Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging † †
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area
2.2. Sample Design and Measurement of Field Carbon Stocks
2.3. Satellite Data Collection and Processing
2.4. Regression Kriging
2.5. Model Assessment
3. Results
3.1. Field Carbon Stock Measurements
3.2. Correlation Analysis
3.3. Model Accuracy
3.4. Carbon Stock Distribution in the Study Area
3.5. Carbon Stock Distribution of Each Steppe Type
4. Discussion
4.1. Improvement Analysis of the RK Model
4.2. Comparison between Univariate and Multivariate Regression
4.3. Selection of Regression Variables
4.4. Study Innovation and Limitation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chapin, F.S., III; Sala, O.E.; Huber-Sannwald, E. Global biodiversity in a changing environment: scenarios for the 21st century; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Scurlock, J.M.O.; Hall, D.O. The global carbon sink: A grassland perspective. Glob. Chang. Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Scurlock, J.M.O.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Chang. Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef] [Green Version]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauenroth, W.K.; Burke, I.C.; Gutmann, M.P. The Structure and Function of Ecosystems in the Central North American Grassland Region. Gt. Plains Res. 1999, 9, 223–259. [Google Scholar]
- He, C.; Zhang, Q.; Li, Y.; Li, X.; Shi, P. Zoning grassland protection area using remote sensing and cellular automata modeling—A case study in Xilingol steppe grassland in northern China. J. Arid Environ. 2005, 63, 814–826. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, G.; Lee, P.; Oikawa, T. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem. J. Hydrol. 2007, 333, 155–164. [Google Scholar] [CrossRef]
- Kawamura, K.; Akiyama, T.; Yokota, H.O.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S. Quantifying Grazing Intensities Using Geographic Information Systems and Satellite Remote Sensing in the Xilingol Steppe Region, Inner Mongolia, China. Agric. Ecosyst. Environ. 2005, 107, 83–93. [Google Scholar] [CrossRef]
- Li, W.J.; Ali, S.H.; Zhang, Q. Property rights and grassland degradation: A study of the Xilingol Pasture, Inner Mongolia, China. J. Environ. Manag. 2007, 85, 461–470. [Google Scholar]
- Jiang, G.; Han, X.; Wu, J. Restoration and Management of the Inner Mongolia Grassland Require a Sustainable Strategy. AMBIO 2006, 35, 269–271. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Sala, O.E.; Paruelo, J.M. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology 2002, 83, 307–319. [Google Scholar]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Yahdjian, L.; Sala, O.E. Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology 2006, 87, 952–962. [Google Scholar] [CrossRef]
- Tucker, C.; Sellers, P. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef]
- Wang, R.; Qin, Z.; Jiang, L.; Ye, K. Valuation of rangeland ecosystem degradation with remote sensing technology in China. In Proceedings of the International Society for Optical Engineering, Society of Photo-Optical Instrumentation Engineers, Stockholm, Sweden, 3 October 2006. [Google Scholar]
- Paul, K.I.; Roxburgh, S.H.; England, J.R.; Ritson, P.; Hobbs, T.; Brooksbank, K.; Raison, R.J.; Larmour, J.S.; Murphy, S.; Norris, J.; et al. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For. Ecol. Manag. 2013, 310, 483–494. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [Google Scholar] [CrossRef]
- Viana, H.; Aranha, J.; Lopes, D.; Cohen, W.B. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecol. Model. 2012, 226, 22–35. [Google Scholar] [CrossRef]
- Burrough, P.A. Principles of geographical information systems for land resources assessment. Landsc. Urban Plan. 2000, 15, 357–358. [Google Scholar] [CrossRef]
- Li, F.; Zeng, Y.; Luo, J.; Ma, R.; Wu, B. Modeling grassland aboveground biomass using a pure vegetation index. Ecol. Indic. 2016, 62, 279–288. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Shi-Long, P.I.A.O.; Fangjing-Yun, H.J.S.; Yu, X. Spatial distribution of grassland biomass in China. Acta Phytoecol. Sin. 2004, 28, 8. [Google Scholar] [CrossRef] [Green Version]
- Riihimäki, H.; Heiskanen, J.; Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. Geoinf. 2017, 56, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Barrachina, M.; Cristóbal, J.; Tulla, A.F. Estimating above-ground biomass on mountain meadows and pastures through remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 184–192. [Google Scholar] [CrossRef]
- Wani, A.A.; Joshi, P.K.; Singh, O. Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecol. Inform. 2015, 25, 63–70. [Google Scholar] [CrossRef]
- Porter, T.F.; Chen, C.; Long, J.A.; Lawrence, R.L.; Sowell, B.F. Estimating biomass on CRP pastureland: A comparison of remote sensing techniques. Biomass Bioenergy 2014, 66, 268–274. [Google Scholar] [CrossRef]
- Castillo-Santiago, M.Á.; Ghilardi, A.; Oyama, K.; Hernández-Stefanoni, J.L.; Torres, I.; Flamenco-Sandoval, A.; Fernández, A.; Mas, J.F. Estimating the spatial distribution of woody biomass suitable for charcoal making from remote sensing and geostatistics in central Mexico. Energy Sustain. Dev. 2013, 17, 177–188. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Yang, Y.; He, H.; Zhu, X.; Yang, F.; Yin, C.; Xiang, W. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F. Evaluation of SPOT imagery for the estimation of grassland biomass. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 72–77. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Glenn, N.F.; Neuenschwander, A.; Vierling, L.A.; Spaete, L.; Li, A.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sens. Environ. 2016, 185, 233–242. [Google Scholar] [CrossRef]
- Kumar, L.; Sinha, P.; Taylor, S.; Alqurashi, A.F. Review of the use of remote sensing for biomass estimation to support. J. Appl. Remote Sens. 2015, 9, 097696. [Google Scholar] [CrossRef]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Foody, G.M.; Cutler, M.E.; Mcmorrow, J.; Pelz, D.; Tangki, H.; Boyd, D.S.; Douglas, I. Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob. Ecol. Biogeogr. 2001, 10, 379–387. [Google Scholar] [CrossRef]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; Van De Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Tian, X.; Yan, M.; van der Tol, C.; Li, Z.; Su, Z.; Chen, E.; Li, X.; Li, L.; Wang, X.; Pan, X.; et al. Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains. Agric. For. Meteorol. 2017, 246, 1–14. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Le, N.D.; Zidek, J.V. Statistical Analysis of Environmental Space-Time Processes; Springer Science & Business Media: Berlin, Germany, 2006; p. 1477. [Google Scholar]
- Olea, R.A. Optimal contour mapping using universal kriging. J. Geophys. Res. 1974, 79, 695–702. [Google Scholar] [CrossRef]
- Hengl, T.G.; Heuvelink, B.M.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Tang, H.; Huang, C.; Yang, F.; Chen, B.; Wang, X.; Xin, X.; Ge, Y. Predicting Grassland Leaf Area Index in the Meadow Steppes of Northern China: A Comparative Study of Regression Approaches and Hybrid Geostatistical Methods. Remote Sens. 2016, 8, 632. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Dupuy, J.M. Combining geostatistical models and remotely sensed data to improve tropical tree richness mapping. Ecol. Indic. 2011, 11, 1046–1056. [Google Scholar] [CrossRef]
- Ge, Y.; Liang, Y.; Wang, J.; Zhao, Q.; Liu, S. Upscaling Sensible Heat Fluxes with Area-to-Area Regression Kriging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 656–660. [Google Scholar]
- Hu, M.; Wang, J.; Ge, Y.; Liu, M.; Liu, S.; Xu, Z.; Xu, T. Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere 2015, 6, 1032–1044. [Google Scholar] [CrossRef] [Green Version]
- Jurasinski, G.; Jordan, A.; Glatzel, S. Mapping soil CO2 efflux in an old-growth forest using regression kriging with estimated fine root biomass as ancillary data. For. Ecol. Manag. 2012, 263, 101–113. [Google Scholar] [CrossRef]
- Vafaei, S.; Soosani, J.; Adeli, K.; Fadaei, H.; Naghavi, H.; Pham, T.; Tien Bui, D. Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Hamdan, O.; Khali, A.H.; Mohd Hasmadi, I. L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. Remote Sens. Environ. 2014, 155, 69–78. [Google Scholar] [CrossRef]
- Chandra, G. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges. Remote Sens. 2016, 8, 783. [Google Scholar]
- Keller, M. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens. 2007, 1, 013537. [Google Scholar] [CrossRef]
- Pang, Y.; Lefsky, M.; Andersen, H.E.; Miller, M.E.; Sherrill, K. Validation of the ICEsat vegetation product using crown-area-weighted mean height derived using crown delineation with discrete return lidar data. Can. J. Remote Sens. 2008, 34, S471–S484. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Wang, D.; Xin, X.; Shao, Q.; Brolly, M.; Zhu, Z.; Chen, J. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors 2017, 17, 180. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.Q.; Tang, F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecol. Sin. 2013, 33, 3249–3257. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.W.; Shen, B.B.; Wang, X.; Yan, R.; Xin, X. Estimating grassland above-ground biomass using Landsat8 OLI imagery and regression kriging method in Hulunber, China. In Proceedings of the Fifth Recent Advances in Quantitative Remote Sensing, Valencia, Spain, 18–22 September 2017. [Google Scholar]
- Nie, H.G.; Yue, L.P.; Yang, W.; Li, Z.; Yang, X. Present Situation, Evolution Trend and Causes of Sandy Desertification in Hulunbuir Steppe. J. Desert Res. 2005, 25, 635–639. [Google Scholar]
- Tang, H.; Li, Z.; Zhu, Z.; Chen, B.; Zhang, B.; Xin, X. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens. 2015, 7, 11914–11932. [Google Scholar] [CrossRef] [Green Version]
- Chinese Academy of Sciences. Vegetation Atlas of China; Science Press: Beijing, China, 2001. [Google Scholar]
- Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Lauenroth, W.K.; Hunt, H.W.; Swift, D.M.; Singh, J.S. Estimating aboveground net primary production in grasslands: A simulation approach. Ecol. Model. 1986, 33, 297–314. [Google Scholar] [CrossRef]
- Johnson, W.C.; Sharpe, D.M. The ratio of total to merchantable forest biomass and its application to the global carbon budget. Can. J. For. Res. 1983, 13, 372–383. [Google Scholar] [CrossRef]
- Jingyun, F.; Zhaodi, G.; Shilong, P. Estimation of terrestrial vegetation carbon sinks in China from 1981 to 2000. Sci. China (Ser. D Earth Sci.) 2007, 37, 804–812. [Google Scholar]
- Agrawal, G.; Sarup, J.; Bhopal, M. Comparision of QUAC and FLAASH atmospheric correction modules on EO-1 Hyperion data of Sanchi. Int. J. Adv. Eng. Sci. Technol. 2011, 4, 178–186. [Google Scholar]
- Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Nasa Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W.J.D.A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote Mapping of Standing Crop. Biomass for Estimation of Productivity of the Shortgrass Prairie. In Remote Sensing of Environment, VIII ed.; Environmental Research Institute of Michigan: Ann Arbor, MI, USA, 1972. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inform. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Mckenzie, N.J.; Ryan, P.J. Spatial prediction of soil properties using environmental correlation. Geofis. Int. 1999, 89, 67–94. [Google Scholar] [CrossRef]
- Thompson, J.A.; Jenkins, J.M.; Goyal, R. A comparison of two interpolation methods for estimation of electrograms within a two-dimensional epicardial plaque. In Computers in Cardiology; IEEE: Piscataway, NJ, USA, 1999. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wang, S.T. A Fast Leave-One-Out Cross-Validation for SVM-Like Family. Neural Comput. Appl. 2016, 27, 1717–1730. [Google Scholar] [CrossRef]
- Stone, M.A. Cross-validatory Choice and Assessment of Statistical Predictions (With Discussion). J. R. Stat. Soc. Ser. B (Stat. Methodol.) 1974, 36, 111–147. [Google Scholar] [CrossRef]
- Wagner, W.H.R.J. A Finite Sample Distribution-Free Performance Bound for Local Discrimination Rules. Ann. Stat. 1978, 6, 506–514. [Google Scholar]
- Shao, J. Linear Model Selection by Cross-validation. Publ. Am. Stat. Assoc. 1993, 88, 486–494. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Sun, G.; Band, L.E.; McNulty, S.; Noormets, A.; Zhang, Q.; Zhang, Z. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agri. For. Meteorol. 2016, 223, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearity of their interdependence. Int. J. Remote Sens. 1992, 6, 1335–1372. [Google Scholar] [CrossRef]
- Li, Z.W.; Xin, X.P.; Huan, T.A.N.G.; Fan, Y.A.N.G.; Chen, B.R.; Zhang, B.H. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. J. Integr. Agric. 2017, 16, 286–297. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, X.; Qiu, J.; Li, J.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.; Yu, H.; Xu, B. Remote Sensing-Based Biomass Estimation and Its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; El, H.M.; Zribi, M.; Fayad, I. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1229–1243. [Google Scholar] [CrossRef] [Green Version]
Process Level | Bands Used | Path-Row | Acquisition Date |
---|---|---|---|
Level-1 | Band1-Band7 | 123-25 | 5 July 2015 |
Level-1 | Band1-Band7 | 123-26 | 5 July 2015 |
Level-1 | Band1-Band7 | 124-25 | 12 July 2015 |
Level-1 | Band1-Band7 | 124-26 | 12 July 2015 |
Grassland Types | Typical Steppe | Meadow Steppe | All Steppe |
---|---|---|---|
No. of samples | 55 | 29 | 84 |
Mean | 35.82 | 44.55 | 38.84 |
Min | 7.54 | 17.43 | 7.54 |
Max | 61.20 | 92.05 | 92.05 |
stdev | 14.09 | 18.61 | 16.23 |
Correlation Coefficients | All Steppe (n = 84) | Typical Steppe (n = 55) | Meadow Steppe (n = 29) | |
---|---|---|---|---|
Variables | ||||
NDVI | 0.731 ** | 0.657 ** | 0.820 ** | |
WDRVI | 0.736 ** | 0.641 ** | 0.840 ** | |
CI | 0.737 ** | 0.635 ** | 0.848 ** | |
EVI | 0.708 ** | 0.590 ** | 0.829 ** | |
SR | 0.723 ** | 0.630 ** | 0.836** | |
Band1 (coastal) | −0.731 ** | −0.689 ** | −0.773 ** | |
Band2 (blue) | −0.735 ** | −0.681 ** | −0.792 ** | |
Band3 (green) | −0.719 ** | −0.682 ** | −0.749 ** | |
Band4 (red) | −0.746 ** | −0.695 ** | −0.794 ** | |
Band5 (near-infrared) | 0.471 ** | −0.004 | 0.737 ** | |
Band6 (SWIR 1) | −0.744 ** | −0.697 ** | −0.770 ** | |
Band7 (SWIR 2) | −0.721 ** | −0.662 ** | −0.802 ** |
Validation Samples | Variable | RK | LR | |||||
---|---|---|---|---|---|---|---|---|
Model | R2 | MAE | RMSE | R2 | MAE | RMSE | ||
all-steppe | NDVI | exponential | 0.65 | 7.96 | 9.59 | 0.51 | 9.54 | 11.07 |
WDRVI | exponential | 0.68 | 7.61 | 9.17 | 0.52 | 9.23 | 11.52 | |
CI | exponential | 0.66 | 7.69 | 9.44 | 0.52 | 9.24 | 11.13 | |
band6 | exponential | 0.60 | 8.37 | 10.15 | 0.52 | 9.07 | 10.46 | |
band7 | spherical | 0.53 | 9.17 | 11.01 | 0.50 | 9.47 | 10.69 | |
typical steppe | NDVI | exponential | 0.63 | 7.04 | 8.51 | 0.41 | 8.99 | 10.92 |
WDRVI | exponential | 0.64 | 7.10 | 8.63 | 0.39 | 9.30 | 11.31 | |
CI | exponential | 0.60 | 7.39 | 9.17 | 0.38 | 9.38 | 11.36 | |
band6 | exponential | 0.57 | 7.68 | 9.20 | 0.46 | 8.47 | 10.34 | |
band7 | exponential | 0.45 | 8.59 | 10.50 | 0.42 | 8.84 | 10.74 | |
meadow steppe | NDVI | exponential | 0.63 | 9.72 | 11.37 | 0.63 | 10.57 | 12.04 |
WDRVI | Gaussian | 0.70 | 8.34 | 10.09 | 0.68 | 9.08 | 10.86 | |
CI | Gaussian | 0.72 | 8.09 | 9.89 | 0.70 | 8.99 | 10.69 | |
band6 | spherical | 0.60 | 9.63 | 11.68 | 0.55 | 10.22 | 12.59 | |
band7 | spherical | 0.65 | 10.24 | 11.94 | 0.61 | 10.68 | 12.56 |
Grassland Types | Area (104 hm2) | Min (gC/m2) | Max (gC/m2) | Mean (gC/m2) | Total (104 MgC) | Proportion (%) |
---|---|---|---|---|---|---|
Lowland meadow steppe | 29.36 | 0.00 | 221.65 | 52.75 | 15.49 | 19.42 |
Temperate meadow steppe | 63.43 | 0.00 | 187.52 | 63.02 | 39.97 | 50.11 |
Temperate typical steppe | 63.74 | 0.00 | 153.79 | 32.83 | 20.92 | 26.22 |
Sandy steppe | 11.61 | 0.00 | 137.75 | 29.17 | 3.39 | 4.25 |
All-steppe | 168.14 | 0.00 | 221.65 | 47.44 | 79.77 | 100.00 |
Variable | Model | R2 | MRE | RMSE |
---|---|---|---|---|
NDVI, WDRVI, CI | exponential | 0.68 | 7.70 | 9.24 |
Band6, Band7 | exponential | 0.61 | 8.32 | 10.14 |
NDVI, WDRVI, CI, Band6, Band7 | exponential | 0.68 | 7.45 | 9.19 |
Variable | Absolute Value of the Standard Coefficient | Ranking |
---|---|---|
CI | 1.278 | 1 |
Band6 | 0.572 | 2 |
NDVI | 0.553 | 3 |
WDRVI | 0.495 | 4 |
Band7 | 0.003 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Li, Z.; Wang, X.; Yan, R.; Shen, B.; Chen, B.; Xin, X. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging †. Sensors 2019, 19, 5374. https://doi.org/10.3390/s19245374
Ding L, Li Z, Wang X, Yan R, Shen B, Chen B, Xin X. Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging †. Sensors. 2019; 19(24):5374. https://doi.org/10.3390/s19245374
Chicago/Turabian StyleDing, Lei, Zhenwang Li, Xu Wang, Ruirui Yan, Beibei Shen, Baorui Chen, and Xiaoping Xin. 2019. "Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging †" Sensors 19, no. 24: 5374. https://doi.org/10.3390/s19245374
APA StyleDing, L., Li, Z., Wang, X., Yan, R., Shen, B., Chen, B., & Xin, X. (2019). Estimating Grassland Carbon Stocks in Hulunber China, Using Landsat8 Oli Imagery and Regression Kriging †. Sensors, 19(24), 5374. https://doi.org/10.3390/s19245374