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Abstract

Insect vectors play a pivotal role in the emergence and dissemination of plant viral diseases.
Beyond their function in transmitting plant viruses, these insects harbor diverse insect-
specific viruses (ISVs). Advances in high-throughput sequencing (HTS) have uncovered
virus diversity and prevalence in insects that far exceed previous estimations. However,
current knowledge of ISVs remains predominantly limited to genomic sequencing infor-
mation. Investigating the fundamental biology of ISVs, their effects on insect physiology,
and their modulation of vector competence is critical for deciphering complex virus-virus
and virus—insect interactions. Such research holds substantial promise for developing
innovative biocontrol strategies against plant viral pathogens. This review synthesizes
current insights into the interplay between plant viruses and their insect vectors, explores
the discovery and functional roles of ISVs, and discusses the potential application of ISVs
in mitigating plant viral diseases. Understanding these dynamic relationships offers new
avenues for sustainable plant disease management.
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1. Introduction

Plant viruses pose a significant threat to crop yield and quality, substantially ham-
pering agricultural productivity [1-3]. They manifest in various forms and are spread
through different mechanisms. Of these, approximately 80% of known plant viruses are
transmitted by insects [4]. Before transmission from insects to plants, viruses interact with
various tissues of their insect vectors [3-5]. As a result, the interplay between insect popu-
lation dynamics and the effectiveness of viral transmission by vectors crucially influences
the severity of viral disease outbreaks. Conventional control strategies predominantly
depend on pesticides or insecticides to eliminate vector insects, thereby constraining the
dissemination of plant viruses [5,6].

Insects not only serve as vectors for transmitting plant, animal, and human viruses
but also act as hosts to a wide range of viruses [6-8]. Additionally, viruses present in
insects may arise from their diet, habitat, or symbiotic microbiota. The emergence and
utilization of high-throughput sequencing (HTS) technologies have unveiled a considerable
number of virus sequences in insects. These viruses are commonly known as insect-specific
viruses, insect symbiotic viruses, or insect-associated viruses, reflecting their primary
infectivity to insects or close association with them [6,9,10]. Throughout this paper, the
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term “insect-specific viruses (ISVs)” will be consistently employed. Recent years have
witnessed a considerable viral diversity phytophagous insects like whiteflies, leathoppers,
planthoppers, grasshoppers, thrips, aphids, and beetles [9,11-17]. The continuous discovery
of new viruses has intensified interest in their functional roles. Studies reveal that viruses
not only induce pathogenic effects but also influence critical biological processes in insects,
spanning growth, development, sexual differentiation, fecundity, and vector competence,
resulting in outcomes that may range from beneficial to detrimental [7,18].

The efficacy of plant virus transmission differs among various insect populations.
ISVs represent a significant category of symbiotic microorganisms in insects, and the
diversity of viruses in insects is influenced by factors such as population, season, weather
conditions, and geographical location [11,13,18]. These newly identified viral sequences
provide exceptional prospects for investigating virus-host coevolution and interactions,
with potential implications for manipulating insect traits. Given that most ISVs specifically
infect insects, they serve as promising tools for managing both insect vectors and the
pathogens they transmit—whether utilized as wild-type agents or engineered recombinants.
This review focuses on ISVs, examining the interplay between plant viruses and vector
insects, the discovery and functional roles of ISVs, and the potential application of ISVs in
mitigating plant viral infections.

2. Molecular Mechanisms of Plant Virus Transmission by Insect Vectors

The long-distance migration of vector insects facilitates the spread of viruses, leading
to epidemic outbreaks and significantly complicating disease management. Approximately
55% of plant viruses are transmitted by vectors with piercing-sucking mouthparts, primarily
aphids, planthoppers, leathoppers, whiteflies, and thrips [1-3]. Plant viruses are catego-
rized into two transmission modes based on their pathways within insect vectors: non-
circulative and circulative [1,2,4]. Non-circulative viruses, which include non-persistent
and semi-persistent types, briefly attach to the cuticular surfaces of the vector’s mouthparts
(stylets) or foreguts [5,6]. This temporary attachment allows for swift acquisition of virions
during plant feeding and immediate inoculation into subsequent host plants. An illustra-
tive instance is the cauliflower mosaic virus (CaMV, Caulimovirus tessellobrassicae), utilizing
the helper protein P2 to specifically bind to the acrostyle region in aphid mouthparts for
efficient non-circulative transmission [7,8].

Viruses demonstrating persistent circulative transmission establish enduring relation-
ships with their insect vectors. Following acquisition during plant feeding, these viruses
traverse the insect’s digestive system, disseminate systemically, and eventually locate the
salivary glands. Subsequent salivation during feeding on new host plants facilitates viral
inoculation [1,3,4]. Within this category, persistent nonpropagative viruses complete this
cycle without replicating in the vector, unlike persistent propagative viruses that actively
replicate within their insect hosts. This replication process effectively designates the vec-
tor as an intermediate reservoir host in natural transmission cycles. Some plant viruses
can achieve vertical transmission within insect populations, ensuring their environmental
persistence irrespective of plant hosts [9]. The identified persistent propagative viruses
primarily belong to the Bunyavirales, Rhabdoviridae, and Reovirales—taxonomic groups that
also encompass numerous animal-infecting viruses [6]. This correlation hints at close
evolutionary connections between plant-infecting arboviruses (phytoarboviruses) and their
animal-infecting counterparts.

During the process of infection and circulation within insect hosts, persistent prop-
agative viruses must overcome multiple tissue and membrane barriers and also evade the
insect’s immune system to replicate within cells [10,11]. This process has been extensively
researched and reported over the past decade. These complex processes have been exten-
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sively characterized over the past decades. A prime example is Rice dwarf virus (RDV,
Phytoreovirus alphaoryzae), a reovirus transmitted by the leafthopper Nephotettix cincticeps.
Upon ingestion, RDV first establishes primary infection foci in epithelial cells of the filter
chamber within the digestive tract. Utilizing specialized viroplasms as replication and
assembly sites, the virus employs its nonstructural protein Pns10 to form tubules for mov-
ing virions through microvilli into the midgut epithelium. Further dissemination unfolds
via muscular tissues and hemolymph, ultimately reaching the salivary glands [12-15]. In
leafhoppers, cell entry relies on the minor capsid protein P2, crucial for successful infection.
Notably, prolonged maintenance of RDV in rice plants leads to nonsense mutations in the
52 gene segment, abolishing P2 expression and consequently vector transmissibility [16].
This functional degeneration provides evolutionary evidence that ancestral RDV likely
originated as an insect-specific virus prior to adapting to plant hosts.

The insect innate immune system encompasses defenses rooted in the digestive tract,
cellular responses, as well as humoral immunity, RNA interference, and crucial signaling
pathways such as the Toll, Imd, and JAK/STAT pathways. Autophagy and apoptosis also
play essential roles [17,18]. These innate immune barriers ensure insect health and impact
the interactions between vectors and viruses. In response, viruses have evolved intricate
strategies to inhibit or utilize insect immune reactions during circulation, promoting sur-
vival, replication, and efficient transmission. For example, tomato yellow leaf curl virus
(TYLCV, Begomovirus coheni) coat protein manipulates phosphatidylethanolamine-binding
protein 4 (PEBP4) on whitefly (Bemisia tabaci) midgut and salivary gland membranes, acti-
vating apoptosis and autophagy pathways to establish a balanced immune response that
supports both vector survival and viral transmission [19]. The Toll-Dorsal immune axis in
the small brown planthopper (Laodelphax striatellus) provides antiviral defense. Conversely,
rice stripe virus (RSV, Tenuivirus oryzaclavatae), transmitted by this insect, utilizes its non-
structural protein NS4 to inhibit dorsal phosphorylation, thereby attenuating the host's
antiviral response [20].

During transmission by insect vectors, plant viruses interact directly with insects,
reshaping their immune and nervous systems to affect host choices, feeding habits, and
reproduction. This interference influences viral transmission efficiency by insects. An
illustrative case is tomato spotted wilt virus (TSWYV, Orthotospovirus tomatomaculae), which
endures persistent propagative transmission through thrips vectors. Infected female thrips
exhibit extended copulation and enhanced egg production [21]. Meanwhile, infected males
prolong feeding times and increase probing frequency threefold compared to uninfected
counterparts [22]. In sum, these virus-induced behavioral alterations amplify TSWV
dissemination by thrips.

3. Discovery and Limitations of ISVs Research

Recent advancements in HTS and analytical tools have facilitated the large-scale
recognition of novel viral sequences. Specifically, ISVs have emerged as a significant
proportion of these discoveries. Piercing-sucking insects from the orders Hemiptera
and Thysanoptera serve as vectors for transmitting more than half of all known plant
viruses [1-3]. In this study, we focused on piercing-sucking insects from the Hemipteran
families Aphididae, Aleyrodidae, Psyllidae, Cicadellidae, and Delphacidae, as well as the
Thysanopteran family Thripidae, and compiled statistics on the number, classification,
and related information of viruses reported in the NCBI Virus Database. The NCBI Virus
Database (https:/ /www.ncbinlm.nih.gov/labs/virus) (accessed on 7 August 2025) is a ma-
jor, frequently updated community portal that integrates viral sequence data from RefSeq,
GenBank, and other NCBI repositories, and serves as a primary reference resource despite
limitations such as incomplete genome sequences or uncertain host information [23,24].
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Over the past decade (2016—present), numerous novel viruses have been discovered and
reported annually. As of August 2025, a total of 441 viruses have been documented in
74 species of piercing-sucking insects (Figure 1A,B). At the family level, these viruses are
predominantly classified into Iflaviridae, Dicistroviridae, Phenuiviridae, Flaviviridae, Partitiviri-
dae, Rhabdoviridae, Geminiviridae, Orthomyxoviridae, Parvoviridae, and Chuviridae, with approx-
imately 140 viruses remaining unassigned to a definitive taxonomic category (Figure 1C).
This diversity highlights the remarkable variety of viruses harbored by insect hosts.
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Figure 1. Diversity of viruses in piercing-sucking insects. (A) The increasing number of viruses and
piercing-sucking insect hosts from 1998 to 2025. (B) The distribution of viruses in piercing-sucking
insect hosts species across different families. (C) The number of viruses belonging to different families.

HTS platforms enable a thorough profiling of complex genetic mixtures, enhancing
the sensitive detection of both DNA and RNA viruses regardless of the viral load in
host tissues [25-27]. Various HTS sampling techniques, library preparation methods,
and bioinformatics analyses have been employed in the identification of viral sequences
across a range of host tissues. Each methodology possesses distinct advantages and
limitations. Notably, transcriptome sequencing and small RNA sequencing persist as
the most commonly utilized methodologies for virome exploration [28]. Transcriptome
sequencing employs HTS to scrutinize the complete set of cellular transcripts. However,
this approach has inherent limitations: contigs exhibiting viral sequence homology may
lead to false-positive identifications, particularly with endogenous viral elements (EVEs),
which refer to viral sequences integrated into host genomes [29,30]. Additionally, RNA-Seq
cannot definitively distinguish whether the identified transcripts originate from the insect
host itself or from potential contaminants such as symbiotic microbiota (e.g., gut microbes
or parasite-associated viruses), dietary components (plant/animal-derived materials), or
environmental sources [25,31]. Consequently, transcriptome sequencing is frequently
complemented with small RNA (sRNA) profiling [25,28,32]. Viral infections stimulate the
production of distinct small RNA species that reflect the infecting virus. In arthropods,
the primary antiviral defense mechanism operates through the siRNA pathway, where
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viral double-stranded RNA is cleaved into 21-23 nucleotide siRNAs [18,33,34]. Thus,
virus-derived small RNAs offer crucial evidence to authenticate viral infections during
pathogen discovery.

Conventional bioinformatic approaches for identifying viral sequences in HTS data
primarily rely on sequence homology searches. However, this approach often fails to
detect viruses lacking similarity to sequences found in known genetic databases [35]. An
illustrative case of this shortcoming is the discovery of Quenyaviruses. These agents
were initially found in Drosophila melanogaster based on distinct small RNA profiles. The
virus-derived small interfering RNAs (vsiRNNAs) exhibited a characteristic size class of
21 nucleotides [36,37]. Importantly, these vsiRNAs did not show homology with any
documented viral or cellular genomes. The incorporation of deep learning algorithms into
metagenomic analysis marks a significant development, displaying immense potential in
expanding virus discovery capabilities beyond traditional homology-based methods.

The utilization of HTS has refined viral classification procedures, allowing the Interna-
tional Committee on Taxonomy of Viruses (ICTV) to assign novel viruses categories based
solely on complete RNA-dependent RNA polymerase (RARP) sequence delineations [27,38].
A case in point is Jingchuvirales, which were first observed in arthropod metagenomic stud-
ies as “chuviruses” and tentatively grouped within the Mononegavirales order using phylo-
genetic analyses [39-41]. Further investigations unveiled distinctive genomic structures and
evolutionary differences, leading to the official recognition of Jingchuvirales as a separate
viral order in 2022 [39,42]. Nevertheless, current knowledge remains confined to sequence
data, leaving essential questions unanswered about their natural forms, survival mecha-
nisms, virion configurations, host ranges, and intrahost transmission-replication strategies.

4. ISVs Shaping Insect Biology and Virus Transmission
4.1. Physiological Modulation of Insects by ISV's

The initial discovery of viruses in insects primarily involved pathogenic viruses, such
as baculoviruses [31]. Certain baculovirus species are currently utilized as biopesticides
to manage specific Lepidopteran pests, with some products commercially available [43].
With the accelerated discovery of ISVs, their multifunctional impacts on host biology have
become increasingly evident. ISVs manifest a variety of effects on crucial physiological
processes in insect hosts, encompassing reproduction, development, survival, sex ratio
regulation, and immune modulation.

Antagonistic relationships occur when ISVs impose detrimental effects on hosts, in-
cluding lethal consequences. For instance, research has demonstrated that a baculovirus,
Lymantria dispar multiple nucleopolyhedrovirus (LAMNPYV, Alphabaculovirus lydisparis), in-
fecting Lymantria dispar larvae triggers climbing behavior in the infected larvae. Normally,
L. dispar caterpillars reside in the soil and emerge solely for nocturnal feeding to evade
predators. However, infected larvae exhibit a contrasting behavior by climbing up trees
before perishing, thereby dispersing the enclosed virus onto the plants beneath them [43].
Moreover, Pteromalus puparum negative-strand RNA virus 1 (PpNSRV1, Peropuvirus
pteromali) induces female-biased offspring mortality, skewing sex ratios and diminishing
reproductive fitness [44]. Kallithea virus (Alphanudivirus dromelanogasteris) exhibits sig-
nificant pathogenicity in adult D. melanogaster, achieving comparable viral titers in both
sexes. Infection substantially reduces male survival rates while impeding female mobility
and late-stage oviposition capacity [45]. Similarly, the Spodoptera litura male-killing virus
(SIMKYV) selectively eradicates male offspring in Spodoptera litura [46].

Mutualistic symbiosis characterizes interactions in which ISVs provide adaptive ad-
vantages to their hosts. For example, parasitoid wasps lay their eggs within live insect
larvae, triggering the host’s innate immune system to encapsulate the eggs in melanized
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capsules, halting embryonic development. However, a parasitoid wasp-specific virus can
suppress this encapsulation response, ensuring the survival of the eggs [47-49]. Recent
research indicates that Rondani’s wasp virus 1, a novel cripavirus associated with para-
sitoids, infects the host D. melanogaster. This infection prolongs the host’s development,
increases the population density of flies, and secures resources for the developing wasp
offspring [50]. In the leafthopper Recilia dorsalis, a symbiotic virus assigned to Virgaviridae
extends the longevity of males, accelerates oocyte maturation, and boosts female fecundity
by around 20% [51]. Similarly, the Acyrthosiphon pisum virus (APV) enhances the adap-
tation of pea aphids (Acyrthosiphon pisum) to suboptimal host plants by modulating the
plants’ phytohormone defenses [52].

In reality, it is difficult to characterize the relationship between ISVs and their hosts
merely as uniformly beneficial or detrimental. The same virus can be beneficial under
specific conditions while imposing fitness costs in others. For instance, the DNA virus
Dysaphis plantaginea densovirus 1 (Hemiambidensovirus hemipteranl) negatively affects the
reproductive output of its aphid host but crucially induces alary polymorphism, reducing
wing development and population crowding, ultimately enhancing individual survival
chances [53]. Similarly, a partiti-like virus in the African armyworm (Spodoptera exempta)
reduces host fecundity while simultaneously enhancing resistance to entomopathogens [54].
These examples collectively illustrate that ISVs exert multifaceted regulatory influences on
insect hosts (Figure 2), necessitating comprehensive evaluation across environmental and
physiological dimensions.
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Figure 2. ISVs Regulation of Insect Biology and Virus Transmission. The schematic diagram illustrates
the relationship between insects, ISVs, and plant viruses in the process of plant virus transmission.
The influence of ISVs on insect hosts may be beneficial or detrimental. ISVs can interact directly with
plant viruses or indirectly regulate the replication and transmission of plant viruses in insects by
affecting insect biology.

4.2. ISV's Regulation of Arbovirus Transmission

In recent years, ISVs in crucial vector species have attracted considerable research
interest. Aside from modulating essential physiological functions of their insect hosts, ISVs
exhibit regulatory potential over arboviral replication and transmission, highlighting their
potential application in vector-borne disease management [25,55]. To date, research in
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this field has predominantly focused on mosquito-specific viruses and mosquito-borne
pathogens, whereas studies on the regulatory roles of ISVs in plant virus transmission
remain limited.

Certain ISVs enhance arbovirus replication and transmission efficiency within their
vectors. For example, the peach aphid (Myzus persicae), a vector of Potato virus Y (PVY,
Potyvirus yituberosi), harbors Myzus persicae nicotianae densovirus (MpnDV), which pro-
motes aphid dispersal by regulating host activity-related genes. This behavioral modulation
accelerates the systemic spread of PVY in tobacco plants [56]. However, because PVY is
transmitted by M. persicae in a nonpersistent manner [57], direct viral-viral interactions are
unlikely; thus, the promotional effect of MpnDV on PVY transmission is an indirect conse-
quence of altered host behavior. In mosquitoes, the globally distributed Phasi Charoen-like
virus (PCLV, Phasivirus phasiense) and Humaita Tubiacanga virus (HTV) are prevalent
in Aedes aegypti populations and are associated with a twofold increase in dengue virus
(Orthoflavivirus denguei) co-infection in wild mosquitoes. This phenomenon is attributed
to the ability of HTV and PCLV to inhibit the downregulation of histone H4, identified
in vivo as a critical proviral host factor. Experimental evidence further shows that these
ISVs enhance vector competence for the transmission of both dengue and Zika viruses to
vertebrate hosts [58]. Some ISVs interact directly with arboviruses. In the small brown
planthopper (L. striatellus), the capsid protein VP1 of Himetobi P virus (HiPV, Triatovirus
himetobi) specifically binds to the ribonucleoprotein of Rice stripe virus (RSV, Tenuivirus
oryzaclavatae), thereby promoting RSV accumulation within the vector [59]. In the leathop-
per Recilia dorsalis, both the leafhopper-specific recilia dorsalis filamentous virus (RAFV)
and Rice gall dwarf virus (RGDV, Phytoreovirus betaoryzae) utilize the sperm-specific serpin
protein HongrES1 to bind directly to sperm surfaces. This capsid-mediated interaction
facilitates the dual invasion of male reproductive organs, increasing paternal vertical trans-
mission rates [51]. Collectively, these examples highlight the diverse strategies by which
ISVs influence virus transmission—either indirectly, by modulating host biology, or directly,
via protein interactions with co-infecting viruses (Figure 2).

Current evidence supporting ISV-mediated arbovirus suppression primarily focuses
on mosquito-borne viruses. For instance, Nhumirim virus (NHUYV), a flavivirus closely
related to West Nile virus (WNV, Orthoflavivirus nilense), significantly inhibits WNV prolif-
eration in Culex mosquitoes and cell cultures [60]. Further investigations have unveiled
NHUV's broad-spectrum antiviral efficacy in C6/36 cells, suppressing various arboviruses,
including several flaviviruses (Japanese encephalitis virus, St. Louis encephalitis virus,
dengue virus type-2 (DENV-2), and Zika virus (ZIKV, Orthoflavivirus zikaense)) and an
alphavirus (chikungunya virus) [61,62]. Although research on ISVs' capacity to suppress
plant virus replication and transmission remains limited, emerging evidence has begun
to support this phenomenon. For example, an antagonistic relationship has been docu-
mented between NcPSRV-1 and RDV in the leafthopper vector [63]. Proposed mechanisms
by which ISVs mediate inhibition of plant viruses include: (i) Superinfection Exclusion
(SE), a phenomenon in which prior viral infection confers cellular resistance to secondary
infection by homologous or related viruses [25,55,64]; (ii) Primed Immune Responses, the
initial ISV infection may broadly activate insect immune pathways, establishing cross-
protective barriers that restrict subsequent viral invasion [34,55]; (iii) Indirect Physiological
Constraints, ISV-induced physiological alterations in insects could indirectly reduce vec-
tor competence for pathogen transmission [28]. Although ISVs show great potential for
controlling arbovirus transmission, this area of research remains to be further explored.
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5. Toward Application: Challenges and Innovative Strategies

Historically, researchers have explored the utilization of insect-associated microbes,
including viruses and bacteria, for managing agricultural pests and pathogens. Substantial
progress has been achieved in targeting animal pathogens transmitted by insect vectors,
particularly mosquito-borne diseases [55]. In contrast, strategies against vector-borne plant
pathogens remain in nascent developmental stages.

Significant advances have been made in harnessing mosquito-associated symbiotic
microbes, including symbiotic bacteria and ISVs, to combat vector-borne pathogens. A
notable example is the naturally occurring bacterium Rosenbergiella _ YN46, which sup-
presses dengue and Zika virus infections in Aedes mosquitoes by acidifying the midgut
lumen post-blood meal [65]. This symbiont represents a promising candidate for flavivirus
biocontrol. Furthermore, genetic engineering of the prevalent symbiont Serratia AS1 en-
ables simultaneous production of anti-Plasmodium and anti-arboviral effector proteins,
establishing a dual-pathogen blocking system within mosquito vectors [66]. Parallel strate-
gies guide the application of mosquito-specific viruses. First, identifying wild-type ISVs
that impair vector physiology or pathogen transmission (e.g., Nhumirim virus inhibiting
WNYV replication [61,62]) through laboratory validation. Second, developing recombi-
nant ISVs that either express arbovirus-interfering proteins or trigger RNAi-mediated
defenses against target pathogens. Based on the RNA interference (RNAi) pathway innate
to insects, targeted gene silencing can be initiated through the delivery of homologous
double-stranded RNA (dsRNA) fragments. Since RNA viruses generate dsRNA intermedi-
ates during their replication cycle, they represent a theoretically feasible vector for dsSRNA
delivery [67-69]. An early study demonstrated that Aedes aegypti mosquitoes injected with
engineered Sindbis viruses (Alphavirus sindbis) expressing dengue virus-derived sequences
exhibited RNAi-mediated immunity against DENV and suppressed viral replication [70].
Similarly, the Flock House virus (FHV, Alphanodavirus flockense), an insect virus capable of
infecting multiple aphid species, has been genetically engineered. Researchers modified
FHV RNA2 to carry foreign gene sequences. Critically, this engineered RNA2 can be
encapsidated by FHV virus particles. Upon viral entry into the insect host, the RNAi was
triggered against the target gene encoded by the foreign sequence. This establishes a frame-
work for designing precision-engineered ISVs as next-generation biocontrol agents [69].
While the application of ISVs to control plant virus transmission has not yet been reported,
this area of research presents considerable potential and promising prospects for future
practical implementation.

While modifying ISVs for disease control is theoretically feasible, there are many other
considerations and technical difficulties to overcome. Firstly, selecting a suitable candidate
virus for modification is crucial. We need a virus that is relatively amenable to modifica-
tion. Secondly, the inherent biological properties of the modified virus must be carefully
evaluated. Key questions include: Is the virus capable of efficient horizontal or vertical
transmission within insect populations? Does it adversely affect the insect host itself?
These factors are critical as they directly impact the spread and efficacy of the recombinant
virus in natural settings or when applied [55,71]. Thirdly, ensuring the safety and genetic
stability of the recombinant virus during propagation is paramount. A significant challenge
is the tendency for recombinant viruses to lose inserted genetic sequences over time. If
this occurs, the virus reverts to its wild-type form, nullifying its intended application. The
potential consequences of such reversion must be thoroughly assessed.

6. Conclusions

In summary, the widespread application of HTS and continuous refinement of analyti-
cal tools have facilitated the discovery of numerous insect-associated viruses. However,
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current understanding of these viruses remains primarily limited to their genomic se-
quences, with critical knowledge gaps persisting regarding functional roles, transmission
dynamics, virion morphology, and other key characteristics. Given the host specificity of
ISVs and their demonstrated ability to modulate insect physiology or influence pathogen
transmission efficiency, exploring their potential for biological control applications is of
substantial scientific and practical significance. Although these research endeavors are
still in early developmental stages, their long-term implications for vector-borne disease
management and agricultural pest control are far-reaching.
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