Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,176)

Search Parameters:
Keywords = internet of things

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2973 KB  
Article
Mobile Device with IoT Capabilities for the Detection of R-32 and R-134a Refrigerants Using Infrared Sensors
by Nikolaos Argirusis, Achilleas Achilleos, John Konstantaras, Petros Karvelis and Antonis A. Zorpas
Processes 2026, 14(3), 466; https://doi.org/10.3390/pr14030466 - 28 Jan 2026
Abstract
Fluorinated greenhouse gases (FGGs) are classified as worldwide pollutants and have a high global warming potential compared to other greenhouse gases. Detecting the existence and concentration of new and older refrigerant gases is crucial for assessing system functionality and determining whether they can [...] Read more.
Fluorinated greenhouse gases (FGGs) are classified as worldwide pollutants and have a high global warming potential compared to other greenhouse gases. Detecting the existence and concentration of new and older refrigerant gases is crucial for assessing system functionality and determining whether they can be recycled or need to be disposed of. Additional justifications for the necessity of quantitative measurements of these gases include the manufacturing of air conditioning components; leak detection is conducted to ensure they are free of leaks. Classical laboratory Fast Fourier transform spectrometers enable the detection and measurement of substances while being delicate, unwieldy, and costly, and typically requiring a skilled technician to operate them. For the estimation of refrigerants in the field, a portable, user-friendly, and cost-effective detection device must be deployed. This article provides an in-depth analysis of the categorization of refrigerant gases using an Internet of Things (IoT) gas detection device. The functionality in effectively differentiating between important refrigerant gases, like R-32 and R-134a, with low delay, is demonstrated through practical tests. With the portable device, this study utilizes Fourier-Transformed infrared spectra measured from the refrigerants R-32 and R-134a, collected using a custom-made 3D-printed tubular reactor equipped with two BaF2 windows, suitable for use in the beamline of a Bruker IR Spectrometer. Calibration was performed by exposing the infrared sensor to controlled gas environments with varying amounts of refrigerant gases using accurately produced gas mixtures. Following the on-field analysis of the reclaimed refrigerants, the obtained data was immediately processed, and both the data and the results were uploaded to an IoT platform, making them available to business-to-business (B2B) clients. The functionality of the device is demonstrated. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

20 pages, 1727 KB  
Article
Breaking Through the Bottleneck of Wireless Physical-Layer Key Generation by Dynamic Agile Reconfigurable Intelligent Surface Antenna (DARISA)
by Yonglin Ma and Hui-Ming Wang
Entropy 2026, 28(2), 146; https://doi.org/10.3390/e28020146 - 28 Jan 2026
Abstract
In widely deployed Internet of Things (IoT) scenarios, physical-layer key generation (PLKG) serves as a useful complement to conventional cryptographic methods, yet it often suffers from a fundamentally low key generation rate, which becomes particularly severe in quasi-static environments. This low rate is [...] Read more.
In widely deployed Internet of Things (IoT) scenarios, physical-layer key generation (PLKG) serves as a useful complement to conventional cryptographic methods, yet it often suffers from a fundamentally low key generation rate, which becomes particularly severe in quasi-static environments. This low rate is mainly attributed to three key issues: (1) slow channel variations, which provide insufficient randomness and thus limit the key generation rate; (2) correlation between the legitimate channel and the eavesdropping channel, which reduces the uniqueness of the extracted key and further degrades the achievable rate; and (3) insufficient degrees of freedom in the key source, which constrain the key space. To address these challenges, this paper introduces the Dynamic Agile Reconfigurable Intelligent Surface Antenna into physical-layer key generation. By deploying metasurface antennas at both ends and independently applying random phase modulation, the scheme injects two-sided randomness, thereby mitigating the adverse effects of quasi-static channels and legitimate eavesdropper channel correlation. Moreover, by leveraging the dynamic, agile, and reconfigurable characteristics of the metasurface antennas in the key generation process, the proposed approach can further enhance the key generation rate while simultaneously resolving all three issues above. The proposed scheme is developed under a general setting where correlation exists between the legitimate and eavesdropping channels. A closed-form expression for the key capacity is rigorously derived, accompanied by detailed theoretical analysis and simulations. The results demonstrate the superiority of the proposed approach when applied to physical-layer key generation. Full article
(This article belongs to the Special Issue Wireless Physical Layer Security Toward 6G)
16 pages, 519 KB  
Article
An Efficient and Automated Smart Healthcare System Using Genetic Algorithm and Two-Level Filtering Scheme
by Geetanjali Rathee, Hemraj Saini, Chaker Abdelaziz Kerrache, Ramzi Djemai and Mohamed Chahine Ghanem
Digital 2026, 6(1), 10; https://doi.org/10.3390/digital6010010 - 28 Jan 2026
Abstract
This paper proposes an efficient and automated smart healthcare communication framework that integrates a two-level filtering scheme with a multi-objective Genetic Algorithm (GA) to enhance the reliability, timeliness, and energy efficiency of Internet of Medical Things (IoMT) systems. In the first stage, physiological [...] Read more.
This paper proposes an efficient and automated smart healthcare communication framework that integrates a two-level filtering scheme with a multi-objective Genetic Algorithm (GA) to enhance the reliability, timeliness, and energy efficiency of Internet of Medical Things (IoMT) systems. In the first stage, physiological signals collected from heterogeneous sensors (e.g., blood pressure, glucose level, ECG, patient movement, and ambient temperature) were pre-processed using an adaptive least-mean-square (LMS) filter to suppress noise and motion artifacts, thereby improving signal quality prior to analysis. In the second stage, a GA-based optimization engine selects optimal routing paths and transmission parameters by jointly considering end-to-end delay, Signal-to-Noise Ratio (SNR), energy consumption, and packet loss ratio (PLR). The two-level filtering strategy, i.e., LMS, ensures that only denoised and high-priority records are forwarded for more processing, enabling timely delivery for supporting the downstream clinical network by optimizing the communication. The proposed mechanism is evaluated via extensive simulations involving 30–100 devices and multiple generations and is benchmarked against two existing smart healthcare schemes. The results demonstrate that the integrated GA and filtering approach significantly reduces end-to-end delay by 10%, as well as communication latency and energy consumption, while improving the packet delivery ratio by approximately 15%, as well as throughput, SNR, and overall Quality of Service (QoS) by up to 98%. These findings indicate that the proposed framework provides a scalable and intelligent communication backbone for early disease detection, continuous monitoring, and timely intervention in smart healthcare environments. Full article
Show Figures

Figure 1

21 pages, 4305 KB  
Article
From Reactive to Resilient: A Hybrid Digital Twin and Deep Learning Framework for Mining Operational Reliability
by Ahmet Kurt and Muhammet Mustafa Kahraman
Mining 2026, 6(1), 7; https://doi.org/10.3390/mining6010007 - 28 Jan 2026
Abstract
In the mining industry, where equipment breakdowns cause expensive unplanned downtime, operational continuity is paramount. Internet of Things (IoT) technologies have the potential to make predictions; however, most solutions lack a holistic view and mapping of complex system interdependencies. This study presents a [...] Read more.
In the mining industry, where equipment breakdowns cause expensive unplanned downtime, operational continuity is paramount. Internet of Things (IoT) technologies have the potential to make predictions; however, most solutions lack a holistic view and mapping of complex system interdependencies. This study presents a comprehensive predictive maintenance (PdM) framework specifically designed for continuous-operation mining environments, with a primary focus on Semi-Autogenous Grinding (SAG) mills. By combining exploratory data analysis, advanced feature engineering, classical machine learning (Gradient Boosting Classifier), and deep learning (LSTM with multiple time-window configurations), the system achieves real-time anomaly detection, root-cause explanation, and failure forecasting up to 48 h in advance (average lead time: 17 h). A four-layer digital twin architecture integrated with Streamlit enables actionable alerts classified as emergency, planned, or preventive interventions. Applied to a one-year dataset comprising 99,854 hourly records from an industrial SAG mill, the hybrid model prevented an estimated 219.5 h of unplanned downtime, yielding substantial economic benefits. The proposed solution is deliberately designed for high adaptability across multiple equipment types and industrial sectors beyond mining. Full article
(This article belongs to the Special Issue Mine Management Optimization in the Era of AI and Advanced Analytics)
Show Figures

Figure 1

42 pages, 4980 KB  
Article
Socially Grounded IoT Protocol for Reliable Computer Vision in Industrial Applications
by Gokulnath Chidambaram, Shreyanka Subbarayappa and Sai Baba Magapu
Future Internet 2026, 18(2), 69; https://doi.org/10.3390/fi18020069 - 27 Jan 2026
Abstract
The Social Internet of Things (SIoT) enables collaborative service provisioning among interconnected devices by leveraging socially inspired trust relationships. This paper proposes a socially driven SIoT protocol for trust-aware service selection, enabling dynamic friendship formation and ranking among distributed service-providing devices based on [...] Read more.
The Social Internet of Things (SIoT) enables collaborative service provisioning among interconnected devices by leveraging socially inspired trust relationships. This paper proposes a socially driven SIoT protocol for trust-aware service selection, enabling dynamic friendship formation and ranking among distributed service-providing devices based on observed execution behavior. The protocol integrates detection accuracy, round-trip time (RTT), processing time, and device characteristics within a graph-based friendship model and employs PageRank-based scoring to guide service selection. Industrial computer vision workloads are used as a representative testbed to evaluate the proposed SIoT trust-evaluation framework under realistic execution and network constraints. In homogeneous environments with comparable service-provider capabilities, friendship scores consistently favor higher-accuracy detection pipelines, with F1-scores in the range of approximately 0.25–0.28, while latency and processing-time variations remain limited. In heterogeneous environments comprising resource-diverse devices, trust differentiation reflects the combined influence of algorithm accuracy and execution feasibility, resulting in clear service-provider ranking under high-resolution and high-frame-rate workloads. Experimental results further show that reducing available network bandwidth from 100 Mbps to 10 Mbps increases round-trip communication latency by approximately one order of magnitude, while detection accuracy remains largely invariant. The evaluation is conducted on a physical SIoT testbed with three interconnected devices, forming an 11-node, 22-edge logical trust graph, and on synthetic trust graphs with up to 50 service-providing nodes. Across all settings, service-selection decisions remain stable, and PageRank-based friendship scoring is completed in approximately 20 ms, incurring negligible overhead relative to inference and communication latency. Full article
(This article belongs to the Special Issue Social Internet of Things (SIoT))
24 pages, 6313 KB  
Article
IoT-Driven Pull Scheduling to Avoid Congestion in Human Emergency Evacuation
by Erol Gelenbe and Yuting Ma
Sensors 2026, 26(3), 837; https://doi.org/10.3390/s26030837 - 27 Jan 2026
Abstract
The efficient and timely management of human evacuation during emergency events is an important area of research where the Internet of Things (IoT) can be of great value. Significant areas of application for optimum evacuation strategies include buildings, sports arenas, cultural venues, such [...] Read more.
The efficient and timely management of human evacuation during emergency events is an important area of research where the Internet of Things (IoT) can be of great value. Significant areas of application for optimum evacuation strategies include buildings, sports arenas, cultural venues, such as museums and concert halls, and ships that carry passengers, such as cruise ships. In many cases, the evacuation process is complicated by constraints on space and movement, such as corridors, staircases, and passageways, that can cause congestion and slow the evacuation process. In such circumstances, the Internet of Things (IoT) can be used to sense the presence of evacuees in different locations, to sense hazards and congestion, to assist in making decisions based on sensing to guide the evacuees dynamically in the most effective direction to limit or eliminate congestion and maximize safety, and notify to the passengers the directions they should take or whether they should stop and wait, through signaling with active IoT devices that can include voice and visual indications and signposts. This paper uses an analytical queueing network approach to analyze an emergency evacuation system, and suggests the use of the Pull Policy, which employs the IoT to direct evacuees in a manner that reduces downstream congestion by signalling them to move forward when the preceding evacuees exit the system. The IoT-based Pull Policy is analyzed using a realistic representation of evacuation from an existing commercial cruise ship, with a queueing network model that also allows for a computationally very efficient comparison of different routing rules with wide-ranging variations in speed parameters of each of the individual evacuees.Numerical examples are used to demonstrate its value for the timely evacuation of passengers within the confined space of a cruise ship. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

25 pages, 969 KB  
Article
H-CLAS: A Hybrid Continual Learning Framework for Adaptive Fault Detection and Self-Healing in IoT-Enabled Smart Grids
by Tina Babu, Rekha R. Nair, Balamurugan Balusamy and Sumendra Yogarayan
IoT 2026, 7(1), 12; https://doi.org/10.3390/iot7010012 - 27 Jan 2026
Abstract
The rapid expansion of Internet of Things (IoT)-enabled smart grids has intensified the need for reliable fault detection and autonomous self-healing under non-stationary operating conditions characterized by frequent concept drift. To address the limitations of static and single-strategy adaptive models, this paper proposes [...] Read more.
The rapid expansion of Internet of Things (IoT)-enabled smart grids has intensified the need for reliable fault detection and autonomous self-healing under non-stationary operating conditions characterized by frequent concept drift. To address the limitations of static and single-strategy adaptive models, this paper proposes H-CLAS, a novel Hybrid Continual Learning for Adaptive Self-healing framework that unifies regularization-based, memory-based, architectural, and meta-learning strategies within a single adaptive pipeline. The framework integrates convolutional neural networks (CNNs) for fault detection, graph neural networks for topology-aware fault localization, reinforcement learning for self-healing control, and a hybrid drift detection mechanism combining ADWIN and Page–Hinkley tests. Continual adaptation is achieved through the synergistic use of Elastic Weight Consolidation, memory-augmented replay, progressive neural network expansion, and Model-Agnostic Meta-Learning for rapid adaptation to emerging drifts. Extensive experiments conducted on the Smart City Air Quality and Network Intrusion Detection Dataset (NSL-KDD) demonstrate that H-CLAS achieves accuracy improvements of 12–15% over baseline methods, reduces false positives by over 50%, and enables 2–3× faster recovery after drift events. By enhancing resilience, reliability, and autonomy in critical IoT-driven infrastructures, the proposed framework contributes to improved grid stability, reduced downtime, and safer, more sustainable energy and urban monitoring systems, thereby providing significant societal and environmental benefits. Full article
Show Figures

Figure 1

32 pages, 3859 KB  
Systematic Review
Digital Twin (DT) and Extended Reality (XR) in the Construction Industry: A Systematic Literature Review
by Ina Sthapit and Svetlana Olbina
Buildings 2026, 16(3), 517; https://doi.org/10.3390/buildings16030517 - 27 Jan 2026
Abstract
The construction industry is undergoing a rapid digital transformation, with Digital Twins (DTs) and Extended Reality (XR) as two emerging technologies with great potential. Despite their potential, there are several challenges regarding DT and XR use in construction projects, including implementation barriers, interoperability [...] Read more.
The construction industry is undergoing a rapid digital transformation, with Digital Twins (DTs) and Extended Reality (XR) as two emerging technologies with great potential. Despite their potential, there are several challenges regarding DT and XR use in construction projects, including implementation barriers, interoperability issues, system complexity, and a lack of standardized frameworks. This study presents a systematic literature review (SLR) of DT and XR technologies—including Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR)—in the construction industry. The study analyzes 52 peer-reviewed articles identified using the Web of Science database to explore thematic findings. Key findings highlight DT and XR applications for safety training, real-time monitoring, predictive maintenance, lifecycle management, renovation or demolition, scenario risk assessment, and education. The SLR also identifies core enabling technologies such as Building Information Modeling (BIM), Internet of Things (IoT), Big Data, and XR devices, while uncovering persistent challenges including interoperability, high implementation costs, and lack of standardization. The study highlights how integrating DTs and XR can improve construction by making it smarter, safer, and more efficient. It also suggests areas for future research to overcome current challenges and help increase the use of these technologies. The primary contribution of this study lies in deepening the understanding of DT and XR technologies by examining them through the lenses of their benefits as well as drivers for and challenges to their adoption. This enhanced understanding provides a foundation for exploring integrated DT and XR applications to advance innovation and efficiency in the construction sector. Full article
Show Figures

Figure 1

38 pages, 6181 KB  
Article
An AIoT-Based Framework for Automated English-Speaking Assessment: Architecture, Benchmarking, and Reliability Analysis of Open-Source ASR
by Paniti Netinant, Rerkchai Fooprateepsiri, Ajjima Rukhiran and Meennapa Rukhiran
Informatics 2026, 13(2), 19; https://doi.org/10.3390/informatics13020019 - 26 Jan 2026
Abstract
The emergence of low-cost edge devices has enabled the integration of automatic speech recognition (ASR) into IoT environments, creating new opportunities for real-time language assessment. However, achieving reliable performance on resource-constrained hardware remains a significant challenge, especially on the Artificial Internet of Things [...] Read more.
The emergence of low-cost edge devices has enabled the integration of automatic speech recognition (ASR) into IoT environments, creating new opportunities for real-time language assessment. However, achieving reliable performance on resource-constrained hardware remains a significant challenge, especially on the Artificial Internet of Things (AIoT). This study presents an AIoT-based framework for automated English-speaking assessment that integrates architecture and system design, ASR benchmarking, and reliability analysis on edge devices. The proposed AIoT-oriented architecture incorporates a lightweight scoring framework capable of analyzing pronunciation, fluency, prosody, and CEFR-aligned speaking proficiency within an automated assessment system. Seven open-source ASR models—four Whisper variants (tiny, base, small, and medium) and three Vosk models—were systematically benchmarked in terms of recognition accuracy, inference latency, and computational efficiency. Experimental results indicate that Whisper-medium deployed on the Raspberry Pi 5 achieved the strongest overall performance, reducing inference latency by 42–48% compared with the Raspberry Pi 4 and attaining the lowest Word Error Rate (WER) of 6.8%. In contrast, smaller models such as Whisper-tiny, with a WER of 26.7%, exhibited two- to threefold higher scoring variability, demonstrating how recognition errors propagate into automated assessment reliability. System-level testing revealed that the Raspberry Pi 5 can sustain near real-time processing with approximately 58% CPU utilization and around 1.2 GB of memory, whereas the Raspberry Pi 4 frequently approaches practical operational limits under comparable workloads. Validation using real learner speech data (approximately 100 sessions) confirmed that the proposed system delivers accurate, portable, and privacy-preserving speaking assessment using low-power edge hardware. Overall, this work introduces a practical AIoT-based assessment framework, provides a comprehensive benchmark of open-source ASR models on edge platforms, and offers empirical insights into the trade-offs among recognition accuracy, inference latency, and scoring stability in edge-based ASR deployments. Full article
Show Figures

Figure 1

24 pages, 1526 KB  
Article
EQARO-ECS: Efficient Quantum ARO-Based Edge Computing and SDN Routing Protocol for IoT Communication to Avoid Desertification
by Thair A. Al-Janabi, Hamed S. Al-Raweshidy and Muthana Zouri
Sensors 2026, 26(3), 824; https://doi.org/10.3390/s26030824 - 26 Jan 2026
Abstract
Desertification is the impoverishment of fertile land, caused by various factors and environmental effects, such as temperature and humidity. An appropriate Internet of Things (IoT) architecture, routing algorithms based on artificial intelligence (AI), and emerging technologies are essential to monitor and avoid desertification. [...] Read more.
Desertification is the impoverishment of fertile land, caused by various factors and environmental effects, such as temperature and humidity. An appropriate Internet of Things (IoT) architecture, routing algorithms based on artificial intelligence (AI), and emerging technologies are essential to monitor and avoid desertification. However, the classical AI algorithms usually suffer from falling into local optimum issues and consuming more energy. This research proposed an improved multi-objective routing protocol, namely, the efficient quantum (EQ) artificial rabbit optimisation (ARO) based on edge computing (EC) and a software-defined network (SDN) concept (EQARO-ECS), which provides the best cluster table for the IoT network to avoid desertification. The methodology of the proposed EQARO-ECS protocol reduces energy consumption and improves data analysis speed by deploying new technologies, such as the Cloud, SDN, EC, and quantum technique-based ARO. This protocol increases the data analysis speed because of the suggested iterated quantum gates with the ARO, which can rapidly penetrate from the local to the global optimum. The protocol avoids desertification because of a new effective objective function that considers energy consumption, communication cost, and desertification parameters. The simulation results established that the suggested EQARO-ECS procedure increases accuracy and improves network lifetime by reducing energy depletion compared to other algorithms. Full article
Show Figures

Figure 1

14 pages, 8035 KB  
Article
Virtual Leader-Guided Cooperative Control of Dual Permanent Magnet Synchronous Motors
by Jing Ci, Yue Dong and Weilin Yang
Energies 2026, 19(3), 640; https://doi.org/10.3390/en19030640 - 26 Jan 2026
Viewed by 10
Abstract
A hierarchical cooperative control strategy guided by a virtual leader is proposed to enhance the speed regulation and robustness of dual permanent magnet synchronous motor (PMSM) systems. The upper layer employs a virtual leader with model predictive speed control (MPSC) to achieve coordinated [...] Read more.
A hierarchical cooperative control strategy guided by a virtual leader is proposed to enhance the speed regulation and robustness of dual permanent magnet synchronous motor (PMSM) systems. The upper layer employs a virtual leader with model predictive speed control (MPSC) to achieve coordinated tracking, while the lower layer utilizes model predictive current control (MPCC) for regulation. A theoretical complexity analysis demonstrates that this decoupled architecture reduces the computational burden by approximately 75% compared to centralized MPC. Furthermore, a load disturbance observer is designed to estimate and compensate for external torques. Simulation and experimental results, covering both forward and reverse rotations, validate the effectiveness of the proposed strategy. Comparative results show that, compared with a conventional PI controller, the proposed method reduces speed overshoot by approximately 20% under sudden load changes, exhibiting superior steady-state performance and strong robustness against load variations. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Power Electronics and Motor Drives)
Show Figures

Figure 1

25 pages, 2206 KB  
Article
Adaptive Bayesian System Identification for Long-Term Forecasting of Industrial Load and Renewables Generation
by Lina Sheng, Zhixian Wang, Xiaowen Wang and Linglong Zhu
Electronics 2026, 15(3), 530; https://doi.org/10.3390/electronics15030530 - 26 Jan 2026
Viewed by 23
Abstract
The expansion of renewables in modern power systems and the coordinated development of upstream and downstream industrial chains are promoting a shift on the utility side from traditional settlement by energy toward operation driven by data and models. Industrial electricity consumption data exhibit [...] Read more.
The expansion of renewables in modern power systems and the coordinated development of upstream and downstream industrial chains are promoting a shift on the utility side from traditional settlement by energy toward operation driven by data and models. Industrial electricity consumption data exhibit pronounced multi-scale temporal structures and sectoral heterogeneity, which makes unified long-term load and generation forecasting while maintaining accuracy, interpretability, and scalability a challenge. From a modern system identification perspective, this paper proposes a System Identification in Adaptive Bayesian Framework (SIABF) for medium- and long-term industrial load forecasting based on daily freeze electricity time series. By combining daily aggregation of high-frequency data, frequency domain analysis, sparse identification, and long-term extrapolation, we first construct daily freeze series from 15 min measurements, and then we apply discrete Fourier transforms and a spectral complexity index to extract dominant periodic components and build an interpretable sinusoidal basis library. A sparse regression formulation with 1 regularization is employed to select a compact set of key basis functions, yielding concise representations of sector and enterprise load profiles and naturally supporting multivariate and joint multi-sector modeling. Building on this structure, we implement a state-space-implicit physics-informed Bayesian forecasting model and evaluate it on real data from three representative sectors, namely, steel, photovoltaics, and chemical, using one year of 15 min measurements. Under a one-month-ahead evaluation using one year of 15 min measurements, the proposed framework attains a Mean Absolute Percentage Error (MAPE) of 4.5% for a representative PV-related customer case and achieves low single-digit MAPE for high-inertia sectors, often outperforming classical statistical models, sparse learning baselines, and deep learning architectures. These results should be interpreted as indicative given the limited time span and sample size, and broader multi-year, population-level validation is warranted. Full article
(This article belongs to the Section Systems & Control Engineering)
31 pages, 2800 KB  
Article
Intelligent Fusion: A Resilient Anomaly Detection Framework for IoMT Health Devices
by Flavio Pastore, Raja Waseem Anwar, Nafaa Hadi Jabeur and Saqib Ali
Information 2026, 17(2), 117; https://doi.org/10.3390/info17020117 - 26 Jan 2026
Viewed by 35
Abstract
Modern healthcare systems increasingly depend on wearable Internet of Medical Things (IoMT) devices for the continuous monitoring of patients’ physiological parameters. It remains challenging to differentiate between genuine physiological anomalies, sensor faults, and malicious cyber interference. In this work, we propose a hybrid [...] Read more.
Modern healthcare systems increasingly depend on wearable Internet of Medical Things (IoMT) devices for the continuous monitoring of patients’ physiological parameters. It remains challenging to differentiate between genuine physiological anomalies, sensor faults, and malicious cyber interference. In this work, we propose a hybrid fusion framework designed to attribute the most plausible source of an anomaly, thereby supporting more reliable clinical decisions. The proposed framework is developed and evaluated using two complementary datasets: CICIoMT2024 for modelling security threats and a large-scale intensive care cohort from MIMIC-IV for analysing key vital signs and bedside interventions. The core of the system combines a supervised XGBoost classifier for attack detection with an unsupervised LSTM autoencoder for identifying physiological and technical deviations. To improve clinical realism and avoid artefacts introduced by quantised or placeholder measurements, the physiological module incorporates quality-aware preprocessing and missingness indicators. The fusion decision policy is calibrated under prudent, safety-oriented constraints to limit false escalation. Rather than relying on fixed fusion weights, we train a lightweight fusion classifier that combines complementary evidence from the security and clinical modules, and we select class-specific probability thresholds on a dedicated calibration split. The security module achieves high cross-validated performance, while the clinical model captures abnormal physiological patterns at scale, including deviations consistent with both acute deterioration and data-quality faults. Explainability is provided through SHAP analysis for the security module and reconstruction-error attribution for physiological anomalies. The integrated fusion framework achieves a final accuracy of 99.76% under prudent calibration and a Matthews Correlation Coefficient (MCC) of 0.995, with an average end-to-end inference latency of 84.69 ms (p95 upper bound of 107.30 ms), supporting near real-time execution in edge-oriented settings. While performance is strong, clinical severity labels are operationalised through rule-based proxies, and cross-domain fusion relies on harmonised alignment assumptions. These aspects should be further evaluated using realistic fault traces and prospective IoMT data. Despite these limitations, the proposed framework offers a practical and explainable approach for IoMT-based patient monitoring. Full article
(This article belongs to the Special Issue Intrusion Detection Systems in IoT Networks)
Show Figures

Graphical abstract

13 pages, 2027 KB  
Article
An Improved Diffusion Model for Generating Images of a Single Category of Food on a Small Dataset
by Zitian Chen, Zhiyong Xiao, Dinghui Wu and Qingbing Sang
Foods 2026, 15(3), 443; https://doi.org/10.3390/foods15030443 - 26 Jan 2026
Viewed by 95
Abstract
In the era of the digital food economy, high-fidelity food images are critical for applications ranging from visual e-commerce presentation to automated dietary assessment. However, developing robust computer vision systems for food analysis is often hindered by data scarcity for long-tail or regional [...] Read more.
In the era of the digital food economy, high-fidelity food images are critical for applications ranging from visual e-commerce presentation to automated dietary assessment. However, developing robust computer vision systems for food analysis is often hindered by data scarcity for long-tail or regional dishes. To address this challenge, we propose a novel high-fidelity food image synthesis framework as an effective data augmentation tool. Unlike generic generative models, our method introduces an Ingredient-Aware Diffusion Model based on the Masked Diffusion Transformer (MaskDiT) architecture. Specifically, we design a Label and Ingredients Encoding (LIE) module and a Cross-Attention (CA) mechanism to explicitly model the relationship between food composition and visual appearance, simulating the “cooking” process digitally. Furthermore, to stabilize training on limited data samples, we incorporate a linear interpolation strategy into the diffusion process. Extensive experiments on the Food-101 and VireoFood-172 datasets demonstrate that our method achieves state-of-the-art generation quality even in data-scarce scenarios. Crucially, we validate the practical utility of our synthetic images: utilizing them for data augmentation improved the accuracy of downstream food classification tasks from 95.65% to 96.20%. This study provides a cost-effective solution for generating diverse, controllable, and realistic food data to advance smart food systems. Full article
Show Figures

Figure 1

19 pages, 1214 KB  
Article
The Impact of Digital Transformation on the Business Performance of Logistics Enterprises: A Multi-Criteria Approach
by Khanh Han Nguyen and Long Quang Pham
Logistics 2026, 10(2), 32; https://doi.org/10.3390/logistics10020032 - 26 Jan 2026
Viewed by 82
Abstract
Background: In the era of rapid technological advancement, digital transformation has emerged as a pivotal strategy for enhancing operational efficiency and competitiveness in logistics enterprises, particularly amid globalization and post pandemic recovery; this study aims to evaluate its multifaceted impact on business [...] Read more.
Background: In the era of rapid technological advancement, digital transformation has emerged as a pivotal strategy for enhancing operational efficiency and competitiveness in logistics enterprises, particularly amid globalization and post pandemic recovery; this study aims to evaluate its multifaceted impact on business performance using a multi-criteria framework focused on Vietnamese firms. Methods: Employing structural equation modeling on primary survey data from 346 middle and senior level managers, alongside the Malmquist productivity index derived from data envelopment analysis on secondary financial indicators spanning 2020 to 2024, the research integrates latent variables such as organizational capability, technological innovation capability, institutional pressure, digital transformation, and business performance. Results: Key findings reveal a strong positive correlation between technological innovation capability and organizational capability (path coefficient 0.522), with organizational capability directly influencing business performance (0.359), while institutional pressure positively affects digital transformation (0.321) but negatively impacts business performance (−0.152); overall, digital transformation exhibits limited optimization, contributing to modest productivity gains and a potential 23% cost reduction through technologies like Internet of Things and artificial intelligence. Conclusions: These results underscore the necessity for logistics enterprises to strengthen organizational integration and training to maximize digital transformation benefits, thereby fostering sustainable competitiveness in global supply chains. Full article
Show Figures

Figure 1

Back to TopTop