Physical Properties of Bacterial Nanocellulose as an Encapsulant Material of Vitamin B12
Abstract
1. Introduction
2. Results and Discussion
2.1. ATR-FTIR
2.2. Rheology of the Powders
2.3. Cohesion Index (CI)
2.4. Microstructure
2.5. Thermal Stability
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Suspensions for Spray Drying
3.2.2. Spray Drying
3.2.3. ATR-FTIR Spectroscopy
3.2.4. Rheology of the Powders
3.2.5. Cohesion Index (CI)
3.2.6. Thermal Analysis
3.2.7. Scanning Electron Microscopy (SEM)
3.2.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
BNC | Bacterial nanocellulose |
MDX | Maltodextrin |
B12 | Vitamin B12 (cyanocobalamin) |
ATR-FTIR | Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy |
SEM | Scanning Electron Microscopy |
TGA | Thermogravimetric Analysis |
DTG | Differential Thermogravimetric Analysis |
CI | Cohesion Index |
DE | Dextrose Equivalent |
RH | Relative Humidity |
References
- Duarte, R.F.; Evtuguin, D. V Hydration of Cellulose/Silica Hybrids Assessed by Sorption Isotherms. J. Phys. Chem. B 2010, 114, 4047–4055. [Google Scholar]
- Psomiadou, E.; Arvanitoyannis, I.; Yamamoto, N. Edible Films Made from Natural Resources; Microcrystalline Cellulose (MCC), Methylcellulose (MC) and Corn Starch and Polyols—Part 2. Carbohydr. Polym. 1996, 31, 193–204. [Google Scholar] [CrossRef]
- de Olyveira, G.M.; Manzine Costa, L.M.; Basmaji, P.; Xavier Filho, L. Bacterial Nanocellulose for Medicine Regenerative. J. Nanotechnol. Eng. Med. 2011, 2, 034001. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Moghadam, M.; Amft, J.; Tolun, A.; Hasabnis, G.; Altintas, Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B12: A Critical Review. Molecules 2023, 28, 7469. [Google Scholar] [CrossRef]
- Gharagozlou, M.; Naghibi, S. Preparation of Vitamin B12–TiO2 Nanohybrid Studied by TEM, FTIR and Optical Analysis Techniques. Mater. Sci. Semicond. Process. 2015, 35, 166–173. [Google Scholar] [CrossRef]
- Ghosal, S.; Indira, T.N.; Bhattacharya, S. Agglomeration of a Model Food Powder: Effect of Maltodextrin and Gum Arabic Dispersions on Flow Behavior and Compacted Mass. J. Food Eng. 2010, 96, 222–228. [Google Scholar] [CrossRef]
- Gikonyo, B. Sugarcane as Biofuel Feedstock: Advances Toward a Sustainable Energy Solution; Gikonyo, B., Ed.; Apple Academic Press, Inc.: Palm Bay, FL, USA, 2015; ISBN 9781498728836. [Google Scholar]
- Igumentceva, M. IR Fourier Spectroscopy of Water and H-Containing Defects in Quartz. Mineral. Mag. 2014, 1087. [Google Scholar] [CrossRef]
- Guo, Q.X.; Xie, Y.; Wang, X.J.; Zhang, S.Y.; Hou, T.; Lv, S.C. Synthesis of Carbon Nitride Nanotubes with the C3N4 Stoichiometry via a Benzene-Thermal Process at Low Temperatures. Chem. Commun. 2004, 1, 26–27. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S. Spectroscopic Study of Characterisation of Commercial Drug and Its Mixture. Proc. Indian Natl. Sci. Acad. 2013, 79, 357–363. [Google Scholar]
- Castro, C.; Zuluaga, R.; Putaux, J.L.; Caro, G.; Mondragon, I.; Gañán, P. Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter Swingsii Sp. from Colombian Agroindustrial Wastes. Carbohydr. Polym. 2011, 84, 96–102. [Google Scholar] [CrossRef]
- Pandey, K.K.; Theagarjan, K.S. Analysis of Wood Surface and Ground Wood by Diffuse Reflectance (DRIFT) and Photoacoustic (PAS) Fourier Transform Infrared Spectroscopy. Holz Als Roh-Und Werkst. 1997, 55, 383–390. [Google Scholar] [CrossRef]
- Martins, L.R.; Baêta, B.E.L.; Gurgel, L.V.A.; de Aquino, S.F.; Gil, L.F. Application of Cellulose-Immobilized Riboflavin as a Redox Mediator for Anaerobic Degradation of a Model Azo Dye Remazol Golden Yellow RNL. Ind. Crops Prod. 2014, 65, 454–462. [Google Scholar] [CrossRef]
- Leopold, N.; Cîntă-Pînzaru, S.; Baia, M.; Antonescu, E.; Cozar, O.; Kiefer, W.; Popp, J. Raman and Surface-Enhanced Raman Study of Thiamine at Different PH Values. Vib. Spectrosc. 2005, 39, 169–176. [Google Scholar] [CrossRef]
- Ramachandran, S.; Velraj, G. FT-IR, FT-Raman Spectral Analysis and Density Functional Theory Calculations Studies of 3-Chloro-2-Nitrobenzyl Alcohol. Rom. Rep. Phys. 2012, 57, 1128–1137. [Google Scholar]
- Sala, O.; Gonçalves, N.S.; Noda, L.K. Vibrational Analysis of Nicotinic Acid Species Based on Ab Initio Molecular Orbital Calculations. J. Mol. Struct. 2001, 565–566, 411–416. [Google Scholar] [CrossRef]
- Chesters, M.A.; McCash, E.M. The Adsorption and Reaction of Methanol on Oxidized Copper(111) Studied by Fourier Transform Reflection-Absorption Infrared Spectroscopy. Spectrochim. Acta A 1987, 43, 1625–1630. [Google Scholar] [CrossRef]
- Dekkers, M.A.P.; Lippits, M.J.; Nieuwenhuys, B.E. CO Adsorption and Oxidation on Au/TiO2. Catal. Lett. 1998, 56, 195–197. [Google Scholar] [CrossRef]
- Liang, C.Y.; Marchessault, R.H. Infrared Spectra of Crystalline Polysaccharides. II. Native Celluloses in the Region from 640 to 1700 cm−1. J. Polym. Sci. 1959, 39, 269–278. [Google Scholar] [CrossRef]
- Yin, Y.; Li, J.; Liu, Y.; Li, Z. Starch Crosslinked with Poly(Vinyl Alcohol) by Boric Acid. J. Appl. Polym. Sci. 2005, 96, 1394–1397. [Google Scholar] [CrossRef]
- Cho, N.J.; Kanazawa, K.K.; Glenn, J.S.; Frank, C.W. Employing Two Different Quartz Crystal Microbalance Models to Study Changes in Viscoelastic Behavior upon Transformation of Lipid Vesicles to a Bilayer on a Gold Surface. Anal. Chem. 2007, 79, 7027–7035. [Google Scholar] [CrossRef] [PubMed]
- Hienerwadel, R.; Berthomieu, C. Bicarbonate Binding to the Non-Heme Iron of Photosystem II Investigated by Fourier Transform Infrared Difference Spectroscopy and 13C-Labeled Bicarbonate. Biochemistry 1995, 34, 16288–16297. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, L.; Yu, M.; Yang, Y.; Wan, M. Self-Assembling Sub-Micrometer-Sized Tube Junctions and Dendrites of Conducting Polymers. Adv. Mater. 2003, 15, 1382–1385. [Google Scholar] [CrossRef]
- Smrčková, P.; Horský, J.; Šárka, E.; Koláček, J.; Netopilík, M.; Walterová, Z.; Kruliš, Z.; Synytsya, A.; Hrušková, K. Hydrolysis of Wheat B-Starch and Characterisation of Acetylated Maltodextrin. Carbohydr. Polym. 2013, 98, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Cilurzo, F.; Cupone, I.E.; Minghetti, P.; Selmin, F.; Montanari, L. Fast Dissolving Films Made of Maltodextrins. Eur. J. Pharm. Biopharm. 2008, 70, 895–900. [Google Scholar] [CrossRef]
- Bhandari, B.; Bansal, N.; Zhang, M.; Schuck, P. Handbook of Food Powders, Processes and Properties; Woodhead Publishing Limited: Sawston, UK, 2013; Volume 53, ISBN 9788578110796. [Google Scholar]
- Ån, H. Experimental Evaluation of Friction Effects on the Unloading Curve During Powder Compression, 2025. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1943012&dswid=-3472 (accessed on 23 January 2025).
- Leuenberger, H.; Rohera, B.D. Fundamentals of Powder Compression. I. The Compactibility and Compressibility of Pharmaceutical Powders. Pharm. Res. 1986, 1, 12–22. [Google Scholar] [CrossRef]
- Jin, L.; Lu, P.; You, H.; Chen, Q.; Dong, J. Vitamin B12 Diffusion and Binding in Crosslinked Poly(Acrylic Acid)s and Poly(Acrylic Acid-Co-N-Vinyl Pyrrolidinone)s. Int. J. Pharm. 2009, 371, 82–88. [Google Scholar] [CrossRef]
- Baixauli, R.; Sanz, T.; Salvador, A.; Fiszman, S.M. Muffins with Resistant Starch: Baking Performance in Relation to the Rheological Properties of the Batter. J. Cereal Sci. 2008, 47, 502–509. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V. Food Powders: Physical Properties, Processing, and Functionality; Kluwer Academic: Dordrecht, The Netherlands; Plenum Publishers: New York, NY, USA, 2005; ISBN 0306478064. [Google Scholar]
- Ma, W.; Tang, C.H.; Yang, X.Q.; Yin, S.W. Fabrication and Characterization of Kidney Bean (Phaseolus vulgaris L.) Protein Isolate-Chitosan Composite Films at Acidic PH. Food Hydrocoll. 2013, 31, 237–247. [Google Scholar] [CrossRef]
- Ye, A.; Hewitt, S. Phase Structures Impact the Rheological Properties of Rennet-Casein-Based Imitation Cheese Containing Starch. Food Hydrocoll. 2009, 23, 867–873. [Google Scholar] [CrossRef]
- Lorente-Bailo, S.; Etayo, I.; Salvador, M.L.; Ferrer-Mairal, A.; Martínez, M.A.; Calvo, B.; Grasa, J. Modeling Domestic Pancake Cooking Incorporating the Rheological Properties of the Batter. Application to Seven Batter Recipes. J. Food Eng. 2021, 291, 110261. [Google Scholar] [CrossRef]
- Aulton, M.E.; Taylor, K. (Eds.) Aulton’s Pharmaceutics: The Design and Manufacture of Medicines; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Turchiuli, C.; Fuchs, M.; Bohin, M.; Cuvelier, M.E.; Ordonnaud, C.; Peyrat-Maillard, M.N.; Dumoulin, E. Oil Encapsulation by Spray Drying and Fluidised Bed Agglomeration. Innov. Food Sci. Emerg. Technol. 2005, 6, 29–35. [Google Scholar] [CrossRef]
- van den Berg, F.; Lyndgaard, C.B.; Sørensen, K.M.; Engelsen, S.B. Process Analytical Technology in the Food Industry. Trends Food Sci. Technol. 2013, 31, 27–35. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Hasabnis, G.K.; Akin, E.; Altintas, Z. Molecularly Imprinted Polymers-Based Electrochemical Sensors for Tracking Vitamin B12 Released from Spray-Dried Microcapsules During In Vitro Simulated Gastrointestinal Digestion. Sens. Biosensing Res. 2025, 47, 100759. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, J.; Qiao, J.; Jiang, Y.; Zarrin, H. Bacterial Nanocellulose / Nafion Composite Membranes for Low Temperature Polymer Electrolyte Fuel Cells. J. Power Sources 2015, 273, 697–706. [Google Scholar] [CrossRef]
- Paini, M.; Aliakbarian, B.; Casazza, A.A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of Phenolic Compounds from Olive Pomace Using Spray Drying: A Study of Operative Parameters. LWT—Food Sci. Technol. 2015, 62, 177–186. [Google Scholar] [CrossRef]
- Ball, G.F.M. Vitamins in Food: Analysis, Bioavailability, and Stability; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9780470774571. [Google Scholar]
- Watanabe, F. Vitamin B12 Sources and Bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef]
- Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary Emulsifiers Impact the Mouse Gut Microbiota Promoting Colitis and Metabolic Syndrome. Nature 2015, 519, 92–96. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Howes, T. Implication of Glass Transition for the Drying and Stability of Dried Foods. J. Food Eng. 1999, 40, 71–79. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of Polyphenols—A Review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Seabra, A.B.; Bernardes, J.S.; Fávaro, W.J.; Paula, A.J.; Durán, N. Cellulose Nanocrystals as Carriers in Medicine and Their Toxicities: A Review. Carbohydr. Polym. 2018, 181, 514–527. [Google Scholar] [CrossRef]
- García-González, C.A.; Alnaief, M.; Smirnova, I. Polysaccharide-Based Aerogels—Promising Biodegradable Carriers for Drug Delivery Systems. Carbohydr. Polym. 2011, 86, 1425–1438. [Google Scholar]
- Lin, S.P.; Loira Calvar, I.; Catchmark, J.M.; Liu, J.R.; Demirci, A.; Cheng, K.C. Biosynthesis, Production and Applications of Bacterial Cellulose. Cellulose 2013, 20, 2191–2219. [Google Scholar] [CrossRef]
- Chawla, P.R.; Bajaj, I.B.; Survase, S.A.; Singhal, R.S. Microbial Cellulose: Fermentative Production and Applications (Review). Food Technol. Biotechnol. 2009, 47, 107–124. [Google Scholar]
- Sánchez-Osorno, D.M.; Amaya-Bustos, S.L.; Molina-Ramírez, C.; López-Jaramillo, M.C.; Martínez-Galán, J.P. Vitamin B Complex Encapsulation in Bacterial Nanocellulose: A Novel System for Heat and Chemical Stabilization in Food Products. Polymers 2024, 16, 2961. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bhattacharya, S. Characterization of Agglomeration Process as a Function of Moisture Content Using a Model Food Powder. J. Texture Stud. 2006, 37, 35–48. [Google Scholar] [CrossRef]
- Abdullah, E.C.; Salam, A.M.; Aziz, A.R. Cohesiveness and Flowability Properties of Silica Gel Powder. Phys. Int. 2010, 1, 16–21. [Google Scholar] [CrossRef]
BNC | ||
Wavenumber cm−1 | Vibration | Reference |
3339 | OH | [7,8,10] |
1431 | CH2 sym | [11,12] |
1425 | OH def vibr | [13] |
1236 | O–H in-plane | [12,14] |
1034 | C-H wag vibr | [15] |
644 | OH def in plan | [16] |
MDX | ||
Wavenumber cm−1 | Vibration | Reference |
3284 | O-H | [17] |
2187–2018 | CO | [18] |
1362 | COC | [19] |
853 | CH2 | [20] |
B12 | ||
Wavenumber cm−1 | Vibration | Reference |
2991–2932–2877–2825 | C-H str | [17,21] |
2138 | C Ξ N | [9] |
1658 | CO asim | [22] |
1493–810–667 | C = C | [23] |
1544 | C = N | [7,13] |
848–707–578 | pyranoid ring | [24,25] |
Sample ID | Encapsulant Matrix | Active Compound | Vitamin B12 Concentration (% w/w of Total Solids) |
---|---|---|---|
BNC | Bacterial Nanocellulose | None | 0 |
BNC_B12 | Bacterial Nanocellulose | Vitamin B12 | 9 |
MDX | Maltodextrin | None | 0 |
MDX_B12 | Maltodextrin | Vitamin B12 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios-Hinestroza, H.; López-Jaramillo, M.C.; Martínez-Galán, J.P.; Molina-Ramírez, C.; Sánchez-Osorno, D.M. Physical Properties of Bacterial Nanocellulose as an Encapsulant Material of Vitamin B12. Molecules 2025, 30, 4172. https://doi.org/10.3390/molecules30214172
Palacios-Hinestroza H, López-Jaramillo MC, Martínez-Galán JP, Molina-Ramírez C, Sánchez-Osorno DM. Physical Properties of Bacterial Nanocellulose as an Encapsulant Material of Vitamin B12. Molecules. 2025; 30(21):4172. https://doi.org/10.3390/molecules30214172
Chicago/Turabian StylePalacios-Hinestroza, Hasbleidy, María Camila López-Jaramillo, Julián Paul Martínez-Galán, Carlos Molina-Ramírez, and Diego Mauricio Sánchez-Osorno. 2025. "Physical Properties of Bacterial Nanocellulose as an Encapsulant Material of Vitamin B12" Molecules 30, no. 21: 4172. https://doi.org/10.3390/molecules30214172
APA StylePalacios-Hinestroza, H., López-Jaramillo, M. C., Martínez-Galán, J. P., Molina-Ramírez, C., & Sánchez-Osorno, D. M. (2025). Physical Properties of Bacterial Nanocellulose as an Encapsulant Material of Vitamin B12. Molecules, 30(21), 4172. https://doi.org/10.3390/molecules30214172