Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (421)

Search Parameters:
Keywords = investment subsidies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 295
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 219
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

19 pages, 1188 KiB  
Article
Incentive Scheme for Low-Carbon Travel Based on the Public–Private Partnership
by Yingtian Zhang, Gege Jiang and Anqi Chen
Mathematics 2025, 13(15), 2358; https://doi.org/10.3390/math13152358 - 23 Jul 2025
Viewed by 179
Abstract
This paper proposes an incentive scheme based on a public–private partnership (PPP) to encourage low-carbon travel behavior by inducing the mode choice shift from private cars to public transit. The scheme involves three key entities: travelers, the government, and the private sector. Travelers [...] Read more.
This paper proposes an incentive scheme based on a public–private partnership (PPP) to encourage low-carbon travel behavior by inducing the mode choice shift from private cars to public transit. The scheme involves three key entities: travelers, the government, and the private sector. Travelers can choose between private cars and public transit, producing different emissions. As the leader, the government aims to reduce total emission to a certain level with limited budgets. The private sector, as an intermediary, invests subsidies in low-carbon rewards to attract green travelers and benefits from a larger user pool. A two-layer multi-objective optimization model is proposed, which includes travel time, monetary cost, and emission. The objective of the upper level is to maximize the utilities of the private sector and minimize social costs to the government. The lower layer is the user equilibrium of the travelers. The numerical results obtained through heuristic algorithms demonstrate that the proposed scheme can achieve a triple-win situation, where all stakeholders benefit. Moreover, sensitivity analysis finds that prioritizing pollution control strategies will be beneficial to the government only if the unit pollution control cost coefficient is below a low threshold. Contrary to intuition, larger government subsidies do not necessarily lead to better promotion of low-carbon travel. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Viewed by 332
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

26 pages, 1501 KiB  
Article
How Can Forestry Carbon Sink Projects Increase Farmers’ Willingness to Produce Forestry Carbon Sequestration?
by Yi Hou, Anni He, Hongxiao Zhang, Chen Hu and Yunji Li
Forests 2025, 16(7), 1135; https://doi.org/10.3390/f16071135 - 10 Jul 2025
Viewed by 324
Abstract
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective [...] Read more.
The development of a forestry carbon sink project is an important way to achieve carbon neutrality and carbon reduction, and the collective forest carbon sink project is an important part of China’s forestry carbon sink project. As the main management entity of collective forests, whether farmers are willing to produce forestry carbon sinks is directly related to the implementation effect of the project. In this paper, a partial equilibrium model of farmers’ forestry production behavior was established based on production function and utility function, and the path to enhance farmers’ willingness to produce forestry carbon sink through forestry carbon sink projects was analyzed in combination with forest ecological management theory. In terms of empirical analysis, the PSM-DID econometric model was established based on the survey data of LY in Zhejiang Province, China, and the following conclusions were drawn: (1) With the receipt of revenues from forestry carbon sequestration projects and partial cost-sharing by the government, farmers’ participation in forestry carbon sink projects can save investment in forest land management. (2) The saved forestry production costs and forestry carbon sink project subsidies can make up for the loss of farmers’ timber income, so that the net income of forestry will not be significantly reduced. (3) The forestry production factors saved by farmers can be transferred to non-agricultural sectors and increase non-agricultural net income, so that the net income of rural households participating in forestry carbon sink projects will increase. The forestry carbon sink project can improve the utility level of farmers and increase the willingness of farmers to produce forestry carbon sinks by delivering income to farmers and saving forestry production factors. This study demonstrates that a well-designed forestry carbon sink compensation mechanism, combined with an optimized allocation of production factors, can effectively enhance farmers’ willingness to participate. This insight is also applicable to countries or regions that rely on small-scale forestry operations. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

21 pages, 2201 KiB  
Article
Evaluating China’s Electric Vehicle Adoption with PESTLE: Stakeholder Perspectives on Sustainability and Adoption Barriers
by Daniyal Irfan and Xuan Tang
Sustainability 2025, 17(14), 6258; https://doi.org/10.3390/su17146258 - 8 Jul 2025
Viewed by 547
Abstract
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in [...] Read more.
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in 2023 (33% market share), faces infrastructure gaps constraining further growth. China is strategically mitigating CO2 emissions while fostering economic expansion, notwithstanding constraints such as suboptimal battery technology advancements, elevated production expenditure, and enduring ecological impacts. This Political, Economic, Social, Technological, Legal, Environmental (PESTLE) assessment, operationalized through a survey of 800 stakeholders and Statistical Package for the Social Sciences IBM SPSS SPSS (Version 28) quantitative analysis (factor loading = 0.73 for Technology; eigenvalue = 4.12), identifies infrastructure gaps as the dominant barrier (72% of stakeholders). Political factors (β = 0.82) emerged as the strongest adoption predictor, outweighing economic subsidies in significance. The adoption of EVs in China presents a significant prospect for reducing CO2 emissions and advancing technology. However, economic barriers, market dynamics, inadequate infrastructure, regulatory uncertainty, and social acceptance issues are addressed in the assessment. The study recommends prioritizing infrastructure investment (e.g., 500 K fast-charging stations by 2027) and policy stability to overcome adoption barriers. This study provides three key advances: (1) quantification of PESTLE factor weights via factor analysis, revealing technological (infrastructure) and political factors as dominant; (2) identification of infrastructure gaps, not subsidies, as the primary adoption barrier; and (3) demonstration of infrastructure’s persistence post-subsidy cuts. These insights redefine EV adoption priorities in China. Full article
Show Figures

Figure 1

26 pages, 4143 KiB  
Article
Spatial Distribution Patterns and Sustainable Development Drivers of China’s National Famous, Special, Excellent, and New Agricultural Products
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(13), 1430; https://doi.org/10.3390/agriculture15131430 - 2 Jul 2025
Viewed by 407
Abstract
China’s National Famous, Special, Excellent, and New Agricultural Products are key rural economic assets, yet their spatial patterns and sustainability drivers remain underexplored. Based on the geospatial data of 1932 National Famous, Special, Excellent and New Agricultural Products in China, this study systematically [...] Read more.
China’s National Famous, Special, Excellent, and New Agricultural Products are key rural economic assets, yet their spatial patterns and sustainability drivers remain underexplored. Based on the geospatial data of 1932 National Famous, Special, Excellent and New Agricultural Products in China, this study systematically analyzes their spatial distribution pattern by using GIS spatial analysis techniques, including the standard deviation ellipse, kernel density estimation, geographic concentration index and Lorenz curve, and quantitatively explores the driving factors of sustainable development by using geographic detectors. The research results of this paper are as follows. (1) The spatial distribution shows a significant non-equilibrium characteristic of “high-density concentration in the central and eastern part of the country and low-density sparseness in the western part of the country” and the geographic concentration index (G = 22.95) and the standard deviation ellipse indicate that the center of gravity of the distribution is located in the North China Plain (115° E–35° N), and the main direction extends along the longitude of 110° E–120° E. (2) Driving factor analysis showed that railroad mileage (X10) (q = 0.5028, p = 0.0025 < 0.01), highway mileage (X11) (q = 0.4633, p = 0.0158 < 0.05), and population size (X3) (q = 0.4469, p = 0.0202 < 0.05) are the core drivers. (3) Three-dimensional kernel density mapping reveals that the eastern coast and central plains (kernel density > 0.08) form high-density clusters due to the advantages of the transportation network and market, while the western part shows a gradient decline due to the limitation of topography and transportation conditions. The study suggests that the sustainable development of National Famous, Special, Excellent, and New Agricultural Products should be promoted by strengthening transportation and digital logistics systems, enhancing cold-chain distribution for perishable goods, tailoring regional branding strategies, and improving synergy among local governments, thereby providing actionable guidance for policymakers and producers to increase market competitiveness and income stability. The study provides a quantitative, policy-oriented assessment of China’s branded agricultural resource allocation and its sustainability drivers, offering specific recommendations to guide infrastructure investment, e-commerce logistics enhancement, and targeted subsidy design for balanced regional development. The study highlights three key contributions: (1) an innovative integration of geospatial analytics and geographical detectors to reveal spatial patterns; (2) clear empirical evidence for policymakers to prioritize transport and digital logistics investments; and (3) practical guidance for producers and brand managers to enhance product market reach, optimize supply chains, and strengthen regional competitiveness in line with sustainable development goals. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

18 pages, 277 KiB  
Review
Battery Electric Vehicle Safety Issues and Policy: A Review
by Sanjeev M. Naiek, Sorawich Aungsuthar, Corey Harper and Chris Hendrickson
World Electr. Veh. J. 2025, 16(7), 365; https://doi.org/10.3390/wevj16070365 - 1 Jul 2025
Viewed by 977
Abstract
Battery electric vehicles (BEVs) are seeing widespread adoption globally due to technological improvements, lower manufacturing costs, and supportive policies aimed at reducing greenhouse gas emissions. Governments have introduced incentives such as purchase subsidies and investments in charging infrastructure, while automakers continue to broaden [...] Read more.
Battery electric vehicles (BEVs) are seeing widespread adoption globally due to technological improvements, lower manufacturing costs, and supportive policies aimed at reducing greenhouse gas emissions. Governments have introduced incentives such as purchase subsidies and investments in charging infrastructure, while automakers continue to broaden their electric vehicle portfolios. Although BEVs show high overall safety performance comparable to internal combustion engine vehicles (ICEVs), they also raise distinct safety challenges that merit policy attention. This review synthesizes the current literature on safety concerns associated with BEVs, with particular attention to fire risks, vehicle weight, low-speed noise levels, and unique driving characteristics. Fire safety remains a significant issue, as lithium-ion battery fires, although less frequent than those in ICEVs, tend to be more severe and difficult to manage. Strategies such as improved thermal management, fire enclosures, and standardized response protocols are essential. BEVs are typically heavier than ICEVs, affecting crash outcomes and braking performance. These risks are especially important for interactions with pedestrians and smaller vehicles. Quiet operation at low speeds can also reduce pedestrian awareness, prompting regulations for vehicle sound alerts. Together, these issues highlight the need for policies that address both emerging safety risks and the evolving nature of BEV technology. Full article
27 pages, 1570 KiB  
Article
The Dual Impacting Effects of Government Environmental Policies and Corporate Pollution Levels on Corporate R&D Investment
by Xinglian Peng and Weihui Hu
Sustainability 2025, 17(13), 5791; https://doi.org/10.3390/su17135791 - 24 Jun 2025
Viewed by 387
Abstract
Against the backdrop of increasingly severe global environmental issues, the manner in which enterprises conduct R&D investment, influenced by both government environmental policies and their own pollution levels, has become a prominent research topic. This paper employs the bilateral random frontier model of [...] Read more.
Against the backdrop of increasingly severe global environmental issues, the manner in which enterprises conduct R&D investment, influenced by both government environmental policies and their own pollution levels, has become a prominent research topic. This paper employs the bilateral random frontier model of information game (SFA2tier) to analyze the influence levels and determining factors of government and market enterprises. The findings reveal that enterprises exert a stronger influence than the government, with the latter able to enhance R&D investment by 5.50% through its own influence. The disparity in influence levels between government and enterprises regarding R&D investment is significant and varies according to regional economic development levels and administrative hierarchies. Key determining factors include government subsidies, the nature of enterprise ownership, and enterprise size. The research results not only enrich relevant theories concerning the relationship between environmental policies and enterprise R&D investment but also provide valuable insights for the government to formulate more effective environmental policies and for enterprises to develop R&D strategies. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

16 pages, 2357 KiB  
Article
Levelized Cost of Energy (LCOE) of Different Photovoltaic Technologies
by Maria Cristea, Ciprian Cristea, Radu-Adrian Tîrnovan and Florica Mioara Șerban
Appl. Sci. 2025, 15(12), 6710; https://doi.org/10.3390/app15126710 - 15 Jun 2025
Viewed by 877
Abstract
Renewable energy sources are critical to the global effort to achieve carbon neutrality. Alongside hydropower, wind and nuclear plants, the photovoltaic (PV) systems developed greatly, with new PV technologies emerging in recent years. Although the conversion efficiencies are improving and the materials used [...] Read more.
Renewable energy sources are critical to the global effort to achieve carbon neutrality. Alongside hydropower, wind and nuclear plants, the photovoltaic (PV) systems developed greatly, with new PV technologies emerging in recent years. Although the conversion efficiencies are improving and the materials used have a lower impact on the environment, the feasibility of these technologies is required to be assessed. This paper proposes a levelized cost of energy (LCOE) model to assess the feasibility of five PV technologies: high-efficiency silicon heterojunction cells (HJT), N-type monocrystalline silicon cells (N-type), P-type passivated emitter and rear contact cells (PERC), N-type tunnel oxide passivated contact cells (TOPCon) and bifacial TOPCon. The LCOE considers capital investment, government incentives, operation and maintenance costs, residual value of PV modules and total energy output during the PV system’s life span. To determine the influence of PV system’s capacity over the LCOE values, three systems are analyzed for each technology: 3 kW, 5 kW and 7 kW. The results show that the largest PV systems have the lowest LCOE values, ranging from 2.39 c€/kWh (TOPCon) to 2.92 c€/kWh (HJT) when incentives are accessed, and ranging from 6.05 c€/kWh (TOPCon) to 6.51 c€/kWh (HJT) without subsidies. The 3 kW and 5 kW PV systems have higher LCOE values due to lower energy output during lifetime. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

21 pages, 2288 KiB  
Article
A Real Options Model for CCUS Investment: CO2 Hydrogenation to Methanol in a Chinese Integrated Refining–Chemical Plant
by Ruirui Fang, Xianxiang Gan, Yubing Bai and Lianyong Feng
Energies 2025, 18(12), 3092; https://doi.org/10.3390/en18123092 - 12 Jun 2025
Viewed by 515
Abstract
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization [...] Read more.
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization pathways placing a primary emphasis on storage or enhanced oil recovery (EOR). There is limited research available regarding the chemical utilization of carbon dioxide (CO2). This study develops an options-based analytical model, employing geometric Brownian motion to characterize carbon and oil price uncertainties while incorporating the learning curve effect in carbon capture infrastructure costs. Additionally, revenues from chemical utilization and EOR are integrated into the return model. A case study is conducted on a process producing 100,000 tons of methanol annually via CO2 hydrogenation. Based on numerical simulations, we determine the optimal investment conditions for the “CO2-to-methanol + EOR” collaborative scheme. Parameter sensitivity analyses further evaluate how key variables—carbon pricing, oil market dynamics, targeted subsidies, and the cost of renewable electricity—influence investment timing and feasibility. The results reveal that the following: (1) Carbon pricing plays a pivotal role in influencing investment decisions related to CCUS. A stable and sufficiently high carbon price improves the economic feasibility of CCUS projects. When the initial carbon price reaches 125 CNY/t or higher, refining–chemical integrated plants are incentivized to make immediate investments. (2) Increases in oil prices also encourage CCUS investment decisions by refining–chemical integrated plants, but the effect is weaker than that of carbon prices. The model reveals that when oil prices exceed USD 134 per barrel, the investment trigger is activated, leading to earlier project implementation. (3) EOR subsidy and the initial equipment investment subsidy can promote investment and bring forward the expected exercise time of the option. Immediate investment conditions will be triggered when EOR subsidy reaches CNY 75 per barrel or more, or the subsidy coefficient reaches 0.2 or higher. (4) The levelized cost of electricity (LCOE) from photovoltaic sources is identified as a key determinant of hydrogen production economics. A sustained decline in LCOE—from CNY 0.30/kWh to 0.22/kWh, and further to 0.12/kWh or below—significantly advances the optimal investment window. When LCOE reaches CNY 0.12/kWh, the project achieves economic viability, enabling investment potentially as early as 2025. This study provides guidance and reference cases for CCUS investment decisions integrating EOR and chemical utilization in China’s refining–chemical integrated plants. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

21 pages, 946 KiB  
Article
Configuring Technological Innovation and Resource Synergies for Performance in New Energy Vehicle Enterprises: A Path Analysis Using Empirical and Comparative Methods
by Yunqing Liu, Ziqi Guo and Qianwen He
Sustainability 2025, 17(11), 5196; https://doi.org/10.3390/su17115196 - 5 Jun 2025
Viewed by 536
Abstract
In the fast-growing new energy vehicle (NEV) industry, selecting an appropriate technological innovation strategy is vital for enterprises to achieve a competitive market position while effectively coordinating their resources to align with their technical capabilities. This paper integrates ambidextrous innovation theory and the [...] Read more.
In the fast-growing new energy vehicle (NEV) industry, selecting an appropriate technological innovation strategy is vital for enterprises to achieve a competitive market position while effectively coordinating their resources to align with their technical capabilities. This paper integrates ambidextrous innovation theory and the resource-based view to propose a configurational model that examines how the synergy between technological innovation and resources influences NEV firm performance. Using regression analysis and qualitative comparative analysis (QCA) for 52 listed Chinese NEV companies, this study uncovered multiple growth paths and mechanisms. The findings include the following: (1) No single factor was a necessary condition for performance, but effective combinations of innovation strategies and resource elements led to multiple success paths. (2) Government subsidies and R&D investment emerged as key drivers of performance. (3) Four distinct configuration paths were identified, with variations across firms with different resource bases. (4) In response to reduced government subsidies, NEV firms must shift from policy-driven strategies to resource- and market-driven innovation approaches. These insights provide strategic guidance for NEV enterprises in selecting innovation strategies suited to their unique resource bases in the evolving post-subsidy market environment. Full article
Show Figures

Figure 1

25 pages, 3617 KiB  
Article
Research on the Optimization of Collaborative Decision Making in Shipping Green Fuel Supply Chains Based on Evolutionary Game Theory
by Lequn Zhu, Ran Zhou, Xiaojun Li, Shaopeng Lu and Jingpeng Liu
Sustainability 2025, 17(11), 5186; https://doi.org/10.3390/su17115186 - 4 Jun 2025
Viewed by 650
Abstract
In the context of global climate governance and the International Maritime Organization’s (IMO) stringent carbon reduction targets, the transition to green shipping fuels faces systemic challenges in supply chain coordination. This study focuses on the strategic interactions between governments and enterprises in the [...] Read more.
In the context of global climate governance and the International Maritime Organization’s (IMO) stringent carbon reduction targets, the transition to green shipping fuels faces systemic challenges in supply chain coordination. This study focuses on the strategic interactions between governments and enterprises in the construction of green fuel supply chains. By constructing a multidimensional scenario framework encompassing time, technological development, social attention, policy intensity, and market competition, and using evolutionary game models and system dynamics simulations, we reveal the dynamic evolution mechanism of government–enterprise decision making. System dynamics simulations reveal that (1) short-term government intervention accelerates infrastructure development but risks subsidy inefficiency; (2) medium-term policy stability and market-driven mechanisms are critical for sustaining enterprise investments; and (3) high social awareness and mature technologies significantly reduce strategic uncertainty. This research advances the application of evolutionary game theory in sustainable supply chains and offers a decision support framework for balancing governmental roles and market forces in maritime decarbonization. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

28 pages, 1076 KiB  
Article
How Oil Prices Impact the Japanese and South Korean Economies: Evidence from the Stock Market and Implications for Energy Security
by Willem Thorbecke
Sustainability 2025, 17(11), 4794; https://doi.org/10.3390/su17114794 - 23 May 2025
Viewed by 1682
Abstract
Oil prices are volatile. How does this affect Japanese and South Korean firms? Since they import almost all of their oil, oil price increases may harm their economies. To investigate these issues, this paper examines how oil prices affect sectoral stock returns. Using [...] Read more.
Oil prices are volatile. How does this affect Japanese and South Korean firms? Since they import almost all of their oil, oil price increases may harm their economies. To investigate these issues, this paper examines how oil prices affect sectoral stock returns. Using Hamilton’s method to decompose oil price changes into portions driven by global demand and by oil supply, the results indicate that many sectors in both countries benefit from increases in global aggregate demand that raise oil prices. Many industrial firms in Japan that produce advanced products also benefit from supply-driven oil price changes. The finding that many firms benefit from higher oil prices indicates that blanket subsidies to compensate for oil price increases are unnecessary. Targeted subsidies would be more economical and eco-friendly. Many sectors in Japan and Korea that produce for the domestic economy are harmed by oil price increases. Large oil price swings will continue due to wars, tariffs, geopolitical events, and climate change. These will whipsaw sectors in both countries. To shield their economies from oil price changes, Japan and Korea should invest in technologies to improve wind, solar, and hydro power and should facilitate intra-regional trade in renewables. They should also encourage individual sectors such as airlines, cosmetics, agriculture, hotels, semiconductors, and automobiles to reduce their exposure to fossil fuels and to choose environmentally friendly production methods. In addition, both countries should expedite their targets for achieving carbon neutrality. This paper considers ways to achieve these goals. Full article
Show Figures

Figure 1

27 pages, 5931 KiB  
Article
How Do Incentive Policy and Benefit Distribution Affect the Cooperative Development Mechanism of Intelligent Connected Vehicles? A Tripartite Evolutionary Game Approach
by Rui Zhang, Yanxi Xie, Yuewen Li, Qingfeng Chen and Qiaosong Wang
Electronics 2025, 14(10), 2042; https://doi.org/10.3390/electronics14102042 - 17 May 2025
Viewed by 385
Abstract
The intelligent connected vehicle (ICV) industry encounters substantial challenges related to technology, policies, and funding. Its development relies not only on the close collaboration and technological innovation between carmakers and technology companies but also on the support of government’s incentive policies. Therefore, this [...] Read more.
The intelligent connected vehicle (ICV) industry encounters substantial challenges related to technology, policies, and funding. Its development relies not only on the close collaboration and technological innovation between carmakers and technology companies but also on the support of government’s incentive policies. Therefore, this paper establishes a tripartite evolutionary game model that involves governments, carmakers, and technology companies to investigate the stability equilibrium strategy of multi-party participation in promoting the development of the ICV industry. In addition, by analyzing relevant regulations and company annual reports, this paper conducts a simulation analysis to examine how government incentive policies and benefit distribution mechanisms impact the evolutionary trajectory. Several insightful and practical conclusions are drawn. First, in the early stages of industrial development, the government’s infrastructure investment could promote the cross-border innovation cooperation between carmakers and technology companies, thereby accelerating the advancement of ICVs; however, the long-term impact of the sustained investment remains limited. Second, the incremental government subsidies for carmakers and technology companies within limits could increase the probability of them choosing to cooperate and innovate with each other. Still, the excessive subsidies could result in unstable industry growth. Finally, the increase in the benefit distribution ratio for carmakers with professional technology in automotive technology and vehicle design has a positive effect on the development of the ICV industry. This paper expands the research scope of ICVs and provides theoretical insights for promoting the sustainable development of the ICV industry from policy and market viewpoints. Full article
Show Figures

Figure 1

Back to TopTop