Assessing Efficiency in the Circular Economy Using the Levelized Cost of Waste: A Case Study of Textile Waste Pyrolysis
Abstract
1. Introduction
2. Overview of Textile Waste Pyrolysis
2.1. Sources and Characteristics of Textile Waste
2.2. Composition and Physicochemical Properties of Textile Waste
2.3. Pyrolysis Treatment of Textile Waste
- Cotton pyrolysis: Studies have shown that the pyrolysis of pure cotton leads to a liquid fraction rich in naphtha, accounting for more than 45% of the total oil weight. The primary organic compound identified in this fraction was D-glucosamine, accounting for more than 50% of the oils obtained from cotton samples at various temperatures [40].
- In the case of cotton–polyester blends, the primary organic compound was D-allose, accounting for approximately 49.6% of the oil content [40].
- Textile waste with different compositions: A study by Sina Ogundaini & Monsurat Osobamiro [46] identified the liquid fraction compounds such as carbamate (7.69%), silicic acid (4.73%), cyclotrisiloxane (4.09%), cyclohexane (7.47%), phenol (5.95%) and other organic compounds.
3. Materials and Methods
3.1. Conceptual Framework
3.2. Mathematical Formulation
3.3. Data and Assumptions
- 1000 Mg/year—equivalent to serving a population of approximately 83,000 inhabitants, which can be related to medium-sized cities such as Heerlen (The Netherlands), Tarnów (Poland) or Lugo (Spain);
- 5000 Mg/year—allowing up to 417,000 inhabitants to be served, typical of larger agglomerations such as Graz (Austria), Nice (France) or Ljubljana (Slovenia);
- 10,000 Mg/year—dedicated to metropolitan areas with more than 830,000 inhabitants, such as Marseille (France), Naples (Italy) or Łódź (Poland).
- 1000 Mg/year: EUR 2.2 million
- 5000 Mg/year: EUR 7.3 million
- 10,000 Mg/year: EUR 12.2 million
- Wages and labour costs—taken as 3% of TPC per annum,
- Management and administration costs—2.5% of TPC per annum,
- Local taxes and insurance—a total of 2.5% of TPC per annum.
- conservative scenario: EUR 0/Mg (no market),
- moderate scenario: EUR 80/Mg, as substitute fuel,
- optimistic scenario: EUR 150/Mg, as a product with properties similar to biochar or low-grade industrial activated carbon.
4. Results and Discussion
- The value of capital investment (TPC)—a change of ±20% results in a change in LCOW of approximately ±21%, indicating the crucial importance of capital costs for large infrastructure projects,
- Pyrolysis oil value—almost symmetrical impact, within ±20%,
- Char prices—moderate impact, of the order of ±6–7%,
- Operating and electricity costs—have a relatively small impact (<5%),
- Emission costs—a 20% increase in the ETS price results in an increase in the LCOW of around 5%.
- A 20% increase in TPC could increase LCOW by 16%,
- A ± 20% change in the price of oil results in a corresponding decrease or increase in the LCOW of approximately 8%,
5. Conclusions
- a realistic estimate of the final cost over the entire economic horizon,
- identification of profitability thresholds and cut-off points (analogous to so-called “clearing prices” in power auctions),
- analysis of cost sensitivity to market and technology variables.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GUS Environment. 2024. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2024,1,16.html (accessed on 26 June 2025).
- Municipal Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics (accessed on 20 June 2025).
- Bailey, K.; Basu, A.; Sharma, S. The Environmental Impacts of Fast Fashion on Water Quality: A Systematic Review. Water 2022, 14, 1073. [Google Scholar] [CrossRef]
- Stanescu, M.D. State of the Art of Post-Consumer Textile Waste Upcycling to Reach the Zero Waste Milestone. Environ. Sci. Pollut. Res. 2021, 28, 14253–14270. [Google Scholar] [CrossRef]
- Materials Market Report 2023. Textile Exchange. 2025. Available online: https://textileexchange.org/knowledge-center/reports/materials-market-report-2023 (accessed on 26 June 2025).
- Australian Fashion Council and Consortium Seamless Scheme Design Summary Report 2023. Available online: https://ausfashioncouncil.com/wp-content/uploads/2023/06/Seamless-Scheme-Design-Summary-Report.pdf (accessed on 28 September 2025).
- Directive—2018/851—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2018/851/oj/eng (accessed on 28 September 2025).
- Maqsood, T.; Dai, J.; Zhang, Y.; Guang, M.; Li, B. Pyrolysis of Plastic Species: A Review of Resources and Products. J. Anal. Appl. Pyrolysis 2021, 159, 105295. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chang, C.-Y.; Tseng, C.-H. Pyrolysis Products of Uncoated Printing and Writing Paper of MSW. Fuel 2002, 81, 719–725. [Google Scholar] [CrossRef]
- Charusiri, W. Fast Pyrolysis of Residues from Paper Mill Industry to Bio-Oil and Value Chemicals: Optimization Studies. Energy Procedia 2015, 74, 933–941. [Google Scholar] [CrossRef]
- Efika, E.C.; Onwudili, J.A.; Williams, P.T. Products from the High Temperature Pyrolysis of RDF at Slow and Rapid Heating Rates. J. Anal. Appl. Pyrolysis 2015, 112, 14–22. [Google Scholar] [CrossRef]
- Ethaib, S.; Omar, R.; Kamal, S.M.M.; Awang Biak, D.R.; Zubaidi, S.L. Microwave-Assisted Pyrolysis of Biomass Waste: A Mini Review. Processes 2020, 8, 1190. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Qiu, X.; Xu, C. Hydrothermal Treatment of Lignocellulosic Biomass towards Low-Carbon Development: Production of High-Value-Added Bioproducts. EnergyChem 2024, 6, 100133. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Velis, C.A.; Williams, P.T.; Komilis, D. Characterisation and Composition Identification of Waste-Derived Fuels Obtained from Municipal Solid Waste Using Thermogravimetry: A Review. Waste Manag. Res. 2020, 38, 942–965. [Google Scholar] [CrossRef]
- Wasielewski, R.; Bałazińska, M. Energy Recovery from Waste in the Aspect of Qualifications of Electricity and Heat as Coming from Renewable Energy Sources and to Participate in the Emissions Trading System. Polityka Energetyczna—Energy Policy J. 2018, 21, 129–142. [Google Scholar] [CrossRef][Green Version]
- Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Fried, R.; Oprea, I.; Fleck, K.; Rudroff, F. Biogenic Colourants in the Textile Industry—A Promising and Sustainable Alternative to Synthetic Dyes. Green Chem. 2022, 24, 13–35. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Gnatowski, A.; Tora, B.; Kogut, K.; Bytnar, K.; Krzywanski, J.; Makowska, D. Research on Waste Combustion in the Aspect of Mercury Emissions. Materials 2023, 16, 3213. [Google Scholar] [CrossRef] [PubMed]
- Dziok, T.; Bury, M.; Adamczak, J.; Palka, J.; Borovec, K. Utilization of Used Textiles for Solid Recovered Fuel Production. Environ. Sci. Pollut. Res. 2024, 31, 28835–28845. [Google Scholar] [CrossRef]
- Dziok, T.; Grycova, B.; Grzywacz, P.; Janus, R.; Wądrzyk, M.; Matejova, L.; Lestinsky, P.; Bury, M.; Soprych, P.; Klemencova, K.; et al. Studies on the Changes in the Characteristics of Co-Pyrolysis Products of Discarded Car Tires with Cotton and Polyester Textile Waste. J. Anal. Appl. Pyrolysis 2025, 189, 107090. [Google Scholar] [CrossRef]
- Galaska, M.L.; Sqrow, L.D.; Wolf, J.D.; Morgan, A.B. Flammability Characteristics of Animal Fibers: Single Breed Wools, Alpaca/Wool, and Llama/Wool Blends. Fibers 2019, 7, 3. [Google Scholar] [CrossRef]
- Xiao, X. Animal Fibers: Wool. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 37–74. ISBN 978-3-527-34220-4. [Google Scholar]
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of Incineration MSW Ash: A Review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef]
- OEKO-TEX® STANDARD 100. Available online: https://www.oeko-tex.com/en/our-standards/oeko-tex-standard-100 (accessed on 20 June 2025).
- Stelmach, S. Piroliza Odpadów jako Element Gospodarki o Obiegu Zamkniętym; Monografia/[Politechnika Śląska]; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2019; ISBN 978-83-7880-604-2. [Google Scholar]
- Özuysal, A.; Akıncı, G. The Assessment of Refuse Derived Fuel (RDF) Production from Textile Waste. Eurasian J. Environ. Res. 2019, 3, 27–32. [Google Scholar]
- Ma, W.; Wenga, T.; Frandsen, F.J.; Yan, B.; Chen, G. The Fate of Chlorine during MSW Incineration: Vaporization, Transformation, Deposition, Corrosion and Remedies. Progress Energy Combust. Sci. 2020, 76, 100789. [Google Scholar] [CrossRef]
- Lu, P.; Huang, Q.; Bourtsalas, A.C.; Themelis, N.J.; Chi, Y.; Yan, J. Review on Fate of Chlorine during Thermal Processing of Solid Wastes. J. Environ. Sci. 2019, 78, 13–28. [Google Scholar] [CrossRef]
- Weber, R.; Sakurai, T. Formation Characteristics of PCDD and PCDF during Pyrolysis Processes. Chemosphere 2001, 45, 1111–1117. [Google Scholar] [CrossRef]
- Jiang, G.; Sanchez Monsalve, D.A.; Clough, P.; Jiang, Y.; Leeke, G.A. Understanding the Dechlorination of Chlorinated Hydrocarbons in the Pyrolysis of Mixed Plastics. ACS Sustain. Chem. Eng. 2021, 9, 1576–1589. [Google Scholar] [CrossRef]
- Gao, J.; Jin, Z.; Pan, Z. Depolymerization of Poly(Trimethylene Terephthalate) in Hot Compressed Water at 240–320 °C. Polym. Degrad. Stab. 2012, 97, 1838–1843. [Google Scholar] [CrossRef]
- Murata, K.; Sato, K.; Sakata, Y. Effect of Pressure on Thermal Degradation of Polyethylene. J. Anal. Appl. Pyrolysis 2004, 71, 569–589. [Google Scholar] [CrossRef]
- He, Y.; Hou, Y.; Wang, C.; Wang, S.; Wei, Y. Removal of Tar from Waste Textiles by Molten Carbonates Pyrolysis in Bubbling Reactor. Fuel 2023, 350, 128823. [Google Scholar] [CrossRef]
- López, A.; De Marco, I.; Caballero, B.M.; Adrados, A.; Laresgoiti, M.F. Deactivation and Regeneration of ZSM-5 Zeolite in Catalytic Pyrolysis of Plastic Wastes. Waste Manag. 2011, 31, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Kwon, E.E.; Lee, J. Achievements in Pyrolysis Process in E-Waste Management Sector. Environ. Pollut. 2021, 287, 117621. [Google Scholar] [CrossRef]
- Hassibi, N.; Quiring, Y.; Carré, V.; Aubriet, F.; Vernex-Loset, L.; Mauviel, G.; Burklé-Vitzthum, V. Analysis and Control of Products Obtained from Pyrolysis of Polypropylene Using a Reflux Semi-Batch Reactor and GC-MS/FID and FT-ICR MS. J. Anal. Appl. Pyrolysis 2023, 169, 105826. [Google Scholar] [CrossRef]
- Choi, Y.; Wang, S.; Yoon, Y.M.; Jang, J.J.; Kim, D.; Ryu, H.-J.; Lee, D.; Won, Y.; Nam, H.; Hwang, B. Sustainable Strategy for Converting Plastic Waste into Energy over Pyrolysis: A Comparative Study of Fluidized-Bed and Fixed-Bed Reactors. Energy 2024, 286, 129564. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Burmistrz, P. Mercury Release from Municipal Solid Waste in the Thermal Treatment Process. Fuel 2022, 329, 125528. [Google Scholar] [CrossRef]
- Arjona, L.; Barrós, I.; Montero, Á.; Solís, R.R.; Pérez, A.; Martín-Lara, M.Á.; Blázquez, G.; Calero, M. Pyrolysis of Textile Waste: A Sustainable Approach to Waste Management and Resource Recovery. J. Environ. Chem. Eng. 2024, 12, 114730. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, Z.; Liang, W.; Yang, B.; Qin, X.; Zhao, X.; Pei, C.; La, P.; Li, A. Reduced Graphene Oxide-Coated Cottons for Selective Absorption of Organic Solvents and Oils from Water. RSC Adv. 2014, 4, 30587. [Google Scholar] [CrossRef]
- Wasielewski, R.; Tomaszewicz, G. Badania Termochemicznej Konwersji Odpadów Tekstylnych Zawierających Włókna Syntetyczne. Przetwórstwo Tworzyw 2016, 22, 570–580. [Google Scholar]
- Anceschi, A.; Trotta, F.; Zoccola, M.; Caldera, F.; Magnacca, G.; Patrucco, A. From Waste to Worth: Innovative Pyrolysis of Textile Waste into Microporous Carbons for Enhanced Environmental Sustainability. Polymers 2025, 17, 341. [Google Scholar] [CrossRef]
- Mazur, M.; Shirvanimoghaddam, K.; Paul, M.; Naebe, M.; Klepka, T.; Sokołowski, A.; Czech, B. From Waste to Water Purification: Textile-Derived Sorbents for Pharmaceutical Removal. Materials 2024, 17, 3684. [Google Scholar] [CrossRef] [PubMed]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of Methylene Blue from Textile Industrial Wastewater Using Activated Carbon Developed from Rumex Abyssinicus Plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Sina Ogundaini, R.; Monsurat Osobamiro, T. Textile Waste Pyrolysis: An Innovative Method for Petrochemicals Generation for Sustainable Economic, Technological and Environmental Advancement. Environ. Sci. Pollut. Res. 2024, 31, 65627–65637. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Nannou, T.; Anguilano, L.; Krzyżyńska, R.; Ghazal, H.; Spencer, N.; Jouhara, H. Potentials of Pyrolysis Processes in the Waste Management Sector. Energy Procedia 2017, 123, 387–394. [Google Scholar] [CrossRef]
- Escamilla-García, P.E.; Camarillo-López, R.H.; Carrasco-Hernández, R.; Fernández-Rodríguez, E.; Legal-Hernández, J.M. Technical and Economic Analysis of Energy Generation from Waste Incineration in Mexico. Energy Strategy Rev. 2020, 31, 100542. [Google Scholar] [CrossRef]
- Nubi, O.; Morse, S.; Murphy, R.J. Prospective Life Cycle Costing of Electricity Generation from Municipal Solid Waste in Nigeria. Sustainability 2022, 14, 13293. [Google Scholar] [CrossRef]
- Abdeljaber, A.; Mostafa, O.; Abdallah, M. Applications of Life Cycle Costing in Waste-to-Energy Projects. In Life Cycle Costing; Muthu, S.S., Ed.; Environmental Footprints and Eco-design of Products and Processes; Springer Nature: Cham, Switzerland, 2023; pp. 77–115. ISBN 978-3-031-40992-9. [Google Scholar]
- Hadidi, L.A.; Omer, M.M. A Financial Feasibility Model of Gasification and Anaerobic Digestion Waste-to-Energy (WTE) Plants in Saudi Arabia. Waste Manag. 2017, 59, 90–101. [Google Scholar] [CrossRef]
- Hossain, M.M.; Shahriar, T.; Inan, M.N.; Habib, M.A.; Hasanuzzaman, M.; Hossain, M.M. Techno-Economic Impact of Incineration-Based Waste to Energy Generation Technology in Bangladesh: A Short Review and A Case Study. ChemRxiv, 2025; preprint. [Google Scholar]
- Abushammala, M.F.M.; Qazi, W.A. Financial Feasibility of Waste-to-Energy Technologies for Municipal Solid Waste Management in Muscat, Sultanate of Oman. Clean Technol. Environ. Policy 2021, 23, 2011–2023. [Google Scholar] [CrossRef]
- Mabalane, P.N.; Oboirien, B.O.; Sadiku, E.R.; Masukume, M. A Techno-Economic Analysis of Anaerobic Digestion and Gasification Hybrid System: Energy Recovery from Municipal Solid Waste in South Africa. Waste Biomass Valor. 2021, 12, 1167–1184. [Google Scholar] [CrossRef]
- Ahmadi, F.; Shirmohammadi, R.; Llovell, F.; Amidpour, M. Technoeconomic Feasibility of a Waste-to-Energy (Wte) Polygeneration System Implementing Circular Carbon Strategies: A Case Study for Spain 2025. Renew. Energy 2025, 253, 123597. [Google Scholar] [CrossRef]
- Inforegio—Guide to Cost-Benefit Analysis of Investment Projects for Cohesion Policy 2014–2020. Available online: https://ec.europa.eu/regional_policy/en/information/publications/guides/2014/guide-to-cost-benefit-analysis-of-investment-projects-for-cohesion-policy-2014-2020 (accessed on 20 June 2025).
- Gerdes, K.; Summers, W.M.; Wimer, J. Estimation Methodology for NETL Assessments of Power Plant Performance DOE/NETL-2011/1455; NETL: Pittsburgh, PA, USA, 2010. Available online: https://www.osti.gov/servlets/purl/1513278 (accessed on 26 June 2025).
- Lubongo, C.; Congdon, T.; McWhinnie, J.; Alexandridis, P. Economic Feasibility of Plastic Waste Conversion to Fuel Using Pyrolysis. Sustain. Chem. Pharm. 2022, 27, 100683. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Chong, K.; Bridgwater, A.V. A Techno-Economic Analysis of Energy Recovery from Organic Fraction of Municipal Solid Waste (MSW) by an Integrated Intermediate Pyrolysis and Combined Heat and Power (CHP) Plant. Energy Convers. Manag. 2018, 174, 406–416. [Google Scholar] [CrossRef]
- Vaskalis, I.; Zabaniotou, A. Comparative Feasibility and Environmental Life Cycle Assessment of Cotton Stalks Gasification and Pyrolysis. Biomass 2024, 4, 23–48. [Google Scholar] [CrossRef]
- Bi, R.; Zhang, Y.; Jiang, X.; Yang, H.; Yan, K.; Han, M.; Li, W.; Zhong, H.; Tan, X.; Xia, L.; et al. Simulation and Techno-Economical Analysis on the Pyrolysis Process of Waste Tire. Energy 2022, 260, 125039. [Google Scholar] [CrossRef]
- Kodera, Y.; Yamamoto, T.; Ishikawa, E. Energy- and Economic-Balance Estimation of Pyrolysis Plant for Fuel-Gas Production from Plastic Waste Based on Bench-Scale Plant Operations. Fuel Commun. 2021, 7, 100016. [Google Scholar] [CrossRef]
- Ansah, E. Experimental Investigation and Aspen Plus Simulation of the Msw Pyrolysis Process. Master’s Thesis, North Carolina Agricultural & Technical State University, Greensboro, NC, USA, 2013. Available online: https://digital.library.ncat.edu/theses/104 (accessed on 20 June 2025).
- Laghezza, M.; Papari, S.; Fiore, S.; Berruti, F. Techno-Economic Assessment of the Pyrolysis of Rubber Waste. Energy 2023, 278, 127841. [Google Scholar] [CrossRef]
- Karczewski, M.; Chojnowski, J.; Szamrej, G. A Review of Low-CO2 Emission Fuels for a Dual-Fuel RCCI Engine. Energies 2021, 14, 5067. [Google Scholar] [CrossRef]
- Zamasz, K.; Kapłan, R.; Kaszyński, P.; Saługa, P.W. An Analysis of Support Mechanisms for New CHPs: The Case of Poland. Energies 2020, 13, 5635. [Google Scholar] [CrossRef]



| Group | Compound | Description/Origin |
|---|---|---|
| Flammable gases | Hydrogen (H2) | Often present in significant quantities, especially in the pyrolysis of synthetic materials (e.g., polyester). Pure polyester and cotton–polyester mixtures produce mainly gas fraction (>50%), with H2 being the dominant component [32]. |
| Non-flammable gases and pollutants | Methane (CH4) | Typical breakdown product of organic chains. |
| Carbon monoxide (CO) | Produced by incomplete decomposition of oxygen-containing fabrics. | |
| Carbon dioxide (CO2) | Formed by decarboxylation and dehydrogenation of organic materials. | |
| Ethane, ethylene, propane, propylene, butenes | Low-molecular-weight hydrocarbons increasing the calorific value of the gas. | |
| Ammonia (NH3) | Especially for fabrics with added dyes or nitrogenous substances. | |
| Hydrogen sulphide (H2S) | Formed when materials contain sulphur (e.g., certain technical fibres). | |
| Volatile organic compounds (VOCs) | Aldehydes, ketones, phenols and others, which may require treatment. |
| Plant Scale (Mg/Year) | Conservative Scenario * | Moderate Scenario ** | Optimistic Scenario *** |
|---|---|---|---|
| 1000 | ~515 EUR/Mg | ~390 EUR/Mg | ~370 EUR/Mg |
| 5000 | ~350 EUR/Mg | ~225 EUR/Mg | ~200 EUR/Mg |
| 10,000 | ~295 EUR/Mg | ~170 EUR/Mg | ~150 EUR/Mg |
| Indicator | Main Focus | Limitations | Added Value of LCOW |
|---|---|---|---|
| NPV | Net profitability over project lifetime | Strongly dependent on tariff assumptions and discount rate | LCOW avoids predefined tariffs, enabling direct cost per ton estimation |
| IRR | Relative rate of return | May be misleading in non-conventional cash flows; less applicable in public projects | LCOW applicable regardless of profitability structure |
| Simple unit cost | Average annual cost per ton | Ignores CAPEX and time value of money | LCOW integrates CAPEX, OPEX and discounting across lifetime |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bury, M.; Feliks, J.; Kapłan, R. Assessing Efficiency in the Circular Economy Using the Levelized Cost of Waste: A Case Study of Textile Waste Pyrolysis. Energies 2025, 18, 5615. https://doi.org/10.3390/en18215615
Bury M, Feliks J, Kapłan R. Assessing Efficiency in the Circular Economy Using the Levelized Cost of Waste: A Case Study of Textile Waste Pyrolysis. Energies. 2025; 18(21):5615. https://doi.org/10.3390/en18215615
Chicago/Turabian StyleBury, Marcelina, Jerzy Feliks, and Radosław Kapłan. 2025. "Assessing Efficiency in the Circular Economy Using the Levelized Cost of Waste: A Case Study of Textile Waste Pyrolysis" Energies 18, no. 21: 5615. https://doi.org/10.3390/en18215615
APA StyleBury, M., Feliks, J., & Kapłan, R. (2025). Assessing Efficiency in the Circular Economy Using the Levelized Cost of Waste: A Case Study of Textile Waste Pyrolysis. Energies, 18(21), 5615. https://doi.org/10.3390/en18215615

