Abstract
The low-altitude economy (LAE), encompassing urban air mobility, drone logistics and sub 3000 m aerial surveillance, demands secure, intelligent infrastructures to manage increasingly complex, multi-stakeholder operations. This survey evaluates the integration of Internet of Things (IoT) networks, artificial intelligence (AI) decision-making and blockchain trust mechanisms as foundational enablers for next-generation LAE ecosystems. IoT sensor arrays deployed at ground stations, unmanned aerial vehicles (UAVs) and vertiports form a real-time data fabric that records variables from air traffic density to environmental parameters. These continuous data streams empower AI models ranging from predictive analytics and computer vision (CV) to multi-agent reinforcement learning (MARL) and large language model (LLM) reasoning to optimize flight paths, identify anomalies and coordinate swarm behaviors autonomously. In parallel, blockchain architectures furnish immutable audit trails for regulatory compliance, support secure device authentication via decentralized identifiers (DIDs) and automate contractual exchanges for services such as airspace leasing or payload delivery. By examining current research and practical deployments, this review demonstrates how the synergistic application of IoT, AI and blockchain can bolster operational efficiency, resilience and trustworthiness across the LAE landscape.