Georgian Grapes and Wines as a Source of Phenolic Compounds: Composition, Antioxidant Activity, and Traditional Winemaking †
Abstract
1. Introduction
1.1. Methodology
1.2. Grape Origin and the First Domestication Center
1.3. Grapevine Cultivation in Georgia
2. Polyphenolic Compounds in Georgian Grapes
2.1. Flavonoids
2.2. Non-Flavonoids
2.3. The “Qvevri” Method of Wine Production and Its Implications for Wine Chemistry
2.4. Antioxidant Activity and Total Phenolic Content of Georgian Wines
3. The Phenolic Composition of Georgian Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.R. Antioxidants of Natural Products. Antioxidants 2021, 10, 612. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxidative Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape Bioactive Molecules, and the Potential Health Benefits in Reducing the Risk of Heart Diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef]
- Stachelska, M.A.; Karpiński, P.; Kruszewski, B. A Comprehensive Review of Biological Properties of Flavonoids and Their Role in the Prevention of Metabolic, Cancer and Neurodegenerative Diseases. Appl. Sci. 2025, 15, 10840. [Google Scholar] [CrossRef]
- Lin, J.-K.; Weng, M.-S. Flavonoids as Nutraceuticals. In The Science of Flavonoids; Grotewold, E., Ed.; Springer: New York, NY, USA, 2006; pp. 213–238. ISBN 978-0-387-28821-5. [Google Scholar]
- Tauchen, J.; Marsik, P.; Kvasnicova, M.; Maghradze, D.; Kokoska, L.; Vanek, T.; Landa, P. In Vitro Antioxidant Activity and Phenolic Composition of Georgian, Central and West European Wines. J. Food Compos. Anal. 2015, 41, 113–121. [Google Scholar] [CrossRef]
- This, P.; Lacombe, T.; Thomas, M. Historical Origins and Genetic Diversity of Wine Grapes. Trends Genet. 2006, 22, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Maġraje, D. Caucasus and Northern Black Sea: Region Ampelography; JKI: Siebeldingen, Germany, 2012; ISBN 978-3-930037-88-9. [Google Scholar]
- Shalashvili, A.; Targamadze, I.; Zambakhidze, N.; Nareklishvili, V.; Chichua, D.; Ugrekhelidze, D. Comparison of Wines of Kakhetian and European Types According to Quantitative Content of Flavonoids and Antiradical Efficiency. Bull. Georgian Natl. Acad. Sci. 2007, 175, 102–104. [Google Scholar]
- Gaprindashvili, Z.; Vashakidze, D.; Kuchukashvili, Z. Assessment of Antioxidant Activity of Georgian Classical and Kvevri-Made Wine Using the Luminol Chemiluminescence Method. Exp. Clin. Med. Ga. 2025, 2, 129–135. [Google Scholar] [CrossRef]
- Wee, B.V.; Banister, D. How to Write a Literature Review Paper? Transp. Rev. 2016, 36, 278–288. [Google Scholar] [CrossRef]
- Keller, M. Botany and Anatomy. In The Science of Grapevines; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–57. ISBN 978-0-12-419987-3. [Google Scholar]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. The Biology of the Grapevine (Biology of Horticultural Crops); Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-30507-5. [Google Scholar]
- McGovern, P.E.; Fleming, S.J.; Katz, S.H. (Eds.) The Origins and Ancient History of Wine; Routledge: Oxfordshire, UK, 2003; ISBN 978-1-135-30095-1. [Google Scholar]
- Terral, J.-F.; Tabard, E.; Bouby, L.; Ivorra, S.; Pastor, T.; Figueiral, I.; Picq, S.; Chevance, J.-B.; Jung, C.; Fabre, L.; et al. Evolution and History of Grapevine (Vitis vinifera) under Domestication: New Morphometric Perspectives to Understand Seed Domestication Syndrome and Reveal Origins of Ancient European Cultivars. Ann. Bot. 2010, 105, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Grassi, F.; Arroyo-Garcia, R. Editorial: Origins and Domestication of the Grape. Front. Plant Sci. 2020, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley; Oxford Science Publications; Clarendon: Oxford, UK, 1988; ISBN 978-0-19-854198-1. [Google Scholar]
- Zhou, Y.; Muyle, A.; Gaut, B.S. Evolutionary Genomics and the Domestication of Grapes. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2019; pp. 39–55. ISBN 978-3-030-18600-5. [Google Scholar]
- McGovern, P.; Jalabadze, M.; Batiuk, S.; Callahan, M.P.; Smith, K.E.; Hall, G.R.; Kvavadze, E.; Maghradze, D.; Rusishvili, N.; Bouby, L.; et al. Early Neolithic Wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017, 114, E10309–E10318. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzis, G.; Mercati, F.; Bergamini, C.; Cardone, M.F.; Lupini, A.; Mauceri, A.; Caputo, A.R.; Abbate, L.; Barbagallo, M.G.; Antonacci, D.; et al. SNP Genotyping Elucidates the Genetic Diversity of Magna Graecia Grapevine Germplasm and Its Historical Origin and Dissemination. BMC Plant Biol. 2019, 19, 7. [Google Scholar] [CrossRef]
- Pagnoux, C.; Bouby, L.; Valamoti, S.M.; Bonhomme, V.; Ivorra, S.; Gkatzogia, E.; Karathanou, A.; Kotsachristou, D.; Kroll, H.; Terral, J.-F. Local Domestication or Diffusion? Insights into Viticulture in Greece from Neolithic to Archaic Times, Using Geometric Morphometric Analyses of Archaeological Grape Seeds. J. Archaeol. Sci. 2021, 125, 105263. [Google Scholar] [CrossRef]
- McGovern, P.E. Ancient Wine: The Search for the Origins of Viniculture, 4th ed.; Princeton University Press: Princeton, NJ, USA, 2007; ISBN 978-0-691-12784-2. [Google Scholar]
- Elizbarashvili, M.; Elizbarashvili, E.; Tatishvili, M.; Elizbarashvili, S.; Meskhia, R.; Kutaladze, N.; King, L.; Keggenhoff, I.; Khardziani, T. Georgian Climate Change under Global Warming Conditions. Ann. Agrar. Sci. 2017, 15, 17–25. [Google Scholar] [CrossRef]
- Tielidze, L.; Trapaidze, V.; Matchavariani, L.; Wheate, R. Climate, Hydrography, and Soils of Georgia. In Geomorphology of Georgia; Tielidze, L., Ed.; Geography of the Physical Environment; Springer International Publishing: Cham, Switzerland, 2019; pp. 15–34. ISBN 978-3-319-77763-4. [Google Scholar]
- Chkhartishvili, N.; Maghradze, D. Viticulture and Winemaking in Georgia. VITIS J. Grapevine Res. 2012, 51, 169–176. [Google Scholar] [CrossRef]
- Sargolzaei, M.; Rustioni, L.; Cola, G.; Ricciardi, V.; Bianco, P.A.; Maghradze, D.; Failla, O.; Quaglino, F.; Toffolatti, S.L.; De Lorenzis, G. Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. Front. Plant Sci. 2021, 12, 630122. [Google Scholar] [CrossRef] [PubMed]
- Rouxinol, M.I.; Martins, M.R.; Salgueiro, V.; Costa, M.J.; Barroso, J.M.; Rato, A.E. Climate Effect on Morphological Traits and Polyphenolic Composition of Red Wine Grapes of Vitis vinifera. Beverages 2023, 9, 8. [Google Scholar] [CrossRef]
- Ujmajuridze, L.; Mamasakhlisashvili, L. Biological and Technological Characteristics of Georgian Wine and Table Grapes. BIO Web Conf. 2015, 5, 01012. [Google Scholar] [CrossRef]
- Cola, G.; De Lorenzis, G.; Failla, O.; Kvaliashvili, N.; Kikilashvili, S.; Kikvadze, M.; Mamasakhlisashvili, L.; Mdinaradze, I.; Chipashvili, R.; Maghradze, D. The Status of Wild Grapevine (Vitis vinifera L. Subsp. Sylvestris (C.C. Gmel.) Hegi) Populations in Georgia (South Caucasus). Plants 2025, 14, 232. [Google Scholar] [CrossRef] [PubMed]
- Akhalkatsi, M.; Ekhvaia, J.; Asanidze, Z. Diversity and Genetic Erosion of Ancient Crops and Wild Relatives of Agricultural Cultivars for Food: Implications for Nature Conservation in Georgia (Caucasus). In Perspectives on Nature Conservation—Patterns, Pressures and Prospects; Tiefenbacher, J., Ed.; InTech: Houston, TX, USA, 2012; ISBN 978-953-51-0033-1. [Google Scholar]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. ISBN 978-0-12-814774-0. [Google Scholar]
- Lund, M.N. Reactions of Plant Polyphenols in Foods: Impact of Molecular Structure. Trends Food Sci. Technol. 2021, 112, 241–251. [Google Scholar] [CrossRef]
- Cataldo, E.; Eichmeier, A.; Mattii, G.B. Effects of Global Warming on Grapevine Berries Phenolic Compounds—A Review. Agronomy 2023, 13, 2192. [Google Scholar] [CrossRef]
- Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Flavonoids: Chemical Properties and Analytical Methodologies of Identification and Quantitation in Foods and Plants. Nat. Prod. Res. 2011, 25, 469–495. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, B.; Chen, C.; Dong, J.; Zhang, H. Utilization and Separation of Flavonoids in the Food and Medicine Industry: Current Status and Perspectives. Separations 2024, 11, 349. [Google Scholar] [CrossRef]
- Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals 2021, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Pešić, M.M.; Kostić, A.Ž.; Stanojević, S.P.; Pešić, M.B. The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods 2025, 14, 607. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Grape Stem Extracts: Polyphenolic Content and Assessment of Their in Vitro Antioxidant Properties. LWT Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- Padilla-González, G.; Grosskopf, E.; Sadgrove, N.; Simmonds, M. Chemical Diversity of Flavan-3-Ols in Grape Seeds: Modulating Factors and Quality Requirements. Plants 2022, 11, 809. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent Advances in the Transcriptional Regulation of the Flavonoid Biosynthetic Pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef]
- Shi, T.; Su, Y.; Lan, Y.; Duan, C.; Yu, K. The Molecular Basis of Flavonoid Biosynthesis Response to Water, Light, and Temperature in Grape Berries. Front. Plant Sci. 2024, 15, 1441893. [Google Scholar] [CrossRef] [PubMed]
- Unusan, N. Proanthocyanidins in Grape Seeds: An Updated Review of Their Health Benefits and Potential Uses in the Food Industry. J. Funct. Foods 2020, 67, 103861. [Google Scholar] [CrossRef]
- Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising Natural Compounds against Viral Infections. Arch. Virol. 2017, 162, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jian, Y.; Liu, Y.; Jiang, S.; Muhammad, D.; Wang, W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022, 27, 719. [Google Scholar] [CrossRef]
- Elejalde, E.; Villarán, M.C.; Esquivel, A.; Alonso, R.M. Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion. Plant Foods Hum. Nutr. 2024, 79, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Mattivi, F.; Vrhovsek, U.; Masuero, D.; Trainotti, D. Differences in the Amount and Structure of Extractable Skin and Seed Tannins amongst Red Grape Varieties. Aust. J. Grape Wine Res. 2009, 15, 27–35. [Google Scholar] [CrossRef]
- Cantos, E.; Espín, J.C.; Tomás-Barberán, F.A. Varietal Differences among the Polyphenol Profiles of Seven Table Grape Cultivars Studied by LC−DAD−MS−MS. J. Agric. Food Chem. 2002, 50, 5691–5696. [Google Scholar] [CrossRef]
- Shalashvili, A.; Tsutskiridze, E.; Beridze, N.; Targamadze, I.; Chankvetadze, B. Phenolic Compounds in Grape Bunch and Wine of Georgian Autochthonal Vine Variety Tsolikauri. Bull. Georgian Natl. Acad. Sci. 2015, 9, 71–78. [Google Scholar]
- Gelashvili, N.N.; Dzhemukhadze, K.M. Composition of Grape Catechins. Rkatsiteli. Commun. Acad. Sci. Georgian SSR 1970, 58, 22–23. [Google Scholar]
- Kekelidze, N.; Kekelidze, T.; Akhalbedashvili, L.; Maisuradze, G.; Kvirkvelia, B.; Tsotadze, G.; Mskhiladze, A.; Lipartiani, V.; Jalaghania, S. The Content of Antioxidants—Phenolic Compounds, in Red Wines of Georgia Kindzmarauli and Saperavi. Appl. Food Sci. J. 2018, 2, 18–22. [Google Scholar]
- Tatanashvili, M.; Jokhadze, M.; Sivsivadze, K.; Mshvildadze, V.; Murtazashvili, T.; Gokadze, S.; Tushurashvili, P.; Imnadze, N.; Bokuchava, N. Investigation of Polyphenol Composition and the Bioactivities of Shoots, Seeds, and Skins of Georgian Grape (Vitis vinifera L.) Varieties. Curr. Nutr. Food Sci. 2025, 21, e15734013400039. [Google Scholar] [CrossRef]
- Durmishidze, S.V.; Khachidze, O.T. The Chemical Composition of Grapes; Metsniereba: Tbilisi, Georgia, 1979. [Google Scholar]
- Šikuten, I.; Štambuk, P.; Andabaka, Ž.; Tomaz, I.; Marković, Z.; Stupić, D.; Maletić, E.; Kontić, J.K.; Preiner, D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020, 25, 5604. [Google Scholar] [CrossRef]
- Bezhuashvili, M.; Shubladze, L.; Okruashvili, D. Trans-Piceid Stilbenoid in the Juice and Skin of the Red Grape (Vitis vinifera L.) Varieties Growing in Georgia. Bull. Georgian Natl. Acad. Sci. 2013, 7, 74–79. [Google Scholar]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol Profiles of Vitis vinifera Red Grapes and Their Single-Cultivar Wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Zhuge, Y.; Zhang, M.; Liu, C.; Jia, H.; Fang, J. Integrative Analyses of Metabolomes and Transcriptomes Provide Insights into Flavonoid Variation in Grape Berries. J. Agric. Food Chem. 2021, 69, 12354–12367. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic Contents and Compositions in Skins of Red Wine Grape Cultivars among Various Genetic Backgrounds and Originations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef]
- Sampson, L.; Rimm, E.; Hollman, P.C.H.; De Vries, J.H.M.; Katan, M.B. Flavonol and Flavone Intakes in US Health Professionals. J. Am. Diet. Assoc. 2002, 102, 1414–1420. [Google Scholar] [CrossRef]
- Biniari, K.; Xenaki, M.; Daskalakis, I.; Rusjan, D.; Bouza, D.; Stavrakaki, M. Polyphenolic Compounds and Antioxidants of Skin and Berry Grapes of Greek Vitis vinifera Cultivars in Relation to Climate Conditions. Food Chem. 2020, 307, 125518. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Lu, Y.; Santos, S.A.O.; Silvestre, A.J.D.; Neto, C.P.; Câmara, J.S.; Rocha, S.M. Phenolic Profile of Sercial and Tinta Negra Vitis vinifera L. Grape Skins by HPLC–DAD–ESI-MSn. Food Chem. 2012, 135, 94–104. [Google Scholar] [CrossRef]
- Braidot, E.; Zancani, M.; Petrussa, E.; Peresson, C.; Bertolini, A.; Patui, S.; Macrì, F.; Vianello, A. Transport and Accumulation of Flavonoids in Grapevine (Vitis vinifera L.). Plant Signal. Behav. 2008, 3, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 2022, 12, 48. [Google Scholar] [CrossRef]
- Calzolari, A.; Varsano, D.; Ruini, A.; Catellani, A.; Tel-Vered, R.; Yildiz, H.B.; Ovits, O.; Willner, I. Optoelectronic Properties of Natural Cyanin Dyes. J. Phys. Chem. A 2009, 113, 8801–8810. [Google Scholar] [CrossRef]
- Sinopoli, A.; Calogero, G.; Bartolotta, A. Computational Aspects of Anthocyanidins and Anthocyanins: A Review. Food Chem. 2019, 297, 124898. [Google Scholar] [CrossRef] [PubMed]
- Kayesh, E.; Shangguan, L.; Korir, N.K.; Sun, X.; Bilkish, N.; Zhang, Y.; Han, J.; Song, C.; Cheng, Z.-M.; Fang, J. Fruit Skin Color and the Role of Anthocyanin. Acta Physiol. Plant 2013, 35, 2879–2890. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef] [PubMed]
- Núñez, V.; Monagas, M.; Gomez-Cordovés, M.C.; Bartolomé, B. Vitis vinifera L. Cv. Graciano Grapes Characterized by Its Anthocyanin Profile. Postharvest Biol. Technol. 2004, 31, 69–79. [Google Scholar] [CrossRef]
- Boss, P.K.; Davies, C.; Robinson, S.P. Anthocyanin Composition and Anthocyanin Pathway Gene Expression in Grapevine Sports Differing in Berry Skin Colour. Aust. J. Grape Wine Res. 1996, 2, 163–170. [Google Scholar] [CrossRef]
- Kalandia, A.; Kharadze, M.; Vanidze, M.; Kalandia, A. Dependence of Phenolic Compound Content on Geographical Distribution of Chkhaveri Grapes in Adjara. Bull. Georgian Natl. Acad. Sci. 2019, 13, 101–108. [Google Scholar]
- Benmeziane, F. Bioactive Molecules of Grape. N. Afr. J. Food Nutr. Res. 2018, 2, 59–68. [Google Scholar] [CrossRef]
- Stoyanov, N.; Tagareva, S.; Yoncheva, T.; Shopska, V.; Kostov, G. Significance of Grape Phenolic Compounds for Wine Characteristics: Dynamics and Extractability During Fruit Maturation. Beverages 2025, 11, 163. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; Reyes González-Centeno, M.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F.M., Nunes, F., Filipe-Ribeiro, L., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83962-575-6. [Google Scholar]
- Boido, E.; García-Marino, M.; Dellacassa, E.; Carrau, F.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Characterisation and Evolution of Grape Polyphenol Profiles of Vitis vinifera L. Cv. Tannat during Ripening and Vinification: Polyphenolic Profiles of Tannat. Aust. J. Grape Wine Res. 2011, 17, 383–393. [Google Scholar] [CrossRef]
- Brás, L.P.; Luís, Â.; Chatel, G.; Socorro, S.; Duarte, A.P. Stilbenes from Vine Extracts: Therapeutic Potential and Mechanisms. Int. J. Mol. Sci. 2025, 26, 8269. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Hornedo-Ortega, R.; Garcia, F.; El Khawand, T.; Saucier, C.; Richard, T. Stilbenes in Grape Berries and Wine and Their Potential Role as Anti-Obesity Agents: A Review. Trends Food Sci. Technol. 2021, 112, 362–381. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Capece, A.; Siesto, G.; Poeta, C.; Pietrafesa, R.; Romano, P. Indigenous Yeast Population from Georgian Aged Wines Produced by Traditional “Kakhetian” Method. Food Microbiol. 2013, 36, 447–455. [Google Scholar] [CrossRef]
- Paata Koguashvili, P.K.; Meri Ososhvili, M.O. The Role of Wine in Tourism Development in Kakheti Region. Economics 2022, 105, 118–130. [Google Scholar] [CrossRef]
- National Wine Agency. Available online: https://wine.gov.ge/ (accessed on 5 November 2025).
- Ghlonti, T. Traditional Technologies and History of Georgian Wine. In Proceedings of the Bulletin de l’OIV Proceeding of the 33rd World Congress of Vine and Wine, Tbilisi, Georgia, 20–25 June 2010; Volume 83, pp. 335–343. [Google Scholar]
- Vigentini, I.; Maghradze, D.; Petrozziello, M.; Bonello, F.; Mezzapelle, V.; Valdetara, F.; Failla, O.; Foschino, R. Indigenous Georgian Wine-Associated Yeasts and Grape Cultivars to Edit the Wine Quality in a Precision Oenology Perspective. Front. Microbiol. 2016, 7, 352. [Google Scholar] [CrossRef] [PubMed]
- Buican, B.-C.; Colibaba, L.C.; Luchian, C.E.; Kallithraka, S.; Cotea, V.V. “Orange” Wine—The Resurgence of an Ancient Winemaking Technique: A Review. Agriculture 2023, 13, 1750. [Google Scholar] [CrossRef]
- Feiring, A. For the Love of Wine: My Odyssey Through the World’s Most Ancient Wine Culture; Potomac Books, an Imprint of the University of Nebraska Press: Lincoln, NE, USA, 2016; ISBN 978-1-61234-764-6. [Google Scholar]
- Granik, L. The Wines of Georgia; Infinite Ideas Limited: Oxford, UK, 2020; ISBN 978-1-910902-97-4. [Google Scholar]
- Decision of the Intergovernmental Committee: 8.COM 8.13. Available online: https://ich.unesco.org/en/decisions/8.COM/8.13 (accessed on 4 November 2025).
- Maisuradze, G. Enrichment of Georgian Cheese with Biologically Active Components of Saperavi. In Proceedings of the Materials of the International Competition of Student Scientific Papers, Odessa, Ukraine, 4 April 2018; National Academy of Food Technologies: Odessa, Ukraine, 2018; pp. 197–207. [Google Scholar]
- Elanidze, L.; Khomych, G. The Potential of Using Georgian Wine and Dried Prune in the Production of Bakery Products. J. Food Tech. Nutr. Sci. 2024, 6, 1–5. [Google Scholar] [CrossRef]
- Sergazy, S.; Kozhakhmetov, S.; Tritek, V.; Ziyat, A.; Nurgozhoina, A.; Krivyh, E.; Nurgaziyev, M.; Chulenbayeva, L.; Dudikova, G.; Gulyayev, A.; et al. Comparison of Phenolic Content in Cabernet Sauvignon and Saperavi Wines. J. Microb. Biotech. Food Sci. 2019, 9, 557–561. [Google Scholar] [CrossRef]
- Elanidze, L.D.; Bezhuashvili, M.G.; Okruasvili, D.S. Identification of Acetovanillone (Apocynin) from Water-Ethanol Extract of the Stem of Saperavi Vine Variety. Ann. Agrar. Sci. 2013, 11, 71–74. [Google Scholar]
- Di Lorenzo, C.; Badea, M.; Colombo, F.; Orgiu, F.; Frigerio, G.; Pastor, R.F.; Restani, P. Antioxidant Activity of Wine Assessed by Different in Vitro Methods. BIO Web Conf. 2017, 9, 04008. [Google Scholar] [CrossRef]
- Khachapuridze, Z.; Ploeger, A.; Gulua, L.; Turmanidze, T. Comparative Study of Lipase Inhibitory Activity of Some Georgian Wines Obtained through Kakhetian and European Winemaking Techniques. Ann. Agrar. Sci. 2021, 19. Available online: https://journals.org.ge/index.php/aans/article/view/277 (accessed on 18 November 2025).
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Banc, R.; Socaciu, C.; Miere, D.; Filip, L.; Cozma, A.; Stanciu, O.; Loghin, F. Benefits of Wine Polyphenols on Human Health: A Review. Bull. Univ. Agric. Sci. Veter. Med. Cluj-Napoca. Food Sci. Technol. 2014, 71, 79–87. [Google Scholar] [CrossRef]
- El Rayess, Y.; Nehme, N.; Azzi-Achkouty, S.; Julien, S.G. Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants 2024, 13, 1312. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as Antioxidants: Determination of Radical-Scavenging Efficiencies. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1990; Volume 186, pp. 343–355. ISBN 978-0-12-182087-9. [Google Scholar]
- Silva, M.M.; Santos, M.R.; Caroço, G.; Rocha, R.; Justino, G.; Mira, L. Structure-Antioxidant Activity Relationships of Flavonoids: A Re-Examination. Free Radic. Res. 2002, 36, 1219–1227. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Wang, K.; Hao, Y.; Duan, Y.; Guo, X.; Yang, Z.; Waffo-Téguo, P.; Jourdes, M.; Teissedre, P.-L.; Ma, W. Updated Insights into Esterified Flavan-3-Ols in Grapevine and Wine: Origin, Transformation, and Taste Response of Epicatechin-3-O-Vanillate and -3-O-Gallate. Food Chem. 2025, 496, 146892. [Google Scholar] [CrossRef]
- Shalashvili, A.; Ugrekhelidze, D.; Mitaishvili, T.; Targamadze, I.; Zambakhidze, N. Phenolic Compounds of Wines from Georgian Autochthonous Grapes, Rkatsiteli and Saperavi, Prepared by Georgian (Kakhetian) Technology. Bull. Georgian Natl. Acad. Sci. 2012, 6, 99–103. [Google Scholar]
- Ferrari, E.; Naponelli, V. Catechins and Human Health: Breakthroughs from Clinical Trials. Molecules 2025, 30, 3128. [Google Scholar] [CrossRef] [PubMed]
- Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chin. Med. 2010, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Gómez, M.V.; Velders, A.H.; Hermosín-Gutiérrez, I. Flavonol 3-O-Glycosides Series of Vitis vinifera Cv. Petit Verdot Red Wine Grapes. J. Agric. Food Chem. 2009, 57, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in Grapes, Grape Products and Wines: Burden, Profile and Influential Parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- Ieri, F.; Campo, M.; Cassiani, C.; Urciuoli, S.; Jurkhadze, K.; Romani, A. Analysis of Aroma and Polyphenolic Compounds in Saperavi Red Wine Vinified in Qvevri. Food Sci. Nutr. 2021, 9, 6492–6500. [Google Scholar] [CrossRef]
- Zoechling, A.; Reiter, E.; Eder, R.; Wendelin, S.; Liebner, F.; Jungbauer, A. The Flavonoid Kaempferol Is Responsible for the Majority of Estrogenic Activity in Red Wine. Am. J. Enol. Vitic. 2009, 60, 223–232. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef] [PubMed]
- Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef]
- Wang, Z.H.; Ah Kang, K.; Zhang, R.; Piao, M.J.; Jo, S.H.; Kim, J.S.; Kang, S.S.; Lee, J.S.; Park, D.H.; Hyun, J.W. Myricetin Suppresses Oxidative Stress-Induced Cell Damage via Both Direct and Indirect Antioxidant Action. Environ. Toxicol. Pharmacol. 2010, 29, 12–18. [Google Scholar] [CrossRef]
- Gurgenidze, L.; Sachaneli, T.; Kanchaveli, T.; Kvartskhava, G. Determining Level of Trans-Resveratrol in Wines Produced from Some of the Rare Georgian Red Grape Varieties. Int. J. Sci. Res. Chem. Sci. 2021, 8, 1. [Google Scholar]
- Ragusa, A.; Centonze, C.; Grasso, M.; Latronico, M.; Mastrangelo, P.; Sparascio, F.; Fanizzi, F.; Maffia, M. A Comparative Study of Phenols in Apulian Italian Wines. Foods 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Huy, N.T.; Trang, N.V.; Xuyen, N.T.; Hong, C.T.; Anh, V.T.K.; Thai, V.Q.; Cuong, B.V.; Van, T.T.T.; Trang, N.V.; Lam, T.D.; et al. Studies on the Antioxidant Activity of Apigenin, Luteolin and Nevadensin Using DFT. Vietnam. J. Sci. Technol. 2021, 59, 19–29. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an Anti-Inflammatory and Neuroprotective Agent: A Brief Review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- Monagas, M.; Gomezcordoves, C.; Bartolome, B. Evolution of the Phenolic Content of Red Wines from L. during Ageing Bottle. Food Chem. 2006, 95, 405–412. [Google Scholar] [CrossRef]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.S. Wine Tasting: A Professional Handbook, 2nd ed.; Food Science and Technology International Series; Academic Press: Amsterdam, The Netherlands, 2009; ISBN 978-0-08-092109-9. [Google Scholar]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and Antioxidant Activity of Red Wines Made from Endemic Grape Varieties. Ann. Agrar. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, C.; Shi, Y. Evolution of Malvidin-3-glucoside and Color Charateristics of Red Wines during Forced Aging Processes: Effect of (+)-catechin and (−)-epicatechin Addition. J. Food Process. Preserv. 2021, 45, e15177. [Google Scholar] [CrossRef]
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant Flavonoids in Cancer Chemoprevention: Role in Genome Stability. J. Nutr. Biochem. 2017, 45, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef]
- Mendoza, L.; Matsuhiro, B.; Aguirre, M.J.; Isaacs, M.; Sotés, G.; Cotoras, M.; Melo, R. Characterization of Phenolic Acids Profile from Chilean Red Wines by High-Performance Liquid Chromatography. J. Chil. Chem. Soc. 2011, 56, 688–691. [Google Scholar] [CrossRef]
- Pisano, P.L.; Silva, M.F.; Olivieri, A.C. Anthocyanins as Markers for the Classification of Argentinean Wines According to Botanical and Geographical Origin. Chemometric Modeling of Liquid Chromatography–Mass Spectrometry Data. Food Chem. 2015, 175, 174–180. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. A Comprehensive Review on Polyphenols of White Wine: Impact on Wine Quality and Potential Health Benefits. Molecules 2024, 29, 5074. [Google Scholar] [CrossRef]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef]
- Ehtiati, S.; Alizadeh, M.; Farhadi, F.; Khalatbari, K.; Ajiboye, B.O.; Baradaran Rahimi, V.; Askari, V.R. Promising Influences of Caffeic Acid and Caffeic Acid Phenethyl Ester against Natural and Chemical Toxins: A Comprehensive and Mechanistic Review. J. Funct. Foods 2023, 107, 105637. [Google Scholar] [CrossRef]
- Hennig, K.; Burkhardt, R. Detection of Phenolic Compounds and Hydroxy Acids in Grapes, Wines, and Similar Beverages. Am. J. Enol. Vitic. 1960, 11, 64–79. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Fabjanowicz, M.; Płotka-Wasylka, J.; Namieśnik, J. Detection, Identification and Determination of Resveratrol in Wine. Problems and Challenges. TrAC Trends Anal. Chem. 2018, 103, 21–33. [Google Scholar] [CrossRef]
- Gerogiannaki-Christopoulou, M.; Athanasopoulos, P.; Kyriakidis, N.; Gerogiannaki, I.A.; Spanos, M. Trans-Resveratrol in Wines from the Major Greek Red and White Grape Varieties. Food Control 2006, 17, 700–706. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Branco, Z.; Baptista, F.; Paié-Ribeiro, J.; Gouvinhas, I.; Barros, A.N. Impact of Winemaking Techniques on the Phenolic Composition and Antioxidant Properties of Touriga Nacional Wines. Molecules 2025, 30, 1601. [Google Scholar] [CrossRef]
- Succi, M.; Coppola, F.; Testa, B.; Pellegrini, M.; Iorizzo, M. Alcohol or No Alcohol in Wine: Half a Century of Debate. Foods 2025, 14, 1854. [Google Scholar] [CrossRef] [PubMed]
- Bigman, G.; Ryan, A.S. Nutrition in Centenarians. In Current Perspectives on Centenarians; Kheirbek, R.E., Llorente, M.D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; Volume 36, pp. 75–98. ISBN 978-3-031-30914-4. [Google Scholar]
- Roviello, G.N. Nature-Inspired Pathogen and Cancer Protein Covalent Inhibitors: From Plants and Other Natural Sources to Drug Development. Pathogens 2025, 14, 1153. [Google Scholar] [CrossRef]






| Class/Subclass of Phenolic Compounds | Variety | Skin | Seeds | Stalk | Ref. |
|---|---|---|---|---|---|
| Flavonoids Flavan-3-ols | Tsolikauri (W) | Catechin, epicatechin | Catechin, epicatechin | Catechin, epicatechin | [40] |
| Rkatsiteli (W) | gallocatechin, epicatechin, catechin, epicatechin gallate | Epicatechin, catechin, epicatechin gallate | Gallocatechin, epicatechin, catechin, epicatechin gallate | [53] | |
| Saperavi (R) | catechin hydrate | Catechin hydrate | [54] | ||
| Flavonols | Tsolikauri (W) | Rutin | Rutin | Quercetin, rutin | [40] |
| Anthocyanins | Saperavi (R) | Delphinidin, petunidin, malvidin, peonidin, delphinidin-3-O-glucoside | [55,56] | ||
| Non-flavonoids Phenolic acids | Tsolikauri (W) | Hydroxycinnamic acids: ferulic acid; Hydroxybenzoic acids: gallic, protocatechuic, syringic acids | Hydroxycinnamic acids: caffeic acid; Hydroxybenzoic acids: gallic acid | [57] | |
| Stilbenes | Saperavi (R), Cabernet Sauvignon (R), Otskhanuri Sapere (R), Aleksandrouli (R), Mujuretuli (R), Shavkapito (R), Tavkveri (R), Aladasturi (R), Dzelshavi (R), Ojaleshi (R) | 4′, 5-dihydroxylstilbene-3-O-β-D-glucopyranoside, resveratrol | Resveratrol | [54,58] |
| Wine | Production Method | TPC, g L−1 | Reference |
|---|---|---|---|
| Saperavi (R) | European method | 1.1–4.5 | [7,11] |
| “qvevri” method | 2.7–4.4 | [7,11,96] | |
| Rkatsiteli (W) | European method | 0.2–0.5 | [7] |
| “qvevri” method | 2.0–2.5 | [11] | |
| Kisi (W) | European method | 0.7 | [11] |
| “qvevri” method | 2.2 | [11] | |
| Khikhvi (W) | European method | 0.4 | [11] |
| “qvevri” method | 1.6 | [11] |
| Content of Flavan-3-ols, mg/L | Rkatsiteli (W, E) | Rkatsiteli (W, Q) | Saperavi (R, E) | Saperavi (R, Q) | Kindzmarauli (R, E) | Ref. |
|---|---|---|---|---|---|---|
| Epicatechin | 17.8–29.0 | 38.7–58.6 | 9.0–76.2 | 29.5–62.2 | 118.5 | [54,96,104] |
| Epigallocatechin gallate | 1.4–2.0 | 1.7–22.9 | 15.0–56.3 | [7] | ||
| Gallocatechin | 43.7 | 174.4 | [104] | |||
| Catechin | 17.8–29.0 | 32.6–45.2 | 5.0–272.1 | 5.0–387.8 | 221.1 | [54,96,104] |
| Content of flavanols, mg/L | ||||||
| Quercetin glucuronide | 9.7 | [109] | ||||
| Quercetin glucoside | 9.8–14.3 | 4.3–12.3 | 7.1 | [54,109] | ||
| Myricetin | 0 | 0 | 0–69.4 | 0 | 63.5 | [7,54] |
| Kaempferol | 0 | 0 | 0.4–2.5 | 3.2–13.2 | 0.8 | [7,54,104] |
| Rutin | 0 | 0 | 0–4.1 | 2.6 | [7] | |
| Content of flavones, mg/L | ||||||
| Apigenin | 0–1.06 | 0 | 0 | [54] | ||
| Luteolin | 0.56–0.96 | 0.75 | 1.15 | [54] | ||
| Content of stilbenes, mg/L | ||||||
| Trans-resveratrol | 10.1–18.7 | 11.6–13.8 | 7.9 | [54,114] | ||
| Trans-resveratrol glucoside | 69.0 | [109] | ||||
| Cis-resveratrol glucoside | 13.8 | [109] |
| Content of Anthocyanins, mg/L | Wines | |||||
|---|---|---|---|---|---|---|
| Saperavi | Alexandrouli | Mujuretuli | Ojaleshi | Otskhanuli Sapere | Reference | |
| Delphinidin-3-O-glucoside | 47.8–72.0 | 11.2–52.1 | 13.6 | 41.3 | 34.6 | [109,121] |
| Cyanidin-3-O-glucoside | 1.5–6.9 | 6.6–11.7 | 5.4 | 89.4 | 34.6 | [109,121] |
| Petunidin-3-O-glucoside | 71.0–92.4 | 92.4 | 39.3 | 77.3 | 53.2 | [109,121] |
| Peonidin-3-O-glucoside | 27.7–92.0 | 27.5–47.7 | 21.9 | 46.3 | 12.9 | [109,121] |
| Peonidin-3-O-acetylglucoside | 16.0–33.1 | 7.0–15.8 | 13.7 | 19.7 | 4.7 | [109,121] |
| Peonidin-3-O-p-coumarylglucoside | 34.1 | 34.4–94.6 | 25.0 | 9.4 | 14.6 | [121] |
| Malvidin-3-O-glucoside | 264.1–340.0 | 171.5–353.1 | 125.4 | 126.9 | 136.8 | [109,121] |
| Malvidin-3-O-coumarylglucosid | 9.4–44.0 | 7.4–19.9 | 4.9 | 2.5 | 3.25 | [109,121] |
| Content, mg/L | Rkatsiteli (W, E) | Rkatsiteli (W, Q) | Saperavi (R, E) | Saperavi (R, Q) | Kindzmarauli (R, E) | Reference |
|---|---|---|---|---|---|---|
| Hydroxybenzoic acids | ||||||
| Gallic acid | 7.1–581.3 | 9.9–136.0 | 5.0–101.4 | 4.8–21.8 | [7,54,96] | |
| Syringic acid | 0.2–0.5 | 0.2–0.3 | 4.7–12.6 | 22.00 | [7,109] | |
| Vanillic acid | 0.2–0.6 | 0.4–0.5 | 1.9–9.1 | 8.3 | 5.86 | [7,54] |
| 3,4-hydoxybenzoic acid | 0.8–2.7 | 1.3–3.2 | 1.9–9.1 | [7] | ||
| Protocatechuic acid | [104] | |||||
| Hydroxycinnamic acids | 14.4 | |||||
| Caffeic acid | 5.3–91.6 | 0.9–111.7 | 3.2–108.3 | 7.4–80.5 | 55.6 | [7,54,104,109] |
| p-coumaric acid | 1.0–3.3 | 0.7–0.8 | 2.8–16.5 | [7,54] | ||
| Chlorogenic acid | 2.5–2.8 | 2.0–3.2 | 1.8–109.9 | 138.8 | [7] | |
| Ferulic acid | 0.3–0.6 | 0.2 | 0.3–1.8 | [7] | ||
| Caftaric acid | 158.0 | [109] | ||||
| Courtaric acid | 117.0 | [109] | ||||
| Stilbens | ||||||
| Trans-resveratrol | 10.1–18.7 | 11.6–13.8 | 7.9 | [54,114] | ||
| Trans-resveratrol glucoside | 69.0 | [109] | ||||
| Cis-resveratrol glucoside | 13.8 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mittova, V.; Tsetskhladze, Z.R.; Motsonelidze, N.; Palumbo, R.; Roviello, G.N. Georgian Grapes and Wines as a Source of Phenolic Compounds: Composition, Antioxidant Activity, and Traditional Winemaking. Molecules 2026, 31, 303. https://doi.org/10.3390/molecules31020303
Mittova V, Tsetskhladze ZR, Motsonelidze N, Palumbo R, Roviello GN. Georgian Grapes and Wines as a Source of Phenolic Compounds: Composition, Antioxidant Activity, and Traditional Winemaking. Molecules. 2026; 31(2):303. https://doi.org/10.3390/molecules31020303
Chicago/Turabian StyleMittova, Valentina, Zurab R. Tsetskhladze, Nino Motsonelidze, Rosanna Palumbo, and Giovanni N. Roviello. 2026. "Georgian Grapes and Wines as a Source of Phenolic Compounds: Composition, Antioxidant Activity, and Traditional Winemaking" Molecules 31, no. 2: 303. https://doi.org/10.3390/molecules31020303
APA StyleMittova, V., Tsetskhladze, Z. R., Motsonelidze, N., Palumbo, R., & Roviello, G. N. (2026). Georgian Grapes and Wines as a Source of Phenolic Compounds: Composition, Antioxidant Activity, and Traditional Winemaking. Molecules, 31(2), 303. https://doi.org/10.3390/molecules31020303

