diagnostics)
Show Figures

Figure 1

14 pages, 402 KiB  
Article
Development and Evaluation of a Candidate Inactivated Vaccine Against Bluetongue Virus Serotype 4 (BTV4)
by Ljubisa Veljovic, Dimitrije Glisic, Marko Kirovski, Ljiljana Paušak and Vesna Milicevic
Vaccines 2024, 12(12), 1326; https://doi.org/10.3390/vaccines12121326 - 26 Nov 2024
Cited by 1 | Viewed by 927
Abstract
Objectives: Although bluetongue is not a contagious disease, it is easily transmitted and spread by appropriate insect vectors, causing great economic damage. Climate change has led to the fact that vectors and diseases have spread to the top of Northern Europe, causing great [...] Read more.
Objectives: Although bluetongue is not a contagious disease, it is easily transmitted and spread by appropriate insect vectors, causing great economic damage. Climate change has led to the fact that vectors and diseases have spread to the top of Northern Europe, causing great economic losses in livestock production. An even greater problem is controlling the disease, because numerous species of domestic and wild ruminants are susceptible to bluetongue. The most effective tool against bluetongue disease is vaccination. Methods: Our goal was to carry out laboratory tests of the starting material and the finished product of the candidate inactivated vaccine against BTV4, and to comment on the obtained laboratory results and the results of previously performed clinical studies. There is no ideal vaccine against the bluetongue virus (BTV) due to the serotype diversity of its strains. Thus, there is a need for a vaccine for at least 24 clinically significant serotypes. Sometimes, it is difficult to obtain the desired amount of vaccine against a defined serotype on the market, and this has led to the need for a new vaccine against bluetongue disease. In this study, we tested an experimental inactivated vaccine against BTV4. The master seed BTV4 was examined and characterized by sequencing. Results: The candidate BTV4 vaccine induced the onset of immunity at the latest at day 21 after the application of the first dose in more than 80% of the vaccinated individuals, while the ELISA test detected specific antibodies against BTV for more than a year. Along with our laboratory results, the preliminary results of safety and efficacy trials are also presented. Conclusions: The side effects of this inactivated BTV4 vaccine are within the limits of permissible local reactions without generalized changes in the health status, while the serology and challenge test leads to the conclusion that this vaccine against BTV4 protects a high percentage of vaccinated individuals against BTV4 or causes a significant reduction in the intensity and duration of the clinical signs in the vaccinated sheep. Based on the trial results, the new vaccine has given encouraging results in terms of quality, safety, and preliminary efficacy tests. Thus, we believe that a new vaccine against BTV is on the horizon. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

11 pages, 1651 KiB  
Article
Assessing Post-Vaccination Seroprevalence and Enhancing Strategies for Lumpy Skin Disease Vaccination in Korean Cattle
by Geun-Ho Kim, Dae-Sung Yoo, Keum-Suk Chu, Eun-Hyo Cho, Seung-Il Wi, Kyung-Ok Song, Do Kyung Ra, Woo H. Kim, Choi-Kyu Park, Dongseob Tark, Yeonsu Oh and Ho-Seong Cho
Animals 2024, 14(22), 3236; https://doi.org/10.3390/ani14223236 - 12 Nov 2024
Viewed by 1950
Abstract
Lumpy skin disease (LSD), caused by the LSD virus (LSDV), a dsDNA virus of the genus Capripoxvirus, represents a significant cross-border infectious threat, particularly impacting cattle and water buffaloes through transmission by blood-feeding insects. Traditionally endemic to Southern Africa, LSD has rapidly spread [...] Read more.
Lumpy skin disease (LSD), caused by the LSD virus (LSDV), a dsDNA virus of the genus Capripoxvirus, represents a significant cross-border infectious threat, particularly impacting cattle and water buffaloes through transmission by blood-feeding insects. Traditionally endemic to Southern Africa, LSD has rapidly spread over the past decade through the Middle East to Eastern Europe and China, reaching Korea in October 2023. This outbreak prompted a nationwide vaccination campaign, addressing both the disease’s severe economic impact and its status as a notifiable disease under the World Organisation for Animal Health. This study assesses the seropositivity of the LSD vaccine in cattle across four Korean provinces 2–3 months post-vaccination, aiming to inform improvements in biosecurity and vaccination strategies. Overall, 30.59% of the cattle tested (1196 out of 3910) exhibited positive antibody responses, comparable to international post-vaccination findings. Analysis further revealed differences in the antibody positivity between farm types and management practices. Specifically, farms where vaccines were administered by veterinarians showed no significant difference in antibody positivity between Korean native cattle and dairy cattle, regardless of the presence of restraint facilities. However, on farms where vaccinations were conducted by the owners, dairy cattle demonstrated a higher seropositivity (43.30 ± 33.39%) compared to Korean native cattle (21.97 ± 20.79%) in the absence of restraint facilities. Further comparisons underscored the impact of restraint facilities on vaccination efficacy, with dairy farms generally achieving higher antibody positivity (29.43 ± 30.61%) than farms with Korean native cattle (23.02 ± 23.33%) (p < 0.05), suggesting that consistent vaccine delivery methods enhance immunogenic responses. Contrarily, no significant difference was noted in antibody positivity between large- and small-scale farms, indicating that farm size did not notably impact the effectiveness of the vaccinator. These findings emphasize that while current vaccines are sufficiently inducing immunity, enhancing vaccination strategies, particularly through trained personnel and improved restraint facilities, is crucial. This study’s insights into the impact of vaccination and farm management practices provide valuable guidance for refining LSD control measures in Korea and potentially other affected regions. Full article
(This article belongs to the Collection Cattle Diseases)
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
An Evaluation of Organic Biostimulants as a Tool for the Sustainable Management of Viral Infections in Zucchini Plants
by Carla Libia Corrado, Livia Donati, Anna Taglienti, Luca Ferretti, Francesco Faggioli, Massimo Reverberi and Sabrina Bertin
Horticulturae 2024, 10(11), 1176; https://doi.org/10.3390/horticulturae10111176 - 7 Nov 2024
Viewed by 1141
Abstract
In agriculture, new and sustainable strategies are increasingly demanded to integrate the traditional management of viral diseases based on the use of virus-free propagation materials and resistant or tolerant cultivars and on the control of insect vectors. Among the possible Integrated Pest Management [...] Read more.
In agriculture, new and sustainable strategies are increasingly demanded to integrate the traditional management of viral diseases based on the use of virus-free propagation materials and resistant or tolerant cultivars and on the control of insect vectors. Among the possible Integrated Pest Management (IPM) approaches, organic biostimulants have shown promising results in enhancing plant tolerance to virus infections by improving plant fitness and productivity and modulating metabolic functions. In this study, the combination of two organic biostimulants, Alert D-Max and Resil EVO Q, composed of seaweed and alfalfa extracts, enzymatic hydrolysates, and micronized zeolite, was applied on the leaves and roots of zucchini squashes, both healthy and infected by zucchini yellow mosaic virus (ZYMV). Four applications were scheduled based on ZYMV inoculation timing, and plant vegetative and reproductive parameters were recorded along with the virus titre and symptom severity. The modulation of the expression of specific genes potentially involved in pattern-triggered immunity (PTI), systemic acquired resistance (SAR), and oxidative stress defence pathways was also investigated. Besides increasing the general fitness of the healthy plants, the biostimulants significantly improved the production of flowers and fruits of the infected plants, with a potential positive impact on their productivity. The repeated biostimulant applications also led to a one-tenth reduction in ZYMV titre over time and induced a progressive slowdown of symptom severity. Genes associated with SAR and PTI were up-regulated after biostimulant applications, suggesting the biostimulant-based priming of plant defence mechanisms. Due to the observed beneficial effects, the tested biostimulant mix can be an effective component of the IPM of cucurbit crops, acting as a sustainable practice for enhancing plant fitness and tolerance to potyviruses. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 3092 KiB  
Article
Reliable Augmentation and Precise Identification of EPG Waveforms Based on Multi-Criteria DCGAN
by Xiangzeng Kong, Chuxin Wang, Lintong Zhang, Wenqing Zhang, Shimiao Chen, Haiyong Weng, Nana Hu, Tingting Zhang and Fangfang Qu
Appl. Sci. 2024, 14(22), 10127; https://doi.org/10.3390/app142210127 - 5 Nov 2024
Viewed by 1059
Abstract
The electrical penetration graph (EPG) technique is of great significance in elucidating the mechanisms of virus transmission by piercing-sucking insects and crop resistance to these insects. The traditional method of manually processing EPG signals encounters the drawbacks of inefficiency and subjectivity. This study [...] Read more.
The electrical penetration graph (EPG) technique is of great significance in elucidating the mechanisms of virus transmission by piercing-sucking insects and crop resistance to these insects. The traditional method of manually processing EPG signals encounters the drawbacks of inefficiency and subjectivity. This study investigated the data augmentation and automatic identification of various EPG signals, including A, B, C, PD, E1, E2, and G, which correspond to distinct behaviors exhibited by the Asian citrus psyllid. Specifically, a data augmentation method based on an improved deep convolutional generative adversarial network (DCGAN) was proposed to address the challenge of insufficient E1 waveforms. A multi-criteria evaluation framework was constructed, leveraging maximum mean discrepancy (MMD) to evaluate the similarity between the generated and real data, and singular value decomposition (SVD) was incorporated to optimize the training iterations of DCGAN and ensure data diversity. Four models, convolutional neural network (CNN), K-nearest neighbors (KNN), decision tree (DT), and support vector machine (SVM), were established based on DCGAN to classify the EPG waveforms. The results showed that the parameter-optimized DCGAN strategy significantly improved the model accuracies by 5.8%, 6.9%, 7.1%, and 7.9% for DT, SVM, KNN, and CNN, respectively. Notably, DCGAN-CNN effectively addressed the skewed distribution of EPG waveforms, achieving an optimal classification accuracy of 94.13%. The multi-criteria optimized DCGAN-CNN model proposed in this study enables reliable augmentation and precise automatic identification of EPG waveforms, holding significant practical implications for understanding psyllid behavior and controlling citrus huanglongbing. Full article
Show Figures

Figure 1

10 pages, 2705 KiB  
Communication
First Description of Loreto Virus in Three Culicidae Species from the Atlantic Forest, Bahia, Brazil
by Thito Y. Bezerra da Paz, Leonardo H. Almeida Hernández, Fábio Silva da Silva, Ana C. Ribeiro Cruz, Sandro Patroca da Silva, Hellen Thais Fuzii, Janaina M. Vasconcelos Massafra, João L. S. G. Vianez Júnior, Sharon L. Deem, Leonardo de Carvalho Oliveira, Kristel Myriam De Vleeschouwer and Lilian Silva Catenacci
Viruses 2024, 16(11), 1674; https://doi.org/10.3390/v16111674 - 25 Oct 2024
Viewed by 1093
Abstract
Loreto virus (LORV) is an insect-specific virus classified into the proposed taxon Negevirus. It was originally described in Iquitos, Peru, in 1977. Here, we describe three novel LORV genomes obtained from the isolates of three pooled samples of Trichoprosopon digitatum, Aedes ( [...] Read more.
Loreto virus (LORV) is an insect-specific virus classified into the proposed taxon Negevirus. It was originally described in Iquitos, Peru, in 1977. Here, we describe three novel LORV genomes obtained from the isolates of three pooled samples of Trichoprosopon digitatum, Aedes (Ochlerotatus) fulvus, and Limatus durhamii collected in Ilhéus—Bahia, 2014. Samples were submitted to RNA sequencing on the Illumina platform to recover the LORV genome. The genomes presented, on average, 81.5% nucleotide identity and 92.6% global amino acid identity with the LORV reference genome (NC_034158). Subsequently, phylogenetic analysis was performed based on a multiple sequence alignment of the concatenated amino acid sequences predicted for the three ORFs of the Negevirus genomes, and the target sequences were clustered within the LORV clade. The taxon Negevirus is in constant expansion of its species content and host range. New data about insect specific negeviruses are important for virus evolution studies, along with those approaching interactions with the hosts and their influence in the transmission of arboviruses. Also, the assessment of these data may allow the development of biologic control strategies for arboviral vectors. This is the original report of the identification of LORV in Brazil, infecting three Culicidae species hosts native to the Atlantic Forest biome. Full article
(This article belongs to the Special Issue Insect-Specific Viruses 2.0)
Show Figures

Figure 1

16 pages, 1590 KiB  
Article
Camelpox Virus in Western Kazakhstan: Assessment of the Role of Local Fauna as Reservoirs of Infection
by Yerbol Bulatov, Sholpan Turyskeldy, Ruslan Abitayev, Abdurakhman Usembai, Zhanna Sametova, Zhanat Kondybayeva, Alina Kurmasheva, Dana Mazbayeva, Asselya Kyrgyzbayeva, Kamshat Shorayeva, Zhanat Amanova and Dariya Toktyrova
Viruses 2024, 16(10), 1626; https://doi.org/10.3390/v16101626 - 17 Oct 2024
Viewed by 1561
Abstract
This article investigates the role of local fauna in Western Kazakhstan as potential reservoirs of the camelpox virus (CMLV). The study emphasizes analyzing possible sources and transmission pathways of the virus using polymerase chain reaction (PCR) and serological methods, including virus neutralization tests [...] Read more.
This article investigates the role of local fauna in Western Kazakhstan as potential reservoirs of the camelpox virus (CMLV). The study emphasizes analyzing possible sources and transmission pathways of the virus using polymerase chain reaction (PCR) and serological methods, including virus neutralization tests and enzyme-linked immunosorbent assays (ELISA). Samples were collected from both young and adult camels, as well as rodents, ticks and blood-sucking insects in the Mangystau and Atyrau regions. The PCR results revealed the absence of viral DNA in rodents, ticks and blood-sucking insects; also, the ELISA test did not detect specific antibodies in rodents. These findings suggest that these groups of fauna likely do not play a significant role in the maintenance and spread of CMLV. Consequently, the primary sources of transmission are likely other factors, potentially including the camels themselves. The study’s results indicate the need to reassess current hypotheses regarding infection reservoirs and to explore alternative sources to enhance strategies for the control and prevention of the camelpox virus. Full article
Show Figures

Figure 1

Back to TopTop