Frying Oil Evaluation by a Portable Sensor Based on Dielectric Constant Measurement
Abstract
:1. Introduction
1.1. Principles
1.1.1. Measuring Principles of TPM
1.1.2. Overall System Design
2. Materials and Methods
2.1. Frying Oil Samples
2.2. Design and Fabrication of Interdigital Electrodes
2.3. Signal Measurement System Design and Fabrication
2.3.1. System Hardware Design
Working Principles of Capacitance Chip Pcap01
STM32 MCU Module, Display Module, and Power Management Module Design
2.3.2. System Software Design
2.4. Device Installation and Test
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rashed, M.S.; Katalin, K.-B.; Kovacs, Z.; Csilla, Z.; Felfoldi, J.; Vozary, E. Monitoring the quality of Frying Oil Blends by Different Physical Methods. Alex. J. Food Sci. Technol. 2019, 16, 11–20. [Google Scholar]
- Aladedunye, F.A.; Przybylski, R. Degradation and Nutritional Quality Changes of Oil During Frying. J. Am. Oil Chem. Soc. 2009, 86, 149–156. [Google Scholar] [CrossRef]
- Alireza, S.; Tan, C.; Hamed, M.; Che Man, Y. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. Int. Food Res. J. 2010, 17, 295–302. [Google Scholar]
- Bansal, G.; Zhou, W.; Barlow, P.J.; Joshi, P.; Neo, F.L.; Lo, H.L. Evaluation of commercially available rapid test kits for the determination of oil quality in deep-frying operations. Food Chem. 2010, 121, 621–626. [Google Scholar] [CrossRef]
- Bansal, G.; Zhou, W.; Barlow, P.J.; Joshi, P.S.; Lo, H.L.; Chung, Y.K. Review of Rapid Tests Available for Measuring the Quality Changes in Frying Oils and Comparison with Standard Methods. Crit. Rev. Food Sci. Nutr. 2010, 50, 503–514. [Google Scholar] [CrossRef]
- Chunhua, L.; Jianxin, Z. Advance in quality detection of edible vegetable oil based on dielectric properties. China Oils Fats 2017, 42, 96–99. [Google Scholar]
- Li, X.; Liu, R.J.; Jin, Q.Z.; Wang, X.G. The application of dielectric constant in rapid test of total polar compounds in frying oils. Food Saf. Qual. Detect. Technol. 2014, 5, 1918–1922. [Google Scholar]
- Osawa, C.C.; Gonçalves, L.A.G.; Gumerato, H.F.; Mendes, F.M. Study of the effectiveness of quick tests based on physical properties for the evaluation of used frying oil. Food Control 2012, 26, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Song, L.H. Application of TESTO Rapid Testing Method on the Quality Monitoring of repeated Usage of Frying Oil. J. Chin. Cereals Oils Assoc. 2017, 32, 163–170. [Google Scholar]
- Sánchez-Gimeno, A.C.; Negueruela, A.I.; Benito, M.; Vercet, A.; Oria, R. Some physical changes in Bajo Aragón extra virgin olive oil during the frying process. Food Chem. 2008, 110, 654–658. [Google Scholar] [CrossRef]
- Bansal, G.; Zhou, W.; Barlow, P.J.; Lo, H.-L.; Neo, F.-L. Performance of palm olein in repeated deep frying and controlled heating processes. Food Chem. 2017, 121, 338–347. [Google Scholar] [CrossRef]
- Kalogianni, E.P.; Karapantsios, T.D.; Miller, R. Effect of repeated frying on the viscosity, density and dynamic interfacial tension of palm and olive oil. J. Food Eng. 2011, 105, 169–179. [Google Scholar] [CrossRef]
- Rossi, M.; Alamprese, C.; Ratti, S.; Riva, M. Suitability of contact angle measurement as an index of overall oil degradation and oil uptake during frying. Food Chem. 2009, 112, 448–453. [Google Scholar] [CrossRef]
- Santos, J.C.O.; Santos, I.M.G.; Souza, A.G. Effect of heating and cooling on rheological parameters of edible vegetable oils. J. Food Eng. 2005, 67, 401–405. [Google Scholar] [CrossRef]
- Kalogianni, E.P.; Karastogiannidou, C. Development of a rapid method for the determination of frying oil quality based on capillary penetration. Int. J. Food Sci. Technol. 2015, 50, 1215–1223. [Google Scholar] [CrossRef]
- Lioumbas, J.S.; Zamanis, A.; Karapantsios, T.D. Towards a wicking rapid test for rejection assessment of reused fried oils: Results and analysis for extra virgin olive oil. J. Food Eng. 2013, 119, 260–270. [Google Scholar] [CrossRef]
- Liu, M.; Xie, S.; Ge, J.; Xu, Z.; Wu, Z.; Ru, C.; Luo, J.; Sun, Y. Microfluidic Assessment of Frying Oil Degradation. Sci. Rep. 2016, 6, 27970. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.; Cao, N.; Li, P.; Peng, Y.; Li, X.; Liu, L.; Pu, H.; Xie, S.; Luo, J.; Wu, Z. Microfluidic evaluation of some edible oil quality based on viscosity and interfacial tensions. Int. J. Food Sci. Technol. 2017, 53, 946–953. [Google Scholar] [CrossRef]
- Ng, C.L.; Wehling, R.L.; Cuppett, S.L. Near-Infrared Spectroscopic Determination of Degradation in Vegetable Oils Used To Fry Various Foods. J. Agric. Food Chem. 2011, 59, 12286–12290. [Google Scholar] [CrossRef]
- Gertz, C.; Behmer, D. Application of FT-NIR spectroscopy in assessment of used frying fats and oils*. Eur. J. Lipid Sci. Technol. 2014, 116, 756–762. [Google Scholar] [CrossRef]
- Chen, X.; Yu, X.; Wang, Y.; Yang, Y.; Zhang, J. Determination of Polar Components in Frying Oils by Fourier-Transform Near-Infrared Spectroscopy. J. Oleo Sci. 2015, 64, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, B.; Cho, Y.J.; Yoon, S.H. Rapid determination of polar compounds in frying fats and oils using image analysis. Lebensm. Wiss. Technol. 2004, 37, 657–661. [Google Scholar] [CrossRef]
- Savarese, M.; Parisini, C.; Marco, E.D.; Battimo, I.; Falco, S.; Sacchi, R. Application of electronic nose to monitor the frying process. A preliminary study. Riv. Ital. Delle Sostanze Grasse 2007, LXXXIV, 33–39. [Google Scholar]
- Huang, Q.; Sun, J.; Li, F.; Liu, L.; Han, F.; Li, C.; Su, X. Application of Chemical Sensors to Study the Soybean Oils Prepared with Different Heating Temperature and Time. J. Chin. Cereals Oils Assoc. 2013, 28, 124–128. [Google Scholar]
- Jing, L.I.; Wang, C.T.; Liu, G.R.; Zhao, L.; Yang, P.Q. Fast Detection of Fried Oil Quality by Electronic Nose. Food Sci. 2013, 34, 236–239. [Google Scholar]
- Correia, A.C.; Dubreucq, E.; Ferreira-Dias, S.; Lecomte, J. Rapid quantification of polar compounds in thermo-oxidized oils by HPTLC-densitometry. Eur. J. Lipid Sci. Technol. 2015, 117, 311–319. [Google Scholar] [CrossRef]
- Benedito, J.; Mulet, A.; Velasco, J.; Dobarganes, M.C. Ultrasonic Assessment of Oil Quality during Frying. J. Agric. Food Chem. 2002, 50, 4531–4536. [Google Scholar] [CrossRef]
- Izbaim, D.; Faiz, B.; Moudden, A.; Taifi, N.; Aboudaoud, I. Evaluation of the performance of Frying Oils using an ultrasonic technique. Grasas Y Aceites 2010, 61, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Benedito, J.; García-Pérez, J.V.; Dobarganes, M.C.; Mulet, A. Rapid evaluation of frying oil degradation using ultrasonic technology. Food Res. Int. 2007, 40, 406–414. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhao, X.B.; Zhou, J.T. Design on portable and fast-determination instrument for polar compounds in frying oil. Sci. Technol. Food Ind. 2012, 33, 355–357. [Google Scholar]
- Khaled, A.Y.; Aziz, S.A.; Rokhani, F.Z. Capacitive sensor probe to assess frying oil degradation. Inf. Process. Agric. 2015, 2, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.Y.; Aziz, S.A.; Rokhani, F.Z. Development and Evaluation of an Impedance Spectroscopy Sensor to Assess Cooking Oil Quality. Int. J. Environ. Sci. Dev. 2014, 5, 299–302. [Google Scholar] [CrossRef]
- Sergio, S.; Leandro, P.; José, G.; Daniely, R.; Eduardo, C. Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress. Sensors 2015, 15, 26457–26477. [Google Scholar]
- Zhao, T.; Wang, X.; Liu, B.-L.; Lu, H.-Y. Relationship between Physico-chemical Indexes of Lard and LF-NMR Characteristics during Frying Process. Food Sci. 2014, 35, 7–13. [Google Scholar]
- Sun, Y.; Zhong, Y.; Wang, X.; Li, X. Design of Signal Detection System of Capacitive Tactile Sensor Array. Nanotechnol. Precis. Eng. 2015, 13, 28–33. [Google Scholar]
- Tian, H.; Xue, J.; Xue, Y. Design of capacitive humidity sensor. Mod. Electron. Tech. 2017, 40, 128–131. [Google Scholar]
- Deng, L.; Sang, S.; Zhang, W.; Tang, X.; Pengwei, L.I.; Jie, H.U.; Gang, L.I.; Jian, A. Design of High-Precision Micro-Capacitance Detection System Based on Pcap01. Chin. J. Sens. Actuators 2013, 26, 1045–1049. [Google Scholar]
- Kan, R.N.; You, X.Y.; Li, X.L.; Pei, X. Capacitance Angle Detection System Based On STM32. Electron. Qual. 2017, 1, 20–40. [Google Scholar]
- Cai, W.; Li, J.; Jiang, J.; Meng, Z.; Liu, Y. Rapid determination of the content of polar substances in frying oil. China Oils Fats 2013, 38, 83–85. [Google Scholar]
- Hein, M.; Henning, H.; Isengard, H.-D. Determination of total polar parts with new methods for the quality survey of frying fats and oils. Talanta 1998, 47, 447–454. [Google Scholar] [CrossRef]
- Tu, L.; Liu, Z.-P.; Zhao, Z.-X. Conductivity method for the determination of polar compounds in fried oil. Appl. Chem. Ind. 2013, 42, 751–753. [Google Scholar]
- Zhou, Z.-L.; Kan, J.-Q.; Zhou, L.-G.; Zhou, L.; Xiao, L. Study on rapid determination of content of polar compounds in frying oil by conductivity method. Sci. Technol. Food Ind. 2009, 30, 320–323. [Google Scholar]
- Liu, Y.L.; Wang, Y.H.; Zhang, Z.S.; Yang, S.P. Rapid Detection of the Polar Component Content of Frying Oil by Conductivity Method. J. Chin. Cereals Oils Assoc. 2015, 30, 53–56, 61. [Google Scholar]
- Sun, J.X.; Guo, L.P.; Wang, T. Study on Rapid Detection of the Quality of Frying Oil by Conductivity Method. Meat Res. 2010, 9, 48–51. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Qin, X.; Chen, Z.; Tang, L.; Borom, B.; Cao, N.; Barnes, D.; Cheng, K.; Chen, J.; Wang, T.; et al. Frying Oil Evaluation by a Portable Sensor Based on Dielectric Constant Measurement. Sensors 2019, 19, 5375. https://doi.org/10.3390/s19245375
Liu M, Qin X, Chen Z, Tang L, Borom B, Cao N, Barnes D, Cheng K, Chen J, Wang T, et al. Frying Oil Evaluation by a Portable Sensor Based on Dielectric Constant Measurement. Sensors. 2019; 19(24):5375. https://doi.org/10.3390/s19245375
Chicago/Turabian StyleLiu, Mei, Xiangzheng Qin, Zhanghao Chen, Lei Tang, Brandon Borom, Ning Cao, Daniel Barnes, Kai Cheng, Jinbo Chen, Tao Wang, and et al. 2019. "Frying Oil Evaluation by a Portable Sensor Based on Dielectric Constant Measurement" Sensors 19, no. 24: 5375. https://doi.org/10.3390/s19245375
APA StyleLiu, M., Qin, X., Chen, Z., Tang, L., Borom, B., Cao, N., Barnes, D., Cheng, K., Chen, J., Wang, T., & Rao, J. (2019). Frying Oil Evaluation by a Portable Sensor Based on Dielectric Constant Measurement. Sensors, 19(24), 5375. https://doi.org/10.3390/s19245375