Bioactive Potential of Terpenes from Mediterranean Scrub Plants: A Review
Abstract
1. Introduction
2. Chemical Structure of Terpenes
3. Species Studied
4. Identified Terpenes
4.1. Activity of the Most Common Terpenes Found in Mediterranean Scrub Plants
4.1.1. Antimicrobial Activity
4.1.2. Anti-Inflammatory Activity
4.1.3. Neuroprotective Activity
4.1.4. Gastroprotective Activity
4.1.5. Cardioprotective Activity
4.1.6. Insecticidal Activity
4.1.7. Synergistic Interactions Between Terpenes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casadesús, A.; Mumné-Bosch, S. Holoparasitic plant-host interactions and their impact on Mediterranean ecosystems. Plant Physiol. 2021, 185, 1325–1338. [Google Scholar] [CrossRef]
- Ramos-Rodríguez, E.; López-RodrÍguez, M.J. Manual de Prácticas de Ecología de Organismos y Poblaciones. Available online: https://digibug.ugr.es/bitstream/handle/10481/80083/MANUAL%20PR%C3%81CTICAS%20%20EOP%20CCAA%202223.pdf?sequence=1 (accessed on 23 September 2025).
- Jackson, L.E.; Bowles, T.M.; Ferris, H.; Margenot, A.J.; Hollander, A.; García-Palacios, P.; Daufresne, T.; Sánchez-Moreno, S. Plant and solil microfaunal biodiversity across the borders between arable and forest ecosistems in a Mediterranean landscape. Appl. Soil Ecol. 2019, 136, 122–138. [Google Scholar] [CrossRef]
- Zunzunegui, M.; Díaz-Barradas, M.C.; Jauregui, J.; Rodríguez, H.; Alvarez-Cansino, L. Season-dependent and independent responses of Mediterranean scrub to light condictions. Plant Physiol. Biochem. 2016, 102, 80–91. [Google Scholar] [CrossRef]
- Navarro, L.M.; Pereira, H.M. Rewilding abandoned landscapes in Europe. In Rewilding European Landscapes; Pereira, H.M., Navarro, L.M., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–23. [Google Scholar] [CrossRef]
- García, R.R.; Fraser, M.D.; Celaya, R.; Ferreira, L.M.M.; García, U.; Osoro, K. Grazing land management and biodiversity in the Atlantic European heathlands: A review. Agrof. Syst. 2013, 87, 19–43. [Google Scholar] [CrossRef]
- Fernández-Manjarrés, J.F.; Ruiz-Benito, P.; Zavala, M.A.; Camarero, J.J.; Pulido, F.; Proença, V.; Navarro, L.; Sansilvestri, R.; Granda, E.; Marqués, L.; et al. Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe. Sustainability 2018, 10, 3065. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. In Advances in Biochemical Engineering/Biotechnology; Schrader, J., Bohlmann, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 148, pp. 63–106. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lin, S.H.E.; Lai, K.S. Terpene derivates as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int. J. Biol. Macromol. 2021, 192, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Croteau, R.; Johnsos, M.A. Biosynthesis of terpenoid wood extractives. In Biosynthesis and Biodegradation of Wood Components. Orlando; Higucho, T., Ed.; Academic Press: Cambridge, MA, USA, 1985; pp. 379–439. [Google Scholar] [CrossRef]
- Mabou, F.D.; Yossa, I.B.N. Terpenes; structural classification and biological activities. J. Pharm. Biol. Sci. 2021, 16, 25–40. [Google Scholar] [CrossRef]
- Rodríguez, R.; Johnson, J.J. Modulating anti-inflamatory signaling in inflammatory bowel disease. Pharmacol. Ther. 2023, 248, 108456. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Cassuriaga, A.P.A.; Moraes, L.; Morais, M.G. Biosynthesis and potential applications of terpenes produced from microalgae. Biorescurse Technol. Rep. 2022, 19, 101166. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho, A.J.S.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Obafemi, C.A.; Sulaimon, T.O.; Akinpelu, D.A.; Olugbade, T.A. Antimicrobial activity of extracts and a germacranolidetype sesquiterpene lactone from Tithonia diversifolia leaf extract. Afr. J. Biotechnol. 2006, 5, 1254–1258. [Google Scholar]
- Huang, A.C.; Kautsar, S.A.; Hong, Y.J.; Medene, M.M.; Bond, A.B. Unearthing a sesterpene biosynthetic repertoire in the Brassicaceae through genome mining receals conversent evolution. Proc. Natl. Acad. Sci. USA 2017, 114, E6005–E6014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Z.; Li, C.; Yu, X.; He, Q.; You, C.; Li, D.; Liu, Q.; Zhang, J. Sesquiterpenes from two Compositae plants as promising inhibitions to nuclear hormone receptor 3 of Tribolium castaneum. Pestic. Biochem. Physiol. 2023, 195, 105578. [Google Scholar] [CrossRef]
- Salazar-Gómez, A.; Ontiveros-Rodríguez, J.A.; Pablo-Pérez, S.; Vargas-Díaz, E.; Garduno-Siciliano, L. The potential role of sesquiterpene lactones isolated from medicinal plants in the trearment of the metabolic syndrome—A review. S. Afr. J. Bot. 2020, 135, 240–251. [Google Scholar] [CrossRef]
- Kokilananthan, S.; Bulugahapitiya, V.P.; Manawadu, H.; Gangabadage, S. Sesquiterpenes and monoterpenes from different varieties of guava leaf essential oil and their antioxidant potentital. Heliyon 2022, 8, e12104. [Google Scholar] [CrossRef]
- Xu, Y.-Z.; Gu, X.-Y.; Peng, S.-J.; Fang, J.-G.; Zhang, Y.-M.; Huang, D.-J.; Chen, J.-J.; Gao, K. Design, synthesis and biological evaluation of novel sesquiterpene mustards as potential anticancer agents. Eur. J. Med. Chem. 2015, 94, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, L.; Borges, B.A.; Veloso, M.P.; Chagas-Paula, D.A.; Gonçalves, R.V.; Novaes, R.D. Impacto of sesquiterpene lactones on the skin and skin-related cells? A sustematic review of in vitro and in vivo evidence. Life Sci. 2021, 15, 118815. [Google Scholar] [CrossRef]
- Abdelli, W.; Bahri, F.; Romane, A.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Chemical Composition and Anti-inflammatory Activity of Algerian Thymus vulgaris Essential Oil. Nat. Prod. Commun. 2017, 12, 611–614. [Google Scholar] [CrossRef]
- Shabnum, S.; Wagay, M.G. Essential Oil Composition of Thymus vulgaris L. and their Uses. J. Res. Dev. 2011, 11, 83–94. [Google Scholar] [CrossRef]
- Boruga, O.; Jianu, C.; Misca, C.; Golet, I.; Gruia, A.T.; Horthat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar] [PubMed]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris Essential Oil and Its Biological Activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef]
- Demetzos, C.; Angelopoulou, D.; Perdetzoglou, D. A comparative study of the essential oils of Cistus salvifolius in several populations of Crete (Greece). Biochem. Syst. Ecol. 2002, 30, 651–665. [Google Scholar] [CrossRef]
- Hitl, M.; Bijelic, K.; Stilinovic, N.; Bozin, B.; Srdenovic-Conic, B.; Torovic, L.; Kladar, N. Phytochemistry and Antihyperglycemic Potential of Cistus salvifolius, L., Cistaceae. Molecules 2022, 27, 8003. [Google Scholar] [CrossRef]
- Daghbouche, S.; Ammar, I.; Rekik, D.M.; Djazouli, E.; Zebib, B.; Merah, O. Effect of phenological stages on essential oil composition of Cytisus triflorus L’Her. J. King Saud Univ.-Sci. 2020, 32, 2383–2387. [Google Scholar] [CrossRef]
- Geraci, A.; Schicchi, R.; Sgadari, F.; Badalamenti, N.; Bruno, M. The essential oil compositions of three Sicilian accessions of Viscum album L. growing on three different host trees. Nat. Prod. Res. 2023, 37, 2623–2627. [Google Scholar] [CrossRef]
- Welter, S.; Bracho-Nuñez, A.; Mir, C.; Zimmer, I.; Kesselmeier, J.; Lumaret, R.; Schnitzler, J.P.; Staudt, M. The diversification of terpene emissions in Mediterranean oaks: Lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares. Tree Physiol. 2012, 32, 1082–1091. [Google Scholar] [CrossRef]
- Kelmeier, J.; Schäfer, L.; Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Frattoni, M.; Foster, P.; Jacob, V.; Denis, J.; Fugit, J.L.; et al. Emission of monoterpenes and isoprone from a Mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project. Atmos. Environ. 1996, 30, 1841–1850. [Google Scholar] [CrossRef]
- Pulaj, B.; Mustafa, B.; Nelson, K.; Quave, C.L.; Hajdari, A. Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo. Complement. Altern. Med. 2016, 16, 147. [Google Scholar] [CrossRef]
- Schoina, V.; Terpou, A.; Bosnea, L.; Kanellaki, M.; Nigam, P.S. Entrapment of Lactobacillus casei ATCC393 in the viscus matrix of Pistacia terebinthus resin form functional mizithra cheese manufacture. LWT-Food Sci. Technol. 2018, 89, 441–448. [Google Scholar] [CrossRef]
- Kivcak, B.; Mert, T.; Demirci, B.; Baser, K. Composition of the essential oil of Arbutus unedo. Chem. Nat. Compd. 2001, 37, 445–446. [Google Scholar] [CrossRef]
- Miguel, M.G.; Faleiro, M.L.; Guerreiro, A.C.; Antunes, M.D. Arbutus unedo L.: Chemical and Biological Properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef]
- Alexandre, A.M.R.C.; Serra, A.T.; Matias, A.A.; Duarte, C.M.M.; Bronze, M.R. Supercritical fluid extraction of Arbutus unedo distillate residues-Impact of process conditions on antiproliferative response of extracts. J. CO2 Util 2020, 37, 29–38. [Google Scholar] [CrossRef]
- Fadel, H.; Kebbi, S.; Chalchat, J.C.; Figueredo, G.; Chalard, P.; Benayache, F.; Ghedadba, N.; Benayache, S. Identification of Volatile Components and Antioxidant Assessment of the aerial Part Extracts From An Algerian Cistus albidus L. of the aures region. J. New Technol. Mater. 2020, 10, 38–46. [Google Scholar] [CrossRef]
- Khadijah, A.J.; Pigott, M.; Sheridan, H.; Walsh, J.J. Mediterranean Basin Erica Species: Traditional Uses, Phytochemistry and Pharmacological. Molecules 2025, 30, 2616. [Google Scholar] [CrossRef]
- Días, P.; Alice, M.; Figueiredo, A.C.; Rauter, A.P. Flower Colour and Essential Oil Composition in Erica australis L. Grown in Portugal. J. Essent. Oil-Bear. Plants 2016, 19, 1013–1018. [Google Scholar] [CrossRef]
- Ickovski, J.; Stepic, K.D.; Stojanovic, G.S. Composition of essential oils and headspace constituients of Artemisia annua L. and A. scoparia Waldst. Et Kit. J. Serbian Chem. Soc. 2020, 85, 1565–1575. [Google Scholar] [CrossRef]
- Hcini, K.; Sotomayor, J.A.; Jordan, M.J.; Bouzid, S. Chemical Composition of the Essential Oil of Rosemary (Rosmarinus officinalis L.) of Tunisian Origin. Asian J. Chem. 2013, 25, 2601–2603. [Google Scholar] [CrossRef]
- Zidane, H.; Elmiz, M.; Aouinti, F.; Tahani, A.; Wathelet, J.; Sindic, M.; Elbachiri, A. Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr. J. Biotechnol. 2013, 12, 5314–5320. [Google Scholar] [CrossRef]
- Mediavilla, I.; Blázquez, M.A.; Ruiz, A.; Esteban, L.S. Influence of the Storage of Cistus ladanifer L. Bales from Mechanised Harvesting on the Essential Oil Yield and Qualitative Composition. Molecules 2021, 26, 2379. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, C.; Serrano-Pérez, P.; Rodríguez-Molina, M.C. Chemical composition, antifungal and phytotoxic activities of Cistus ladanifer L. essential oil and hydrolate. Biocatal. Agric. Biotechnol. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Gomes, P.B.; Mata, V.G.; Rodrigues, A.E. Characterization of the Portuguese-Grown Cistus ladanifer Essential Oil. J. Essent. Oil Res. 2005, 17, 160–165. [Google Scholar] [CrossRef]
- Robles, C.; Garzino, S. Essential oil composition of Cistus albidus leaves. Phytochemistry 1998, 48, 1341–1345. [Google Scholar] [CrossRef]
- Angelopoulou, D.; Demetzos, C.; Perdetzoglou, D. Diurnal and seasonal variation of the essential oil labdanes and clerodanes from Cistus monospeliensis L. leaves. Biochem. Syst. Ecol. 2002, 30, 189–203. [Google Scholar] [CrossRef]
- Cucu, A.-A.; Baci, G.-M.; Cucu, A.-B.; Dezsi, Ş.; Lujerdean, C.; Hegeduş, I.C.; Bobiş, O.; Moise, A.R.; Dezmirean, D.S. Calluna vulgaris as a Valuable Source of Bioactive Compounds: Exploring Its Phytochemical Profile, Biological Activities and Apitherapeutic Potential. Plants 2022, 11, 1993. [Google Scholar] [CrossRef]
- Zhao, J. The Extraction of High Value Chemicals from Heather (Calluna vulgaris) and Bracken (Pteridium aquilinum). Available online: https://etheses.whiterose.ac.uk/id/eprint/2019/2/Final_Thesis_of_Jiewen_Zhao.pdf (accessed on 12 July 2025).
- Mimica-Dukić, N.; Bugarin, D.; Grbović, S.; Mitić-Ćulafić, D.; Vuković-Gačić, B.; Orčić, D.; Jovin, E.; Couladis, M. Essential Oil of Myrtus communis L. as a Potential Antioxidant and Antimutagenic Agents. Molecules 2010, 15, 2759–2770. [Google Scholar] [CrossRef]
- Gardeli, C.; Papageorgiou, V.; Mallouchos, A.; Theodosis, K.; Komaitis, M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Characterization of the Volatile Constituents in the Essential Oil of Pistacia lentiscus L. from different Origins and its Antifungal and Antioxidant Activity. J. Agric. Food Chem. 2007, 55, 7093–7098. [Google Scholar] [CrossRef]
- Bandeira Reidel, R.V.; Melai, B.; Cioni, P.; Flamini, G.; Pistelli, L. Aroma profile of Rubus ulmifolius flowers and fruits during different ontogenetic phases. Chem. Biodivers. 2016, 13, 1776–1784. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Benzarti, A.; Marongiu, B.; Maxia, A.; Piras, A.; Salgueiro, L. Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind. Crops Prod. 2013, 44, 97–103. [Google Scholar] [CrossRef]
- Dob, T.; Dahmane, D.; Agli, M.; Chelghoum, C. Essential Oil Composition of Lavandula stoechas from Algeria. Pharm. Biol. 2006, 44, 60–64. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical Composition, Seasonal Variability, and Antifungal Activity of Lavandula stoechas L. ssp. Stoechas Essential Oils from Stem/Leaves and Flowers. J. Agric. Food Chem. 2006, 54, 4364–4370. [Google Scholar] [CrossRef]
- Hassiotis, C.N. Chemical compounds and essential oil release through decomposition process from Lavandula stoechas in Mediterranean region. Biochem. Syst. Ecol. 2010, 38, 493–501. [Google Scholar] [CrossRef]
- Delgado-Adámez, J.; Garrido, M.; Bote, M.E.; Fuentes-Pérez, M.C.; Espino, J.; Martín-Vertedor, D. Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. J. Food Sci. Technol. 2017, 54, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Cutillas, A.B.; Carrasco, A.; Martínez-Gutiérrez, R.; Tomas, V.; Tudela, J. Thymus mastichina L. essential oils from Murcia (Spain): Composition and antioxidant antienzymatic and antimicrobial bioactivities. PLoS ONE 2018, 13, e0190790. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Muras, M.; Puig, C.G.; López-Nogueira, A.; Cavalereiro, C.; Pedrol, N. On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profile of volatile organic compounds and their phytotoxic effects. PLoS ONE 2018, 13, e0205997. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hu, Q.; Wang, S.; Tao, L.; Hu, X.; Shen, X. 1,8-Cineole ameliorates endothelial injury and hypertension induced by L-NAME through regulation of autophagy via PI3K/mTOR signaling pathway. Eur. J. Pharmacol. 2023, 954, 175863. [Google Scholar] [CrossRef]
- Ma, R.; Lu, D.; Wang, J.; Xie, Q.; Guo, J. Comparation of pharmacological activity and safety of different sterochemical configurations of borneol: L-borneol, D-borneol, and synthetic borneol. Biomed. Pharmacother. 2023, 164, 114668. [Google Scholar] [CrossRef] [PubMed]
- Hoch, C.; Petry, J.; Griesbaum, L.; Weiser, T.; Werner, K.; Ploch, M.; Verschoor, A.; Multhoff, G.; Dezfouli, A.B.; Wollenberg, B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed. Pharmacother. 2023, 167, 115467. [Google Scholar] [CrossRef]
- Sobhy, M.; Ali, S.S.; Cui, H.; Lin, L.; El-Sapagh, S. Exploring the potential of 1,8-cineole from cardamom oil against food-borne pathogens: Antibacterial mechanisms and its application in meat preservzation. Microb. Pathog. 2023, 184, 106375. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Zuzarte, M.; Marques, C.; Viana, S.; Preguiça, I.; Baptista, R.; Ferreira, C.; Cabaleiro, C.; Domingues, N.; Sardao, V.; et al. 1,8-Cineole ameliorates right ventricle dysfunctions associated with pulmonary arterial hypertension by restoring connexin43 and mitochondrial homeostasis. Pharmacol. Res. 2022, 180, 106151. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.A.; Baptista, N.M.Q.; de Oliveira, A.P.S.; da Silve, P.A.; Gusmao, N.B.; Correia, M.T.d.S.; Napoleao, T.H.; da Silva, M.V.; Paiva, P.M.G. Insecticidal activity of a chemotype VI essential oil from Lippia alba leaves collected ad Caatinga and the major compound (1,8-cineole) against Nasutitermes corniger and Sitophilus zeamais. Pestic. Biochem. Physiol. 2021, 177, 104901. [Google Scholar] [CrossRef]
- Paoline, J.; Tomi, P.; Bernardini, F.; Bradesi, P.; Casanova, J.; Kaloustian, J. Detailed analysis of the essential oil from Cistus albidus L. by combination of GC/RI, GC/MS, and 13C-NMR. Prod. Res. 2008, 22, 1270–1278. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, T.; Chen, Y.; Yan, X.; Wu, W.; Zhang, S.; Li, Z. α-Terpineol affects social inmmunity, increasing the pathogenicity of entomopathogenic nematodes to subterranean termites (Isoptera). Pestic. Biochem. Physiol. 2023, 196, 105621. [Google Scholar] [CrossRef]
- Ding, Q.; Zhuang, T.; Fu, P.; Zhou, Q.; Luo, L.; Dong, Z.; Li, H.; Tang, S. Alpha-terpineol grafted acetylated lentinan as an anti-bacterial adhesion agent. Carbohydr. Polym. 2022, 277, 118825. [Google Scholar] [CrossRef]
- An, P.; Yang, X.; Yu, Y.J.; Qi, J.; Ren, X.; Kong, Q. α-terpineol and terpene-4-ol, the critical components of tree oil, exert antifungal activities in vitro and in vivo against Aspergillus niger in grapes by inducing morphous damage and metabolic changes of fungus. Food Control. 2019, 98, 42–53. [Google Scholar] [CrossRef]
- Deen, J.I.; Zawad, A.N.M.S.; Uddin, M.; Chowdhury, M.A.H.; Al Araby, S.Q.; Rahman, M.A. Terpinen-4-ol, A volatile terpene molecule, extensively electrifies the biological systems against the oxidative stress-linked pathogenesis. Adv. Redox Res. 2023, 9, 100082. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Yue, S.; Chen, X.; Huang, Y.; Cao, H.; Liao, M. Role of CYP6MS subfamily in detoxification of Sitophilus zeamais after exposure to terpinene-4-ol and limonene. Pestic. Biochem. Physiol. 2023, 193, 105426. [Google Scholar] [CrossRef]
- Gao, S.S.; Zhang, Y.; Zhang, K.; Wang, X.; Tang, Q.; Zhang, Y. Contact toxicology and transcriptomic analysis of terpinene-4-ol exposure in Tribolium casteneum. J. Asia-Pac. Entomol. 2022, 25, 101950. [Google Scholar] [CrossRef]
- Yousafi, Q.; Shahzad, M.S.; Saleem, S.; Sajid, M.W.; Hussain, A.; Mehmood, A.; Abid, A.D.; Qandel, A.; Shahid, A.; Khan, M.S.; et al. Terpinen-4-ol from Trachypermum ammi is a potential and safer candidate molecule for fungicide development against Alternaria solani. J. King Saud Univ. 2022, 34, 101747. [Google Scholar] [CrossRef]
- Gondim, A.N.S.; Lara, A.; Santos-Miranda, A.; Roman-Campos, D.; Lauton-Santos, S.; Menezes-Filho, J.E.R.; de Vasconcelos, C.M.L.; Conde-Garcia, E.A.; Guatimosim, S.; Cruz, J.S. (-)-Terpinen-4-ol changes intracelular Ca2+ handling and induces pacing disturbace in rato hearts. Eur. J. Pharmacol. 2017, 807, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Benelli, G. Larvicidal potential of carvacrol and terpinene-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res. Vet. 2016, 104, 77–82. [Google Scholar] [CrossRef]
- Fernandes, H.d.B.; Ciriaco, S.L.; Filgueiras, L.A.; Barros, I.C.; Carvalho, A.L.M.; Rolim, H.M.L.; de Souza, M.N.; Pinto, J.C.C.d.S.; Mendes, A.N.; Oliveira, R.d.C.M. Gastrotective effect of α-terpineol-loaded polymethyl methacrylate particles on gastric injury model. J. Drug Deliv. Sci. Technol. 2022, 67, 102989. [Google Scholar] [CrossRef]
- Kim, I.-K.; Kim, B.; Song, B.-W.; Kim, S.W.; Kim, D.; Kang, J.H.; Hwang, S.H.; Hwang, K.; Lee, S. Borneol facilitates the whitening and anti-wrinkle effect of the essential oil extracted from Abies koreana needles. J. King Saud Univ. 2023, 35, 102886. [Google Scholar] [CrossRef]
- Li, H.; Liao, H.; Li, Y.; Qi, Y.; Ni, H.; Zou, Z.; Liu, Z. Chemical composition and antifungal activity of Cinnamomum camphora chvar. Borneol essential oil obtained using solvent-free microwave-assisted method. Arab. J. Chem. 2023, 16, 104996. [Google Scholar] [CrossRef]
- Mei, Y.; Li, L.; Fan, L.; Fan, W.; Liu, L.; Zhang, F.; Hu, Z.; Wang, K.; Yang, L.; Wang, Z. The history, stereochemistry, ethnopharmacology and quality assessment of borneol. J. Ethnopharmacol. 2023, 300, 115697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.-L.; Hui, W.; Shi, L.-Y.; Li, J.-P.; Jia, L.-J.; Xie, B.-P. The effects of borneol on the pharmacokinetics and brain distribution of tanshione IIA, salvianolic acid B and ginsenoside Rg1 in Fufang Danshen preparation in rats. Chem. J. Nat. Med. 2021, 19, 153–160. [Google Scholar] [CrossRef]
- Liu, S.; Long, Y.; Yu, S.; Zhang, D.; Yang, O.; Ci, Z.; Cui, M.; Zhang, Y.; Wan, J.; Li, D.; et al. Borneol in cardio-cerebrovascular diseses: Pharmacological actions, mechanisms, and therapeutics. Pharmacol. Res. 2021, 169, 105627. [Google Scholar] [CrossRef]
- Schandry, R.; Duschek, S. The effect of Camphor-Crataegus berry extract combination on blood pressure and mental functions in chronic hypotension-A randomized placebo controlled double blind design. Phytomedicine 2008, 15, 914–922. [Google Scholar] [CrossRef]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Camphor (Cinnamomum camphora), a traditional remedy with the history of treating several diseases. Int. J. Case Rep. Images 2013, 4, 86–89. [Google Scholar] [CrossRef]
- Zochedh, A.; Priya, M.; Shunmuganarayanan, A.; Thandavarayan, K.; Sultan, A.B. Investigation on structural, spectrocopic, DFT, biological activity and molecular docking simulation of essential oil Gamma-Terpinene. J. Mol. Struct. 2022, 1268, 133651. [Google Scholar] [CrossRef]
- Qi, C.; Zhao, H.; Li, W.; Haiying, X.; Zhang, G.; Liu, H.; Wanf, Q.; Wang, Y.; Xian, M.; Zhang, H. Production of γ-terpinene by metabolically engineered Escherichia coli using glycerol as feedstock. RCS Adv. 2018, 8, 30851–30859. [Google Scholar] [CrossRef]
- Irwan, A.; Humaida, N.; Nur, H.S. Antibacterial activity assay of essential oils from limau kuit peel against Staphylococcus aureus. IOP Conf. Ser. Mater. Eng. 2020, 980, 012026. [Google Scholar] [CrossRef]
- Bailén, M.; Díaz-Castellanos, I.; Azami-Conesa, I.; Fernández, S.A.; Martínez-Díaz, R.A.; Nvarro-Rocha, J.; Gómez-Muñoz, T.; González-Coloma, A. Anti-Trichomonas gallinae activity of essential oils and main compounds from Lamiaceae and Asterqaceae plants. Front. Vet. Sci. 2022, 9, 981763. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and anticancer activities of essential oil from gannan navel orange peel. Molecules 2017, 22, 1391. [Google Scholar] [CrossRef]
- Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Quian, B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets Ther. 2018, 11, 1833–1847. [Google Scholar] [CrossRef]
- Diptikanta, P.; Smaranika, P.A.K.B. Growth-arresting Activity of Acmella Essential Oil and its Isolated Component D-Limonene (1,8 p-mentha diene) against Trichophyton rubrum (microbial Type Culture Collection 296). Pharmacogn. Mag. 2019, 15, 38–46. [Google Scholar] [CrossRef]
- Alexa, V.T.; Szuhanek, C.; Cozma, A.; Galuscan, A.; Borcan, F.; Obistioiu, D.; Dehelean, C.A.; Jumanca, D. Natural Preparations Based on Orange, Bergamot and Clove Essential Oils and Their Chemical Compounds as Antimicrobial Agents. Molecules 2020, 25, 5502. [Google Scholar] [CrossRef]
- Durço, A.O.; de Souza, D.S.; Heimfarth, L.; Miguel-dos Santos, R.; Rabelo, T.K.; de Oliveira Barreto, T.; Rhana, P.; Santos, S.M.N.; Braga, W.F.; Santos, C.J.; et al. D-Limonene Ameliorates in a Murine Model. J. Nat. Prod. 2019, 82, 3010–3019. [Google Scholar] [CrossRef]
- Praveen, K.M.; Poornima, M.E.; Al-Ghanim, K.; AL-Misned, F.; Ahmed, Z.; Mahboob, S. Effects of D-Limonene on aldose reductase and protein glycation in diabetic rats. J. King Saud Univ.-Sci. 2020, 32, 1953–1958. [Google Scholar] [CrossRef]
- Lorigooini, Z.; Boroujeni, S.N.; Sayyadi-Shahraki, M.; Rahimi-Madiseh, M.; Bijad, E.; Amini-khoei, H. Limonene through Attenuation of Neuroinflammation and Nitrite Level Exerts Antidepressant-Like Effect on Mouse Model of Maternal Separation Stress. Behav. Neurol. 2021, 8817309. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, V.; Sharmin, A.M.; Anand, M.A.V.; Sivakumar, S.; Surendhiran, D.; Sharesh, S.K. Fabrication and bacterial inhibitory activity of essential oil linalool loaded biocapsules against Escherichia coli. J. Drug Deliv. Sci. Technol. 2002, 74, 103495. [Google Scholar] [CrossRef]
- Azirak, S.; Özgöçmen, M. Linalool prevents kidney damage by inhibiting rifampicin-induced oxidative stress and apoptosis. Tissue Cell 2023, 82, 102097. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, S.; Deng, W. Dual responsive linallol capsules with high loading ratio form excellent antioxidant and antibacterial efficiency. Colloids Surf. B Biointerfaces 2020, 190, 110978. [Google Scholar] [CrossRef]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery sustems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef]
- Kim, M.G.; Kim, S.M.; Min, J.H.; Kwon, O.K.; Park, M.H.; Park, J.W.; Ahn, H.I.; Hwang, J.Y.; Oh, S.R.; Lee, J.W.; et al. Anti-inflamatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int. Immunopharmacol. 2019, 74, 105706. [Google Scholar] [CrossRef]
- Sabogal-Guáqueta, A.M.; Hobbie, F.; Keerthi, A.; Oun, A.; Kortholt, A.; Boddeke, E.; Dolga, A. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed. Pharmacother. 2019, 118, 109295. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El MEnyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Formiga, R.d.O.; Júnior, E.B.A.; Vasconcelos, R.C.; Araújo, A.A.; de Carvalho, T.G.; Junior, R.F.d.A.; Guerra, G.B.C.; Vieira, G.C.; de Oliveira, K.M.; Diniz, M.d.F.F.; et al. Effect of p-cymene and rosmarinic acid on gastric ulcer healing-Involvement of multiple endogenous curative mechanisms. Phytomedicine 2021, 86, 153497. [Google Scholar] [CrossRef]
- do Rosario, V.G.B.; Marszaukowski, F.; Guimaraes, I.D.; Maranha, F.G.; Mika, B.F.; Rosa, G.B.; Pessoa, C.A.; Ribeiro, R.A.P.; Inaba, J.; Boeré, R.T.; et al. Synthesis, structure and biological evaluation as antibacterial agents of Ru (II)-p-cymene-aruldicyclohexulphospine complexes. Inorganica Chim. Acta 2023, 558, 121749. [Google Scholar] [CrossRef]
- Feng, Y.X.; Zhang, X.; Wang, Y.; Chen, Z.Y.; Lu, X.X.; Du, Y.S.; Du, S.S. The potential contribution of cymene isomers to insecticidal and repellent acivities of the essential oil from Alpine zerumbet. Int. Biodeterior. Biodegrad. 2021, 157, 105138. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, B.; Dasgupta, S.; Seal, I.; Sil, S.; Roy, S. Inhibition of stemness and EMT by taxifolin ruthenium-p-cymene complex via downregulating the SOX2 and OCT4 expression on lung cancer. Arab. J. Chem. 2023, 16, 104995. [Google Scholar] [CrossRef]
- Yilmazoglu, E.; Akgüen, M. p-cymene production from orange peel oil using metal catalyst in supercritical alcohols. J. Supercrit. Fluids 2018, 131, 37–46. [Google Scholar] [CrossRef]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharmacol. 2013, 65, 100–107. [Google Scholar] [CrossRef]
- Németh, E.Z.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Rahimi, K.; Zalaghi, M.; Shehnizad, E.G.; Salari, G.; Baghdezfoli, F.; Ebrahimifar, A. The effects of alpha-pinene on inflammatory responses and oxidative stress in the formalin test. Brain Res. Bull. 2023, 203, 110774. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Wang, X.; Wang, F.; Li, X. Efficient production of α-pinene through identifying the rate-limiting enzymes and tailoring inactive terminal of pinene synthase in Escherichia coli. Fuel 2023, 343, 127872. [Google Scholar] [CrossRef]
- Santos, E.S.; de Sousa Machado, S.T.; Rodrigues, F.B.; da Silva, L.C.X.; Lopes, M.J.P.; Gomes, A.D.S.; Ribeiro, T.F.; Garcia, F.A.d.O.; Coutinho, H.D.M.; Felipe, C.F.B.; et al. Potential anti-inflamatory, hypoglycemic, and hypolipidemic activities of alpha-pinene in diabetic rats. Process Biochem. 2023, 126, 80–86. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef] [PubMed]
- Ensaka, N.; Sakamoto, K. α-Pinene odor exposure enhances heat stress tolerance through Daf-16 in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2020, 528, 726–731. [Google Scholar] [CrossRef]
- Rodrigues, P.R.; Wang, X.; Li, Z.; Wang, W.; Vieira, R. A new nano hyperbranched β-pinene polymer: Controlled synthesis and nonviral gene delivery. Colloids Surf. 2023, 222, 113032. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D. Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Kovac, J.; Simunovic, K.; Wu, Z.; Klancnik, A.; Bucar, F.; Zhang, Q.; Mozina, S.S. Antibiotic Resistence Modulation and Modes of Action of (-)-α-Pinene in Campylobacter jejuni. PLoS ONE 2015, 10, e0122871. [Google Scholar] [CrossRef]
- Lakhdari, A.; Sakhri, L.; Khane, Y.; Lakhdar, A.M.; Kemassi, A.; Bouras, N. Evaluation of drying effect on the composition of the essential oil isolated from aerial parts of Pituranthos chloranthus from southern Algeria and ther biological activities. Biocatal. Agric. Biotechnol. 2020, 30, 101844. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q.; Cao, Y.; Feng, X.; Zheng, Y.; Zou, H.; Liu, H.; Yang, J.; Xian, M. Microbial productions of sabinene-a new terpene-based precursor of advanced biofuel. Microb. Cell Factories 2014, 13, e0122871. [Google Scholar] [CrossRef]
- Wu, T.; Liu, J.; Li, M.; Zhang, G.; Liu, L.; Li, X.; Men, X.; Xian, M.; Zhang, H. Improvement of sabinene tolerance of Escherichia coli usig adaptive laboratory. Biotechnol. Biofuels 2020, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential Health Benefits of this Flavouring and Aroma Agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef] [PubMed]
- López, P.L.; Guerberoff, G.K.; Grosso, N.R.; Olmedo, R.H. Antioxidant-efficient indicator determinate by the relationship between β-myrcene/caryophyllene (α,β) on hop (humulus lupulus) essential oils under an accelerated oxidation test. Ind. Crops Prod. 2023, 205, 117399. [Google Scholar] [CrossRef]
- Che, J.; Chen, Y.; Li, L.; Nengguo, T. Metabolomics analysis reveals that myrcene stimulates the spore germination of Penicillium digitatum via the upregulation of central carbon and energy metabolism. Posthaverst Biol. Technol. 2020, 170, 111329. [Google Scholar] [CrossRef]
- Poléc, K.; Broniatowski, M.; Wydro, P.; Hac-Wydro, K. The impacto of β-myrcene-the main component of the hop essential oil-on the lipid films. J. Mol. Liq. 2020, 308, 113028. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Sharna, N.; Khurana, N. Ameliorative effect of myrcene in mouse model of Alzheimer’s disease. Eur. J. Pharmacol. 2021, 911, 174529. [Google Scholar] [CrossRef]
- Iscan, G.; Kirimer, N.; Demirci, F.; Base, K.H.C. Microbial Transformation of β-phellandrene. Planta Medica 2011, 77, 1278. [Google Scholar] [CrossRef]
- Buitrago, D.; Velasco, J.; Díaz, T.; Morales, A. Chemical composition and antibacterial activity of the essential oil of Monticalia Imbricatifolia Schultz (Asteraceae). Rev. Latinoam. Química 2012, 40, 13–18. [Google Scholar]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Sharma, C.; Kaabi, J.M.A.; Nurulain, S.M.; Goyal, S.N.; Amjad, K.; Ojha, S. Polypharmacological Properties and Therapeutic Potential of β-caryophyllene: A dietary phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des. 2016, 22, 1–28. [Google Scholar] [CrossRef]
- Fidyt, K.; Fiedorowicz, A.; Strzadala, L.; Szumny, A. β-caryophyllene and β-caryophylleneoxide-natural compunds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Serra, M.P.; Boi, M.; Carta, A.; Murru, E.; Carta, G.; Banni, S.; Quartu, M. Anti-Inflammatory Effect of Beta-Caryophyllene Mediated by the Involvement of TRPV1, BDNF and trkB in the Rat Cerebral Cortex after Hypoperfusion/Reperfusion. Int. J. Mol. Sci. 2022, 23, 3633. [Google Scholar] [CrossRef]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef] [PubMed]
- Alkufeidy, M.; Dunia, A.; Farrai, A.; Reen, M.; Aljowaie, M.; Ajmal, A.; Elshikh, M.S. Chemical composition of Thymus vulgaris extracts and antibacterial activity against pathogenic multidrug resistance bacteria Roua. Physiol. Mol. Plant Pathol. 2022, 117, 101745. [Google Scholar] [CrossRef]
- Al-Bayati, F.A. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol. 2008, 116, 403–406. [Google Scholar] [CrossRef]
- Caramelo, D.; Barroca, C.; Guiné, R.; Gallardo, E.; Anjos, O.; Gominho, J. Potential Applications of the Cytisus Shrub Species: Cytisus multiflorus, Cytisus scoparius, and Cytisus striatus. Processes 2022, 10, 1287. [Google Scholar] [CrossRef]
- Araruna, M.E.; Serafim, C.; Alves Júnior, E.; Hiruma-Lima, C.; Diniz, M.; Batista, L. Intestinal anti-inflammatory activity of terpenes in experimental models (2010–2020): A review. Molecules 2020, 25, 5430. [Google Scholar] [CrossRef]
- Martínez-Solis, I.; Sanahuja, M.A.; Moreno, L.; Olivar, T.; Castillo, E.; Zagotto, G.; Soriano, P. Medicinal Potential from Plant Biodiversity in a Mediterranean Scrubland. J. Biodivers. Bioprospecting J. Dev. 2014, 1, 1000111. [Google Scholar] [CrossRef]
- Abadi, I.; El Ayadi, R.; Bentayeb, A.; Aaziz, H.; Bouymajane, A.; Alemini, A.B.; Cacciola, F.; El Ibaoui, H. Phytochemical profile, in vivo anti-inflamatory and wound healing activities of the acqueous extract from aerial parts of Cistus ladanifer L. J. Pharm. Biomed. Anal. 2022, 249, 114960. [Google Scholar] [CrossRef]
- Aslam, S.; Younis, W.; Malik, M.N.N.; Jahan, S.; Alamgeer; Uttra, A.M.; Munir, M.U.; Roman, M. Pharmacological evaluation of anti-arthritic potential of terpinene-4-ol using in vitro and in vivo assays. Inflammopharmacology 2022, 30, 945–959. [Google Scholar] [CrossRef]
- Ngenge, A.T.; Kucukaydin, S.; Ceylan, O.; Duru, M.E. Evaluation of enzyme inhibition and anti-quorum sensing potentials of Melaleuca alternifolia and Citrus sinensis essential oils. Nat. Prod. Commun. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. In vitro neuroprotective potential of the monoterpenes a-pinene and 1,8-cineole against H2O2-induced stress in PC12 cells. Z. Naturforschung C 2016, 71, 191–199. [Google Scholar] [CrossRef]
- Khoshnazar, M.; Parvardeh, S.; Bigdeli, R. Alpha-pinene exerts neuroprotective effects via anti-inflamatory and antiapoptotic mechanisms in a rat model of focal cerebral ischemia-reperfusion. J. Stroke Cerebrovasc. Dis. 2020, 29, 104997. [Google Scholar] [CrossRef]
- Han, M.; Liu, Y.; Zhang, B.; Qiao, J.; Lu, W.; Zhu, Y.; Wang, Y.; Zhao, C. Salvianic borneol ester reduces b-amyloid oligomers and prevents cytoxicity. Pharm. Biol. 2011, 49, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Sammi, S.R.; Trivedi, S.; Rath, S.K.; Nagar, A.; Tandon, S.; Kalra, A.; Pandey, R. 1-Methyl-4-propan-2-ylbenzene from Thymus vulgaris Attenuates Cholinergic Dysfunction. Mol. Neurobiol. 2017, 54, 5468–5481. [Google Scholar] [CrossRef]
- Eddin, L.B.; Jha, N.K.; Meeran, M.F.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef]
- Chaves, N.; Nogales, L.; Montero-Fernández, I.; Blanco-Salas, J.; Alías, J.C. Mediterranean Shrub Species as a Source of Biomolecules against Neurodegenerative Diseases. Molecules 2023, 28, 8133. [Google Scholar] [CrossRef]
- Sales, A.; de Oliveira Felipe, L.; Bicas, J.L. Production, properties and applications of α-terpineol. Food Bioprocess. Technol. 2020, 13, 1261–1279. [Google Scholar] [CrossRef]
- Charitos, I.A.; D’Agostino, D.; Topi, S.; Bottalico, L. 40 Years of Helicobacter pylori: A revolution in biomedical thought. Gastroenterol. Insights 2021, 12, 111–135. [Google Scholar] [CrossRef]
- Oztekin, M.; Yilmaz, B.; Agagunduz, D.; Capasso, R. Overview of Helicobacter pylori infection: Clinical features, treatment and nutritional aspects. Diseases 2021, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hurtado, P.A.; Garduno-Siciliano, L.; Domínguez-Verano, P.; Martinez-Calero, E.; Canales-Martínez, M.A.; Rodríguez-Monroy, M.A. Evaluation of the gastroprotective effects of Chihuahua propolis on indomethacin induced gastric ulcers in mouse. Biomed. Pharmacother 2021, 137, 111345. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Chellappon, D.K.; Kikuchi, I.S.; Pinto, T.J.A.; Pabreja, K.; Agrawal, M.; Yogendra, S.; Tiwari, J.; Dua, K. Nephrotoxicity in Rats Exposed to Paracetamol: The Protective Role of Moralbosteroid, a Steroidal Glycoside. J. Environ. Pathol. Toxicol. Oncol. 2017, 36, 113–119. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef]
- Weiss, B.D.; Weiss, E.C.; Haggard, W.O.; Evans, R.P.; McLaren, S.G.; Smeltzer, M.S. Optimized elution of daptomycin from polymethylmethacrylate beads. Antimicrob. Agents Chemother. 2009, 53, 254–266. [Google Scholar] [CrossRef]
- Neto, J.C.; Tenorio, P.A.; Rodrigues, A.K.B.F.; Galvao, J.C.; Bernardino, A.C.; Oliveira, J.M.S.; Nascimento, T.G.; Oliveira, W.S.; Santos, J.C.C.; Smaniotto, S.; et al. Cardioprotective effect of hydroalcoholic extract of Brazilian red propolis against isoproterenol-induced myocardial infarction in rats. Phytomedicine Plus 2022, 2, 100190. [Google Scholar] [CrossRef]
- Kübler, W.; Haass, M. Cardioprotection: Definition, classification and fundamental principles. Heart 1996, 75, 330–333. [Google Scholar] [CrossRef]
- Fan, Y.H.; Xie, H.X.; Xin, P.; Mao, J.X.; Zhang, Y.Y.; Li, X.J. Analysis of the rule of medication for internal administration of gout by traditional Chinese medicine based on Traditional Chinese Medicine Inheritance System. Food Ther. Health Care 2020, 2, 64–78. [Google Scholar] [CrossRef]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kang, J.; Park, I.K. Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. J. Asia-Pac. Entomol. 2013, 16, 443–448. [Google Scholar] [CrossRef]
- Smith, G.H.; Roberts, J.M.; Pope, T. Terpene based biopesticides as potential alternatives to synthesis insecticides for control of aphid on protected ornamentals. Crop Prot. 2018, 110, 125–130. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopest. Int. 2008, 4, 63–84. [Google Scholar]
- Herrera, J.M.; Pizzolitto, R.P.; Zunino, M.P.; Dambolena, J.S.; Zygadlo, J.A. Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. J. Stored Prod. Res 2015, 62, 74–80. [Google Scholar] [CrossRef]
- Yildirim, E.; Emsen, B.; Kordali, S. Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J. Appl. Bot. Food Qual. 2013, 86, 198–204. [Google Scholar] [CrossRef]
- Chaubey, M.K. Fumigant toxicity of essential oils and pure compounds against Sitophilus oryzae L. (Coleoptera: Curculionidae). Biol. Agric. Hortic. 2012, 28, 111–119. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-a review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Raina, A.; John, B.; Mark, D.; Alan, L.; Raj, B.; Michael, F. Effect of orange oil extract on the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 2007, 3, 880–885. [Google Scholar] [CrossRef]
- Hollingswort, R.G. Limonene, a Citrus Extract, for Control of Mealybugs and Scale Insects. J. Econ. Entomol. 2005, 3, 772–779. [Google Scholar] [CrossRef]
- Nirmal, P.; Mereddy, R.; Sultanbawa, Y. Formulation, characterization and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chem. 2018, 254, 1–7. [Google Scholar] [CrossRef]
- Fei, T.; Gwinn, K.; Leyva-Gutierrrez, F.M.A.; Wang, T. Nanoemulsions of terpene by-products from cannabidiol production have promising insecticidal effect on Callosobruchus maculatus. Heliyon 2023, 9, e15101. [Google Scholar] [CrossRef]
- Levchenko, M.A.; Silivanova, E.A.; Khodakov, P.E.; Gholizadeh, S. Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae). Int. J. Trop. Insect Sci. 2021, 41, 2669–2677. [Google Scholar] [CrossRef]

| Isoprene Units | Number of Carbons | Terpene Nome |
|---|---|---|
| 2 | 10 | monoterpene |
| 3 | 15 | sesquiterpene |
| 4 | 20 | diterpene |
| 6 | 30 | triterpene |
| 8 | 40 | tetraterpene |
| <8 | >40 | politerpene |
| Terpene Family | T.v. | C.s. | C.m. | Q.s. | Q.i. | P.t. | A.u. | C.a. | E.m. | E.a. | E.s | S.r. | C.l. | C.mo. | C.sc. | C.v. | M.c. | P.l. | R.u. | L.s. | T.m. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MONOTERPENES | |||||||||||||||||||||
| β-linalool | + | + | + | + | + | ||||||||||||||||
| 1,8-cineole | + | + | + | + | + | + | + | + | + | + | |||||||||||
| Terpinen-4-ol | + | + | + | + | + | + | + | + | + | + | |||||||||||
| α-phellandrene | + | + | + | + | + | + | + | ||||||||||||||
| α-terpineol | + | + | + | + | + | + | + | + | + | + | |||||||||||
| borneol | + | + | + | + | + | + | + | + | + | + | + | ||||||||||
| camphor | + | + | + | + | + | + | + | + | + | ||||||||||||
| carvacrol | + | + | + | + | + | ||||||||||||||||
| citronellol | + | + | + | + | |||||||||||||||||
| eucalyptol | + | + | |||||||||||||||||||
| eugenol | + | + | + | + | |||||||||||||||||
| γ-terpinene | + | + | + | + | + | + | + | ||||||||||||||
| geraniol | + | + | + | + | + | + | |||||||||||||||
| limonene | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||
| linalool | + | + | + | + | + | + | + | + | |||||||||||||
| menthol | + | + | + | + | |||||||||||||||||
| o-cymene | + | + | + | + | + | + | + | + | + | + | + | ||||||||||
| p-menth-1-en-9-al | + | ||||||||||||||||||||
| pulegone | + | + | |||||||||||||||||||
| terpinen-4-ol | + | + | + | + | + | + | |||||||||||||||
| verbenene | + | + | + | + | |||||||||||||||||
| Isobutyl isobutyrate | + | ||||||||||||||||||||
| α-thujene | + | + | + | + | + | + | + | + | |||||||||||||
| α-pinene | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||
| β-pinene | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||
| β-myrcene | + | + | + | + | + | ||||||||||||||||
| 3-carene | + | + | + | + | |||||||||||||||||
| €-β-ocimene | + | + | + | ||||||||||||||||||
| cryptone | + | ||||||||||||||||||||
| myrtenol | + | + | + | + | + | + | |||||||||||||||
| Bicyclogermacrene | + | ||||||||||||||||||||
| p-menth-1,5-dien-8-ol | + | ||||||||||||||||||||
| α-campholenal | + | + | |||||||||||||||||||
| cis-menth-2-en-1-ol | + | ||||||||||||||||||||
| α-terpinene | + | + | + | + | + | + | |||||||||||||||
| Z--ocimene | + | + | + | + | |||||||||||||||||
| Sabinene | + | + | + | + | + | + | + | + | + | + | |||||||||||
| myrcene | + | + | + | + | + | + | + | ||||||||||||||
| β-phellandrene | + | + | + | + | + | + | + | ||||||||||||||
| δ-terpinene | + | + | + | ||||||||||||||||||
| perillene | + | ||||||||||||||||||||
| p-cymene | + | + | |||||||||||||||||||
| a-fenchene | + | + | + | + | |||||||||||||||||
| α-pinocarveol | + | + | |||||||||||||||||||
| cis-verbenol | + | ||||||||||||||||||||
| pinocarvone | + | + | |||||||||||||||||||
| cis-pinocamphone | + | ||||||||||||||||||||
| p-cymen-8-ol | + | + | |||||||||||||||||||
| t-caveol | + | ||||||||||||||||||||
| carvone | + | + | + | + | |||||||||||||||||
| thymol | + | + | + | + | |||||||||||||||||
| tricylene | + | + | + | + | + | ||||||||||||||||
| hortrienol | + | ||||||||||||||||||||
| nerol | + | + | + | ||||||||||||||||||
| isopinocamphone | + | ||||||||||||||||||||
| 3-carene | + | ||||||||||||||||||||
| E-pinocarveol | + | ||||||||||||||||||||
| β-terpinene | + | + | |||||||||||||||||||
| 3-carvene | + | + | |||||||||||||||||||
| 4-carvene | + | ||||||||||||||||||||
| isopulegol | + | ||||||||||||||||||||
| estragol | + | ||||||||||||||||||||
| germanene | + | + | + | ||||||||||||||||||
| Anethole | + | ||||||||||||||||||||
| Menthone | + | ||||||||||||||||||||
| 2-trans-hexenal | + | ||||||||||||||||||||
| n-octanal | + | ||||||||||||||||||||
| n-nonanal | + | + | |||||||||||||||||||
| n-decenal | + | + | |||||||||||||||||||
| E-2-nonenal | + | ||||||||||||||||||||
| β-cyclocitral | + | ||||||||||||||||||||
| octanol | + | ||||||||||||||||||||
| (E,E)-2,4-heptadienal | + | ||||||||||||||||||||
| (E,Z)-2,6-nonadienal | + | ||||||||||||||||||||
| E-2-decenal | + | ||||||||||||||||||||
| (E,E)-2,4-nonadienal | + | ||||||||||||||||||||
| (E,Z)-2,4-decadienal | + | ||||||||||||||||||||
| -piperitrol | + | ||||||||||||||||||||
| E-epoxycimene | + | ||||||||||||||||||||
| β-cuberene | + | ||||||||||||||||||||
| 3-carene | + | ||||||||||||||||||||
| 2-carene | + | ||||||||||||||||||||
| safranal | + | ||||||||||||||||||||
| α-cadiol | + | + | |||||||||||||||||||
| β-cadiol | + | ||||||||||||||||||||
| o-guayacool | + | ||||||||||||||||||||
| p-mentha-1(7),8-diene | + | ||||||||||||||||||||
| t-pinocarveol | + | ||||||||||||||||||||
| terpinolene | + | ||||||||||||||||||||
| p-menth-1,4-dien-8-ol | + | + | + | ||||||||||||||||||
| camphene | + | + | + | ||||||||||||||||||
| platanic acid | + | ||||||||||||||||||||
| SESQUITERPENES | |||||||||||||||||||||
| myrtenyl acetate | + | + | |||||||||||||||||||
| α-terpinyl acetate | + | + | + | ||||||||||||||||||
| Neryl acetate | + | + | + | + | |||||||||||||||||
| Geranyl acetate | + | + | + | + | |||||||||||||||||
| Methyl eugenol | + | ||||||||||||||||||||
| E-β-caryophyllene | + | + | + | ||||||||||||||||||
| α-humulene | + | + | + | + | + | + | |||||||||||||||
| valencene | + | ||||||||||||||||||||
| γ-gurjunene | + | + | |||||||||||||||||||
| isoledene | + | ||||||||||||||||||||
| α-ylangene | + | ||||||||||||||||||||
| α-cubebene | + | + | |||||||||||||||||||
| thymol acetate | + | ||||||||||||||||||||
| neroidol | + | ||||||||||||||||||||
| carvacol acetate | + | + | |||||||||||||||||||
| α-farnese | + | ||||||||||||||||||||
| E-2-undecenal | + | ||||||||||||||||||||
| β-ionone | + | ||||||||||||||||||||
| Spathulenol | + | ||||||||||||||||||||
| β-gurjunene | + | ||||||||||||||||||||
| (Z)-t-bergamotol | + | ||||||||||||||||||||
| E-β-damascone | + | ||||||||||||||||||||
| E-2-hexylcinemaldehide | + | ||||||||||||||||||||
| isopulegyl acetate | + | ||||||||||||||||||||
| trans-α-ambrinol | + | ||||||||||||||||||||
| cis-α-ambrinol | + | ||||||||||||||||||||
| cis-muurole-4(14)5-diene | + | ||||||||||||||||||||
| allo-aromadendrene | + | ||||||||||||||||||||
| cadina-1,4-dione | + | ||||||||||||||||||||
| β-elemene | + | ||||||||||||||||||||
| β-copaene | + | ||||||||||||||||||||
| α-caryophyllene | + | + | |||||||||||||||||||
| germacrene | + | + | + | ||||||||||||||||||
| allo-aromadendrene | + | + | + | ||||||||||||||||||
| 〈-humulene | + | + | |||||||||||||||||||
| α-selinene | + | ||||||||||||||||||||
| γ-muurolene | + | + | |||||||||||||||||||
| viridiflorene | + | + | + | ||||||||||||||||||
| α-muurolene | + | + | + | + | + | ||||||||||||||||
| β-bisabolene | + | ||||||||||||||||||||
| δ-cadiene | + | + | |||||||||||||||||||
| palustrol | + | ||||||||||||||||||||
| Spathulenol | + | + | |||||||||||||||||||
| ledol | + | + | + | ||||||||||||||||||
| β-eudesmol | + | ||||||||||||||||||||
| cadalene | + | + | |||||||||||||||||||
| chavicol | + | ||||||||||||||||||||
| α-bisabolol | + | + | + | ||||||||||||||||||
| nerolidol | + | ||||||||||||||||||||
| cis-bourbonene | + | ||||||||||||||||||||
| selin-11-en-4-ol | + | ||||||||||||||||||||
| β-bourbonene | + | ||||||||||||||||||||
| α-curcumene | + | ||||||||||||||||||||
| elemol | + | + | |||||||||||||||||||
| α-zingiberene | + | ||||||||||||||||||||
| α-calacorene | + | ||||||||||||||||||||
| α-muurolol | + | ||||||||||||||||||||
| α-lonone | + | ||||||||||||||||||||
| bornyl acetate | + | + | + | + | + | ||||||||||||||||
| lavandulyl acetate | + | + | |||||||||||||||||||
| α-copaene | + | + | + | + | |||||||||||||||||
| longifolene | + | ||||||||||||||||||||
| β-caryophyllene | + | + | + | + | + | + | + | + | + | ||||||||||||
| linaly acetate | + | + | |||||||||||||||||||
| α-gurjunene | + | ||||||||||||||||||||
| δ-cadiene | + | + | + | + | |||||||||||||||||
| E-β-lonone | + | ||||||||||||||||||||
| globulol | + | ||||||||||||||||||||
| guaiol | + | ||||||||||||||||||||
| DITERPENES | |||||||||||||||||||||
| gibberellic acid | + | ||||||||||||||||||||
| Retinal | + | ||||||||||||||||||||
| Retinol | + | ||||||||||||||||||||
| 16-kaurene | + | + | |||||||||||||||||||
| kaur-16-en | + | ||||||||||||||||||||
| vulgarol | + | + | |||||||||||||||||||
| TRITERPENES | |||||||||||||||||||||
| α-amyrin | + | + | |||||||||||||||||||
| α-amyrenone | + | ||||||||||||||||||||
| β-amyrin | + | + | |||||||||||||||||||
| botulim | + | + | + | ||||||||||||||||||
| cycloartanol | + | ||||||||||||||||||||
| erythrodiol | + | ||||||||||||||||||||
| friedelin | + | + | |||||||||||||||||||
| 4-epi-friedelin | + | ||||||||||||||||||||
| Lupeol | + | + | |||||||||||||||||||
| taraxasterol | + | ||||||||||||||||||||
| olean-12-en-3b-23-diol | + | ||||||||||||||||||||
| 7-β-hydroxystigmast-4-en-3-one | + | ||||||||||||||||||||
| pomalic acid 3-acetate | + | ||||||||||||||||||||
| β-sitosterol | + | + | |||||||||||||||||||
| moretenol | + | ||||||||||||||||||||
| 9,19-Cyelolamastan-3-ol | + | ||||||||||||||||||||
| lupenone | + | ||||||||||||||||||||
| norolean-12-en | + | ||||||||||||||||||||
| betulinic acid | + | ||||||||||||||||||||
| sitost-4-en-3-one | + | ||||||||||||||||||||
| ursolic acids | + | ||||||||||||||||||||
| Sitostanol | + | ||||||||||||||||||||
| Stigmasterol | + | ||||||||||||||||||||
| methylenecycloartanol | + | + | |||||||||||||||||||
| References | [26,27,28,29] | [30,31] | [32] | [33,34] | [35] | [36,37] | [38,39,40] | [41,42] | [43] | [44] | [45] | [46] | [41,47,48,49,50] | [50,51] | [31,52] | [52,53] | [54,55] | [56] | [57] | [58,59,60,61] | [62,63] |
| Monoterpenes | % | Sesquiterpenes | % | Diterpenes | % | Triterpenes | % | Tetraterpenes | % | |
|---|---|---|---|---|---|---|---|---|---|---|
| Q.i. | 11 | 100 | ||||||||
| P.t. | 21 | 87.5 | 3 | 12.50 | ||||||
| E.m. | 6 | 85.7 | 1 | 14.30 | ||||||
| P.l. | 11 | 84.60 | 2 | 15.40 | ||||||
| R.u. | 5 | 83 | 1 | 17 | ||||||
| E.s. | 34 | 82.93 | 7 | 15.7 | ||||||
| T.v. | 27 | 81 | 6 | 19 | ||||||
| C.sc. | 16 | 76.10 | 1 | 4.76 | 4 | 19.14 | ||||
| S.r. | 20 | 71.43 | 8 | 28.57 | ||||||
| M.c. | 28 | 70 | 12 | 30.0 | ||||||
| C.s | 20 | 60.0 | 13 | 40 | ||||||
| C.mo. | 10 | 58.8 | 3 | 17.64 | 4 | 23.56 | ||||
| C.l. | 24 | 57.14 | 17 | 40.47 | 1 | 3.29 | ||||
| A.u. | 13 | 46.42 | 2 | 7.14 | 12 | 42.85 | 1 | 3.59 | ||
| T.m. | 10 | 45 | 12 | 55 | ||||||
| E.a. | 6 | 42.85 | 8 | 57.2 | ||||||
| C.m. | 9 | 30 | 16 | 59.2 | 2 | 10.80 | ||||
| L.s. | 34 | 69.40 | 15 | 30.60 | ||||||
| C.a. | 11 | 100 | ||||||||
| Q.s. | 5 | 100 | ||||||||
| C.v. | 11 | 78.57 | 3 | 21.43 |
| Terpene (%) | T.v. | C.s. | C.m. | P.t. | A.u. | C.a. | E.m. | E.a. | E.s. | S.r. | C.l. | C.mo. | C.sc. | M.c. | P.l. | R.u. | L.s. | T.m. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1,8-cineole | trazes-6.7 | 0.4 | 0.5 | 33.8 | 0.3 | N.q. | 25.7 | 0.4 | 0.22–16.3 | |||||||||
| Terpinen-4-ol | 0,06 | trazes-0.7 | 0.7 | 0.26–0.30 | 0.2 | 0.38 | 1.2–1.82 | 0.46 | 10.1 | 0.1 | ||||||||
| α-terpineol | trazes-2.69 | 2,6 | 4.8 | 0.7 | 0.62–1.23 | 0.9 | 50.6 | 0.03 | ||||||||||
| borneol | 0.4 | 0.4–6.3 | 6.3 | 0.8 | N.q. | 9.17 | 0.38–11.1 | N.q. | 0.1 | 0.8–1.59 | trazes-0.9 | |||||||
| camphor | 0.4–1.79 | 0.8–3.4 | N.q. | 5.07 | 11.22 | N.q. | 41.6 | 1.3–2.8 | 7.2 | |||||||||
| γ-terpinene | trazes-30.9 | 0.25–3.5 | N.q. | 0.65 | 0.79–1.70 | 3.53 | 1.17 | 0.06–0.2 | ||||||||||
| Limonene | 0.05–7.14 | 0.1–1.67 | 1.3–13.5 | 10.7 | 3.19 | 2.8–3.3 | N.q. | 4.1–17.8 | 4.4 | trazes | 0.2–1.1 | 1.07–71.82 | ||||||
| Linalool | 5.1–76.6 | 1.2 | N.q. | 0.89 | 3.08 | 0.3 | trazes-0.41 | |||||||||||
| p-cymene | trazes | 0.4–0.96 | 3.4 | 5.42 | 0.3 | 0.9 | 22.1 | 0.4 | 0.1 | 0.4–9.7 | ||||||||
| α-thujene | 0.5–2.84 | 0.6 | 0.6 | N.q. | 0.4 | 0.01 | 0.1–0.2 | |||||||||||
| α-pinene | 0.47–5.7 | 0.86 | 0.6 | 0.8–45.36 | 6.8 | 1.86 | 2.7–49.65 | 14.7 | 34.7 | 0.4–2.96 | 2.3–7.2 | |||||||
| β-pinene | trazes-0.92 | 2.91 | 0.7 | 2.2–20.74 | N.q. | trazes | 26.1 | 0.61–5.61 | 4.6 | 18.3 | trazes-1.3 | 1.72–5.7 | ||||||
| Sabinene | trazes-0.2 | 5.61 | N.q. | 1.3 | 0.37–16.03 | 3.1 | 32.7 | 0.03–0.1 | 1.6–3.17 | |||||||||
| Myrcene | 0.09–3.45 | 1.11 | 2.71 | 16.9 | 0.5 | trazes-0.01 | 2.90–9.81 | |||||||||||
| β-phellandrene | 0.21–0.3 | 1.18 | 0.3 | 0.61 | 11.6 | 0.09–0.1 | ||||||||||||
| β-caryopillene | 2.27–2.68 | 0.7 | 1.65–2.40 | 0.7 | 7.48–36.9 | N.q. | 0.9 | 0.03 | 0.1 | |||||||||
| References | [26,27,28,29] | [30,31] | [32] | [33,34] | [35] | [36,37] | [38,39,40] | [41,42] | [43] | [44] | [45] | [46] | [47,48,49,50] | [41,50,51] | [31,51] | [52,53] | [54,55] | [56] |
| Compound | Function | References |
|---|---|---|
| 1,8-cineole (eucalyptol) ![]() | Antihypertensive. cardioprotective. Antioxidant, bronchodilator, analgesic, proapoptotic against airway-related cells, antibacterial (preservative), antinutritional, insecticidal, antifungal effects. | [65,66,67,68,69,70] |
Terpinen-4-ol![]() | Involved in diseases related to oxidative stress, neurodegenerative disorders, anticancer, cardiovascular diseases, diabetes, insecticide (against Sitophilus zeamis and A. solani), arrhythmagenic activity in cardiac tissue. Antimicrobial | [75,76,77,78,79,80,81] |
α-terpineol![]() | Insecticide (entomopathogenic nematodes), gastroprotective activity, antibacterial, antioxidant, antifungal | [41,71,72,73,74] |
Borneol![]() | Skin repair activity (inhibition of tyrosinase activity), antibacterial, anti-inflammatory, aardio and cerebrovascular function, antitumor, antifungal analgesic, antipyretic | [66,82,83,84,85,86] |
Camphor![]() | Membrane stabilization. used in the treatment of cognitive deficits anti-inflammatory and antifungal | [87,88] |
γ-terpinene![]() | Antitumor, antibacterial, antifungal, biofuel and antioxidant Anti-inflammatory | [89,90,91,92] |
Limonene![]() | Insecticide, antidepressant, antioxidant, antimicrobial, anti-inflammatory antifungal, anticancer | [93,94,95,96,97,98,99] |
Linalool![]() | Antibacterial, antinociceptive, antimicrobial, antioxidant, anti-inflammatory, analgesic, anxiolytic, antihyperlipidemics, neuroprotective and antidepressant | [100,101,102,103,104,105] |
o-cymene![]() | Antioxidant, anti-inflammatory, antiparasitic, antidiuretic, antiviral, antitumor, antibacterial, antifungal, cytoprotective, insecticide and chemotherapeutic Potential | [106,107,108,109,110,111] |
α-thujene![]() | Neurotoxic, Antimutagenic, Immunomodulator, Antidiabetic and antimicrobial | [112,113] |
α-pinene![]() | Anti-inflammatory, antioxidant, neuroprotective, biofuel. Hypoglycemic and hypolopidemic activity, Flavoring and flavoring, Antibacterial, Insecticide and herbicide | [114,115,116,117,118,119] |
β-pinene![]() | Polymer synthesis, anticoagulant, antibiotic resistance, antitumor, antimalarial, antioxidant, anti-inflammatory, anti-leishmania. | [122,123,124] |
Sabinene![]() | Antimicrobial jet fuel Flavoring | [132,133,134] |
Myrcene![]() | Food additive, anxiolytic, antioxidant, anti-inflammatory, analgesic, antimicrobial, neuroprotective | [125,126,127,128,129] |
β-phellandrene![]() | Antifungal, antibacterial | [130,131] |
β-caryopillene![]() | Anti-inflammatory, neuroprotective, flavoring, flavor enhancer, cardioprotective, hepatoprotective, nephroprotector, antioxidant and antitumor | [132,133,134,135,136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Fernández, I.; Lobón, N.C.; Gómez, L.N.; Blanco-Salas, J.; Gallego, J.C.A. Bioactive Potential of Terpenes from Mediterranean Scrub Plants: A Review. Molecules 2025, 30, 4268. https://doi.org/10.3390/molecules30214268
Montero-Fernández I, Lobón NC, Gómez LN, Blanco-Salas J, Gallego JCA. Bioactive Potential of Terpenes from Mediterranean Scrub Plants: A Review. Molecules. 2025; 30(21):4268. https://doi.org/10.3390/molecules30214268
Chicago/Turabian StyleMontero-Fernández, Ismael, Natividad Chaves Lobón, Laura Nogales Gómez, José Blanco-Salas, and Juan Carlos Alías Gallego. 2025. "Bioactive Potential of Terpenes from Mediterranean Scrub Plants: A Review" Molecules 30, no. 21: 4268. https://doi.org/10.3390/molecules30214268
APA StyleMontero-Fernández, I., Lobón, N. C., Gómez, L. N., Blanco-Salas, J., & Gallego, J. C. A. (2025). Bioactive Potential of Terpenes from Mediterranean Scrub Plants: A Review. Molecules, 30(21), 4268. https://doi.org/10.3390/molecules30214268

















