Influence of Phosphomolybdates on Flame Retardancy and Smoke Suppression of PVC Matrix Flame Retardant Composites
Abstract
1. Introduction
2. Results and Discussion
2.1. LOI
2.2. Smoke Density Tests
2.3. Cone Calorimeter Test
2.4. Thermal Degradation
2.5. Morphology of Char Residual
2.6. Proposed Flame-Retardant Mechanism
2.7. Mechanical Properties
3. Materials and Methods
3.1. Materials
3.2. Preparation of PVC Composites
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, J.N.; Freire, E.; Hemadipour, H. Applications and market of PVC for piping industry. Polímeros 2009, 19, 58–62. [Google Scholar] [CrossRef]
- Günter, B. 5-Flame retardant selection for cable industry. In Flame Retardant Selection for Polymers; Henri, V., Mohammad, R.S., Günter, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 123–149. [Google Scholar]
- Carty, P.; White, S.; Price, D.; Lu, L. Smoke-suppression in plasticized chlorinated poly (vinyl chloride) (CPVC). Polym. Degrad. Stab. 1999, 63, 465–468. [Google Scholar] [CrossRef]
- Qu, H.; Wu, W.; Xie, J.; Xu, J. A novel intumescent flame retardant and smoke suppression system for flexible PVC. Polym. Adv. Technol. 2011, 22, 1174–1181. [Google Scholar] [CrossRef]
- Zong, G.; Hao, J.; Hao, X.; Fang, Y.; Song, Y.; Wang, H.; Ou, R.; Wang, Q. Enhancing the flame retardancy and mechanical properties of veneered wood flour/polyvinyl chloride composites. Polym. Compos. 2019, 41, 848–857. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, W.; Zhao, X.; Li, Z.; Li, X.; Zhang, Z. Fabrication of bismuth oxychloride nanosheets decorated with chitosan and phytic acid for improvement of flexible poly(vinyl chloride) flame retardancy. Fibers Polym. 2021, 22, 2656–2663. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polym. Adv. Technol. 2005, 16, 707–716. [Google Scholar] [CrossRef]
- Lu, Y.H.; Wu, C.F.; Xu, S.A. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly (vinyl chloride) composites: The effect of filler shape. Compos. Part A Appl. Sci. Manuf. 2018, 113, 1–11. [Google Scholar] [CrossRef]
- Guo, Y.C.; Xue, Y.; Zuo, X.H.; Zhang, L.X.; Yang, Z.H.; Zhou, Y.C.; Marmorat, C.; He, S.; Rafailovich, M. Capitalizing on the molybdenum disulfide/graphene synergy to produce mechanical enhanced flame retardant ethylene-vinyl acetate composites with low aluminum hydroxide loading. Polym. Degrad. Stab. 2017, 144, 155–166. [Google Scholar] [CrossRef]
- Cao, H.M.; Shi, S.L.; Peng, H.S.; Hu, J.; Liao, S.; Wang, S.H.; Chen, C. Achieving enhanced fire safety of polyvinyl chloride through rapid catalytic carbonization using a triple-effect flame retardant of Mg(OH)2-ZnO-TiO2. Chem. Res. Chin. Univ. 2024, 40, 1233–1244. [Google Scholar] [CrossRef]
- Gao, Z.H.; Lu, L.H.; Shi, C.L.; Qian, X.D. The effect of OCoAl-LDH and OCoFe-LDH on the combustion behaviors of polyvinyl chloride. Polym. Adv. Technol. 2020, 31, 675–685. [Google Scholar] [CrossRef]
- Dang, L.; Lv, Z.H.; Du, X.L.; Tang, D.L.; Zhao, Y.T.; Zhu, D.H.; Xu, S.A. Flame retardancy and smoke suppression of molybdenum trioxide doped magnesium hydrate in flexible polyvinyl chloride. Polym. Adv. Technol. 2020, 31, 2108–2121. [Google Scholar] [CrossRef]
- Hajibeyg, M.; Maleki, M.; Shabanian, M.; Ducos, F.; Vahabi, H. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl. Surf. Sci. 2018, 439, 1163–1179. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, J.; Hu, W.D.; Jiao, Y.H.; Xu, J.Z. The block combustion, high char residues and smoke restrain effect of nano-FeSnO(OH)5 on polyvinyl chloride. J. Therm. Anal. Calorim. 2019, 137, 1255–1265. [Google Scholar] [CrossRef]
- Li, Y.; Lv, L.; Wang, W.; Zhang, J.; Lin, J.; Zhou, J.; Dong, M.; Gan, Y.; Seok, I.; Guo, Z. Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: Flame retardancy and mechanical properties. Polymer 2020, 190, 122198. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Pike, R.D.; Starnes, W.H.; Jeng, J.P.; Bryant, W.S.; Kourtesis, P.; Adams, C.W.; O’Brien, C.P. Low-valent metals as reductive cross-linking agents: A new strategy for smoke suppression of poly (vinyl chloride). Macromolecules 1997, 30, 6957–6965. [Google Scholar] [CrossRef]
- Xu, J.L.; Lin, Y.G.; Yang, W.L.; Kang, C.H.; Niu, L. Application of nanometer antimony trioxide modified by dioctyl phthalate in polyvinyl chloride flame retardant materials. Mater. Res. 2020, 23, e20200316. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, W.; He, S.; Wang, X.; Jiao, Y.; Qu, H.; Xu, J. Synergistic flame retardant effects of activated carbon and molybdenum oxide in poly (vinyl chloride). Polym. Int. 2018, 67, 445–452. [Google Scholar] [CrossRef]
- Xu, J.L.; Li, C.S.; Ren, S.B.; Niu, L.; Bai, Q.W.; Li, X. Influence of AOM on flame retardancy and smoke suppression of PVC matrix composites. Int. Polym. Proc. 2022, 37, 316–328. [Google Scholar] [CrossRef]
- Qi, H.C.; Chen, X.H. Application of ammonium phosphomolybdate as flame retardant and smoke suppression in semi-rigid polyvinyl chloride. Polym. Mater. Sci. Eng. 2016, 32, 100–104. [Google Scholar]
- Fang, Y.; Wang, Q.; Bai, X.; Wang, W.; Cooper, P.A. Thermal and burning properties of wood flour-poly(vinyl chloride) composite. J. Therm. Anal. Calorim. 2012, 109, 1577–1585. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Zhu, X.F.; Lin, B.K.; Shi, C.; Han, J. Bio-based tin phytate interface assembled bismuth oxychloride for enhanced flame retardancy and smoke suppression in polyvinyl chloride coatings. J. Clean. Prod. 2024, 476, 143615. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Man, P. Kinetic analysis of thermal decomposition of polyvinyl chloride at various oxygen concentrations. Fire 2023, 6, 404. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Yang, Y.; Xu, J.; Bao, J.; Ma, H. Polyphosphazene hybridized perovskite copper hydroxystannate microspheres effectively improve the flame retardant and mechanical properties of Poly(vinyl Chloride) Resin. J. Vinyl Addit. Technol. 2023, 29, 877–889. [Google Scholar] [CrossRef]
- Hajibeygi, M.; Soltani, F.; Shabanian, M.; Maleki, M.; Khonakdar, H.A.; Kruppke, B. Plasticized polyvinyl chloride/melamine-cyanurate modified Mg(OH)2@bentonite nanocomposites; mechanical, thermal, and flame retardant properties. J. Vinyl Addit. Technol. 2024, 30, 114–129. [Google Scholar] [CrossRef]
- Xu, Z.; Duan, L.; Hou, Y.; Chu, F.; Jiang, S.; Hu, W.; Song, L. The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105815. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, T.T.; Zhang, J. Enhanced flame retardancy and thermal stability of zinc borate and magnesium carbonate as a promising alternative for Sb2O3 toward polyvinyl chloride. J. Appl. Polym. Sci. 2023, 141, e54790. [Google Scholar] [CrossRef]
- Chen, Y.N.; Wu, Q.S.; Li, N.; Tang, T.; Xie, X.; Zhang, C.C.; Zuo, Y.X. The Flame Retardancy and Smoke Suppression Performance of Polyvinyl Chloride Composites with an Efficient Flame Retardant System. Coatings 2023, 13, 1814. [Google Scholar] [CrossRef]
- Pan, Y.T.; Castillo-Rodríguez, M.; Wang, D.Y. Mesoporous metal oxide/pyrophosphate hybrid originated from reutilization of water treatment resin as a novel fire hazard suppressant. Mater. Chem. Phys. 2017, 203, 49–57. [Google Scholar] [CrossRef]
- Wescott, L.D.; Starnes, W.H.; Mujsca, A.M.; Linxwiler, P.A. Mechanistic studies on the role of copper-and molybdenum-containing species as flame and smoke suppressants for poly(vinyl chloride). J. Anal. Appl. Pyrol. 1985, 8, 163–172. [Google Scholar] [CrossRef]
- Pan, Y.T.; Wang, X.; Li, Z.; Wang, D.Y. A facile approach towards large-scale synthesis of hierarchically nanoporous SnO2@Fe2O3 0D/1D hybrid and its effect on flammability, thermal stability and mechanical property of flexible poly(vinyl chloride). Compos. Part. B Eng. 2017, 110, 46–55. [Google Scholar] [CrossRef]
- Ou, Y.X. Practical Flame Retardant Technology; Chemical Industry Press: Beijing, China, 2002; pp. 79–85. [Google Scholar]
- ASTM D2863-12; Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index)1. American National Standards Institute: New York, NY, USA, 2012.
- ISO 5660-1; Reaction-To-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organisation for Standardisation: Geneva, Switzerland, 2015.
- ASTM D2843; Test Method for Density of Smoke from the Burning or Decomposition of Plastics. American National Standards Institute: New York, NY, USA, 1999.
- ISO 527-2; Plastics-Determination of Tensile Properties-Part 2: Test Conditions for Moulding and Extrusion Plastic. International Or-ganisation for Standardisation: Geneva, Switzerland, 2025.






| Sample | LOI/% |
|---|---|
| PVC-0 | 28.8 ± 0.2 |
| PVC-1 | 34.1 ± 0.1 |
| PVC-2 | 35.2 ± 0.1 |
| PVC-3 | 35.1 ± 0.2 |
| PVC-4 | 35.0 ± 0.1 |
| PVC-5 | 35.1 ± 0.2 |
| PVC-6 | 30.3 ± 0.1 |
| PVC-7 | 29.8 ± 0.1 |
| PVC-8 | 29.6 ± 0.1 |
| PVC-9 | 30.0 ± 0.2 |
| Sample | MSD | SDR |
|---|---|---|
| PVC-0 | 98.5 | 88.1 |
| PVC-1 | 95.8 | 86.9 |
| PVC-2 | 94.0 | 83.7 |
| PVC-3 | 93.2 | 81.8 |
| PVC-4 | 92.6 | 77.9 |
| PVC-5 | 94.5 | 83.9 |
| Samples | PVC-0 | PVC-1 | PVC-2 | PVC-3 | PVC-4 | PVC-5 |
|---|---|---|---|---|---|---|
| EHC/MJ·kg−1 | 49.4 | 57.4 | 77.6 | 78.0 | 66.4 | 69.6 |
| TTI/s | 18 | 17 | 16 | 16 | 16 | 16 |
| PHRR/kW·m−2 | 285 | 250 | 193 | 227 | 216 | 208 |
| TPHRR/s | 110 | 150 | 100 | 120 | 140 | 115 |
| FGI/(kW/(m2·s)) | 2.6 | 1.7 | 1.9 | 1.9 | 1.5 | 1.8 |
| FPI/(s/(kW·m−2)) | 0.06 | 0.07 | 0.08 | 0.07 | 0.07 | 0.08 |
| THR/MJ·m−2 | 62.0 | 59.2 | 58.3 | 62.1 | 59.1 | 57.6 |
| YCO2/% | 0.14 | 0.13 | 0.09 | 0.11 | 0.11 | 0.10 |
| YCO/% | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| TSP (m2/m2) | 42.5 | 29.9 | 22.1 | 21.7 | 18.7 | 21.2 |
| PSPR (m2/s) | 0.26 | 0.14 | 0.11 | 0.10 | 0.10 | 0.09 |
| mean MLR (g/s) | 0.10 | 0.10 | 0.08 | 0.06 | 0.07 | 0.07 |
| Residues/% | 9.9 | 12.5 | 16.3 | 13.8 | 15.3 | 16.2 |
| Samples | T−20wt% (°C) | Tmax1 (°C) | Tmax2 (°C) | Tmax3 (°C) | 700 °C (wt%) |
|---|---|---|---|---|---|
| PVC-0 | 289 | 297 | 445 | 566 | 9.93 |
| PVC-1 | 274 | 286 | 452 | 566 | 11.70 |
| PVC-2 | 263 | 281 | 473 | 523 | 17.49 |
| PVC-3 | 262 | 277 | 461 | 537 | 15.34 |
| PVC-4 | 269 | 278 | 456 | 542 | 17.51 |
| PVC-5 | 264 | 275 | 458 | 547 | 13.61 |
| Sample | Tensile Strength (MPa) | Elongation at Break (%) |
|---|---|---|
| PVC-0 | 20.54 ± 0.37 | 288 ± 9 |
| PVC-1 | 21.32 ± 0.52 | 324 ± 10 |
| PVC-2 | 19.89 ± 0.28 | 278 ± 8 |
| PVC-3 | 20.17 ± 0.16 | 282 ± 8 |
| PVC-4 | 19.64 ± 0.33 | 269 ± 9 |
| PVC-5 | 19.68 ± 0.42 | 272 ± 14 |
| Samples | PVC (g) | Sb2O3 (g) | Iron Phosphomolybdate (g) | Cobalt Phosphomolybdate (g) | Nickel Phosphomolybdate (g) | Zinc Phosphomolybdate (g) |
|---|---|---|---|---|---|---|
| PVC-0 | 100 | |||||
| PVC-1 | 100 | 6.0 | ||||
| PVC-2 | 100 | 4.5 | 1.5 | |||
| PVC-3 | 100 | 4.5 | 1.5 | |||
| PVC-4 | 100 | 4.5 | 1.5 | - | ||
| PVC-5 | 100 | 4.5 | 1.5 | |||
| PVC-6 | 100 | 6.0 | ||||
| PVC-7 | 100 | 6.0 | ||||
| PVC-8 | 100 | 6.0 | ||||
| PVC-9 | 100 | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Hu, Z.; Jiang, F.; Yang, Q.; Gao, M. Influence of Phosphomolybdates on Flame Retardancy and Smoke Suppression of PVC Matrix Flame Retardant Composites. Molecules 2025, 30, 4269. https://doi.org/10.3390/molecules30214269
Zhou X, Hu Z, Jiang F, Yang Q, Gao M. Influence of Phosphomolybdates on Flame Retardancy and Smoke Suppression of PVC Matrix Flame Retardant Composites. Molecules. 2025; 30(21):4269. https://doi.org/10.3390/molecules30214269
Chicago/Turabian StyleZhou, Xuan, Zhiyu Hu, Feng Jiang, Quancheng Yang, and Ming Gao. 2025. "Influence of Phosphomolybdates on Flame Retardancy and Smoke Suppression of PVC Matrix Flame Retardant Composites" Molecules 30, no. 21: 4269. https://doi.org/10.3390/molecules30214269
APA StyleZhou, X., Hu, Z., Jiang, F., Yang, Q., & Gao, M. (2025). Influence of Phosphomolybdates on Flame Retardancy and Smoke Suppression of PVC Matrix Flame Retardant Composites. Molecules, 30(21), 4269. https://doi.org/10.3390/molecules30214269

